 Chapter 6 Looping

Chapter 6 Looping

 Chapter 6 Looping

EXERCISE ANSWERS

Exam Preparation Exercises

1.
Loops are segments of code that are repeated from 0 to many times until some stopping condition is met. Branches are segments of code that may be executed 0 or 1 times, depending on evaluation of the logical expression in the if statement.

2.
The loop prints the integers 2 through 11, one number per line.

5. In the output below, the first two digits on each line are values of j, and the third digit is the value of i.

2 1 4

2 1 3

2 1 2

2 1 1

6.
a.
4 6 8 10 12 14 16 18 20 and so on

b.
The two flaws are the initial value of n and the While condition. n is initially set to 2, but the 2 is not printed before n is incremented to 4. This flaw can be fixed by incrementing n after the output statement instead of before it. The loop never stops because n never equals 15; n always contains an even number. This may be corrected by changing the While condition to n < 15. The corrected code is:

n = 2;

while (n < 15)

{

 cout << n << ' ';

 n = n + 2;

}

7.
a.
The output is BCDE, followed by an echo of the newline character. The 'A' that is input by the priming read is discarded because the statements in the loop body are in reverse order.

b.
Corrected code:

cin.get(inChar);

while (inChar != '\n')

{

 cout << inChar;

 cin.get(inChar);

}

8.
One (and only one) priming read is needed. It precedes the outer While loop:

cin.get(letter);

while (cin)

.

.

This input statement primes not only the outer loop but also the inner loop.

10.
a.
After exit from the loop, sum contains 18 and number contains 0.

b.
No, the given data set does not fully test the program. An​other set needs to be tested in which the value of i reaches its limit, another in which the first data item is the sentinel value 0, and yet another in which all data values before the sentinel are less than zero.

12.
1 3 6 10 15

Programming Warm‑Up Exercises

3.
line = 1;

while (line <= 4)

{

 number = 1;

 while (number <= line)

 {

 cout << number << ' ';

 number++;

 }

 cout << endl;

 line++;

}

4.
Below, sum, count, and score are of type int, and average is of type float.

count = 0;

sum = 0;

scoreFile