Chapter 11 Structured Types, Data Abstraction, and Classes
Chapter 11 Structured Types, Data Abstraction, and Classes

 Chapter 11 Structured Types, Data Abstraction, and Classes

ADVANCE \D 3.60EXERCISE ANSWERS

Exam Preparation Exercises

1.
Record (struct)
A heterogeneous data structure in which the components are accessed by name, not by index

Member

A component of a struct

Member selector

The expression used to access a member of a struct variable; composed of the name of the struct variable and the member name, separated by a dot (period)

Hierarchical record
A record that contains another record as a component

Data abstraction

The separation of the logical properties of a data type from its implementa​tion details

 3. if (currentDate.year != inventory[index].history.lastServiced.year)
4.
#include <string> // For strcpy()






person.name.first = "Clara");

person.name.last = "Herrmann");

person.place.city = "White Bluffs");

person.place.state = "WA");

person.place.zipCode = 99352;

5.
True

6.
a.
Add a new main entry, Delete a main entry, Add a new synonym for a main entry, Delete a synonym, Look up a main entry, Display synonyms, . . .

b.
Load dishes, Select desired cycle, Wash, Rinse, Dry, Turn off, . . .

c. Refuel, Start engine, Accelerate, Decelerate, Bank left, Bank right, Ascend, Descend, . . .

9.
Instantiate

Create an object or variable of a given type

const member function
A class member function that is allowed to inspect but not to modify the private data members

Specification file

A header file containing the declaration but not the implementation of a class

Implementation file

A file containing function definitions of class member functions (and perhaps auxiliary or "helper" functions that are not members of the class)

 10.
a.
int TimeType::CurrentHrs() const

// Postcondition:

// Function value == hrs

{ return hrs; }

b.
int TimeType::CurrentMins() const

// Postcondition:

// Function value == mins

{ return mins; }

c.
int TimeType::CurrentSecs() const

// Postcondition:

// Function value == secs

{ return secs; }
12.
Scope resolution operator
The :: operator that is used in the function heading of a member function definition; it is preceded by the class name and followed by the member function name

Separate compilation

The process of compiling each file of a multifile program independently of the others

C++ class constructor

A class member function that is implicitly invoked whenever a class object is created

Default constructor

A parameterless class constructor

13.
a.
SomeClass obj1(0.0);

b.
SomeClass obj2;

or

SomeClass obj2(8.6);

c.
Not possible there is no way to pass parameters to a class constructor when creating an array of class objects

14.
The member function SomeClass() is a class constructor and must be declared without a return value type
Programming Warm‑Up Exercises

2.
a.
typedef char String20[21];

struct AptType

{

 String20 landlord;

 String20 address;

 int bedrooms;

 float price;

};

b.
AptType available[200];

c.
void GetRecord(/* out */ AptType& forLease)

{

 cin.get(forLease.landlord, 21); // May contain embedded blanks

 cin.get(forLease.address, 21);

 cin >> forLease.bedrooms >> forLease.price;

}
4.
typedef char String30[31];

struct DateType1

{

 int month;

 int year;

};

struct DateType2

{

 int month;

 int day;

 int year;

};

struct AddressType

{

 String30 street;

 String30 city;

 String30 state;

 long zipCode;

};

struct SubscriberType

{

 String30 firstName;

 String30 lastName;

 AddressType address;

 DateType1 expireDate;

 DateType2 dateSent;

 int numNotices;

 int numYears;

 bool
 nameForSale;

};

6.
a.
bool NotEqual(/* in */ TimeType otherTime) const;

 // Postcondition:

 // Function value == true, if this time does not equal

 // otherTime

 // == false, otherwise

bool LessOrEqual(/* in */ TimeType otherTime) const;

 // Precondition:

 // This time and otherTime represent times in the

 // same day

 // Postcondition:

 // Function value == true, if this time equals otherTime

 // or is earlier in the day than

 // otherTime

 // == false, otherwise

bool GreaterThan(/* in */ TimeType otherTime) const;

 // Precondition:

 // This time and otherTime represent times in the

 // same day

 // Postcondition:

 // Function value == true, if this time is later

 // in the day than otherTime

 // == false, otherwise

bool GreaterOrEqual(/* in */ TimeType otherTime) const;

 // Precondition:

 // This time and otherTime represent times in the

 // same day

b.
Below, the pre- and postconditions would be the same as in part (a).

bool TimeType::NotEqual(/* in */ TimeType otherTime) const

{

 return (!Equal(otherTime));

}

bool TimeType::LessOrEqual(/* in */ TimeType otherTime) const

{

 return (LessThan(otherTime) || Equal(otherTime));

}

bool TimeType::GreaterThan(/* in */ TimeType otherTime) const

{

 return (!(LessThan(otherTime) || Equal(otherTime)));

}

bool TimeType::GreaterOrEqual(/* in */ TimeType otherTime) const

{

 return (!LessThan(otherTime));

}

9.
a.
To test the TimeType::LessThan function, pairs of times must be compared that allow each of the "paths" through the Boolean expression to be taken at least once. Pairs of times (time1 and time2) satisfying the following conditions should be included:

1.
time1's hours < time2's hours (to return TRUE

2.
time1's hours > time2's hours (to return FALSE)

3.
time1's hours = time2's hours and time1's minutes < time2's minutes (to return TRUE)

4.
time1's hours = time2's hours and time1's minutes > time2's minutes (to return FALSE)

5.
time1's hours = time2's hours, time1's minutes = time2's minutes, and time1's seconds < time2's seconds (to return TRUE)

6.
time1's hours = time2's hours, time1's minutes = time2's minutes, and time1's seconds (time2's seconds (to return FALSE)

b.
#include <iostream>

#include "timetype.h"

using namespace std;

int main()

{

 TimeType time1;

 TimeType time2;

 int hours;

 int minutes;

 int seconds;

 cout << "Enter first time (use hours < 0 to quit): ";

 cin >> hours >> minutes >> seconds;

 while (hours >= 0)

 {

 time1.Set(hours, minutes, seconds);

 cout << "Enter second time: ";

 cin >> hours >> minutes >> seconds;

 time2.Set(hours, minutes, seconds);

 if (time1.LessThan(time2))

 cout << "First is less than second." << endl;

 else

 cout << "First is NOT less than second." << endl;

 cout << "Enter first time (use hours < 0 to quit): ";

 cin >> hours >> minutes >> seconds;

 }

 return 0;

}
10.
a.
Test data for the TimeType::Write function must include times that satisfy the following conditions:

1.
hours < 10

2.
hours (10

3.
minutes < 10

4.
minutes (10

5.
seconds < 10

6.
seconds (10

b.
#include <iostream>

#include "timetype.h"

using namespace std;

int main()

{

 TimeType time;

 int hours;

 int minutes;

 int seconds;

 cout << "Enter a time (use hours < 0 to quit): ";

 cin >> hours >> minutes >> seconds;

 while (hours >= 0)

 {

 time.Set(hours, minutes, seconds);

 time.Write();

 cout << endl;

 cout << "Enter a time (use hours < 0 to quit): ";

 cin >> hours >> minutes >> seconds;

 }

 return 0;

}

11.
a.
Test data for the TimeType::WriteAmPm function must include times that satisfy the following conditions:

1.
hours = 0

2.
0 < hours < 10

3.
10 (hours < 13

4.
hours (13

5.
minutes < 10

6.
minutes (10

7.
seconds < 10

8. seconds (10

b.
Use the solution to 6(b), replacing the call to Write with a call to WriteAmPm.

12.
Change the private part of the class declaration to the following:

private:

 long secs;

Insert the following auxiliary functions into the implementation file. These functions convert from hours-minutes-seconds form to seconds-after-midnight form and vice versa.

long Seconds(/* in */ int hours,

 /* in */ int minutes,

 /* in */ int seconds)

{

 return long(hours)*3600 + long(minutes*60 + seconds);

}

void MakeHrsMinsSecs(/* in */ long secs,

 /* out */ int& hours,

 /* out */ int& minutes,

 /* out */ int& seconds)

{

 hours = int(secs / 3600);

 secs = secs % 3600;

 minutes = int(secs / 60);

 secs = secs % 60;

 seconds = int(secs / 60);

}

Change the implementations of the member functions as follows (shown here without pre- and postconditions to save space).

TimeType::TimeType(/* in */ int initHrs,

 /* in */ int initMins,

 /* in */ int initSecs)

{ secs = Seconds(initHrs, initMins, initSecs); }

TimeType::TimeType()

{ secs = 0; }

void TimeType::Set(/* in */ int hours,

 /* in */ int minutes,

 /* in */ int seconds)

{ secs = Seconds(hours, minutes, seconds); }

void TimeType::Increment()

{ secs++;

 if (secs > 86399) // 86400 seconds in 24 hours

 secs = 0;

}

void TimeType::Write() const

{ int hours;

 int minutes;

 int seconds;

 MakeHrsMinsSecs(secs, hours, minutes, seconds);

 if (hours < 10)

 cout << '0';

 cout << hours << ':';

 if (minutes < 10)

 cout << '0';

 cout << minutes << ':';

 if (seconds < 10)

 cout << '0';

 cout << seconds;

}

bool TimeType::Equal(/* in */ TimeType otherTime) const

{ return (secs == otherTime.secs); }

bool TimeType::LessThan(/* in */ TimeType otherTime) const

{ return (secs < otherTime.secs); }

Case Study Follow-Up
2. To test the DateType::ComparedTo function, pairs of dates must be compared that allow each

the return statements to be executed. Pairs of dates satisfying the following conditions should be

included:

1.
The first year is less than the second year.

2.
The first year is greater than the second year.

3.
The years are equal, and the first month is less than the second month.

4.
The years are equal, and the first month is greater than the second month.

5.
The years and months are equal, and the first day is less than the second day.

6.
The years and months are equal, and the first day is greater than the second day.

7.
The years, months, and days are equal.

3.

#include <iostream>

#include "datetype.h"

using namespace std;

int main()

{

 DateType date1;

 DateType date2;

 int month;

 int day;

 int year;

 cout << "Enter first date (use month < 0 to quit): ";

 cin >> month >> day >> year;

 while (month >= 0);

 {

 date1.Set(month, day, year);

 cout << "Enter second date: ";

 cin >> month >> day >> year;

 date2.Set(month, day, year);

 switch (date1.ComparedTo(date2))

 {

 case BEFORE : cout << " Before" << endl;

 break;

 case SAME : cout << " Same" << endl;

 break;

 case AFTER : cout << " After" << endl;

 }

 cout << "Enter first date (use month < 0 to quit): ";

 cin >> month >> day >> year;

 }

 return 0;

}

4.
Test data for the DateType::Increment function must include the following dates:

1.
Dates in the first day of each month

2.
Dates in the last day of each month (with December causing the year to change)

3.
Dates in the middle of each month

4.
Dates causing February to change to March in a leap year, in a nonleap year, and in a year in which the last two digits are 00.

5.
#include <iostream>

#include "datetype.h"

using namespace std;

int main()

{ DateType date;

 int month;

 int day;

 int year;

 cout << "Enter a date (use month < 0 to quit): ";

 cin >> month >> day >> year;

 while (month >= 0);

 {

 date.Set(month, day, year);

 date.Increment();

 cout << "Incremented date is ";

 date.Print();

 cout << endl;

 cout << "Enter a date (use month < 0 to quit): ";

 cin >> month >> day >> year;

 }

 return 0;

 }
7. To test the BirthdayCalls program, dates satisfying the following conditions should be

included:
1. Current date in which two weeks away is the same month

2. Current date in which two weeks away is a different month.

3. Current date in which two weeks away is a different year.

4. Dates for birthdays less than two weeks away.

5. Dates for birthdays exactly two weeks away.

6. Dates for birthdays more than two weeks away.

8. The following implements the test plan from question 7 above:

Current Date

Birthdate
 Result

6/1/1999

6/3/1999

reminder

6/15/1999

reminder

6/30/1999

no reminder

8/25/2000

9/1/2000

reminder

9/8/2000

reminder

9/10/2000

no reminder

12/20/2001

1/1/2002

reminder

1/3/2002

reminder

1/15/2002

no reminder

 9. To modify the BirthdayCalls program to keep count of the number of friends born before and after

 the entered babyBoomerDate, the beginning of the program is altered as given below to add

 a boomerDate variable of type DateType, and a call to GetCurrentDate to input its value from user:

void GetCurrentDate(DateType&);

void GetEntry(ifstream&, EntryType&);

void OpenForInput(ifstream&);

void PrintEntry(EntryType, DateType);

int main()

{

 ifstream friendFile; // Input file of friends' records

 EntryType entry; // Current record from friendFile

 // being checked

 DateType currentDate; // Month, day, and year of current day

 DateType birthday; // Date of next birthday

 DateType targetDate; // Two weeks from current date

 Datetype boomerDate; // Baby boomer threshold date

 int birthdayYear; // Year of next birthday

 int count; // Loop counter

 int
 boomerBeforeCount; // count for number of friend born

 int
 boomerAfterCount; // before or after baby boomer date

 OpenForInput(friendFile);

 if (!friendFile)

 return 1;

 GetCurrentDate(boomerDate);

 GetCurrentDate(currentDate);

 targetDate = currentDate;

 for (count = 1; count <= 14; count++)

 targetDate.Increment();

 GetEntry(friendFile, entry);

 while (friendFile)

 {

 if (targetDate.Year() != currentDate.Year() &&

 entry.birthDate.Month() == 1)

 birthdayYear = targetDate.Year();

 else

 birthdayYear = currentDate.Year();

 birthday.Set(entry.birthDate.Month(), entry.birthDate.Day(),

 birthdayYear);

 if (birthday.ComparedTo(currentDate) >= SAME &&

 birthday.ComparedTo(targetDate) <= SAME)

 PrintEntry(entry, birthday);

 if ((birthday.ComparedTo(boomerDate) == BEFORE)

 boomerBeforeCOunt++;

 else

 boomerAfterCount++;

 GetEntry(friendFile, entry);

 }

 cout << boomerNBeforeCount << “ friends born before boomer

 date “<< boomerDate.Print() << end;

cout << boomerNAfterCount << “ friends born on or after boomer date “<< boomerDate.Print() << end;

 return 0;

 }

194
195

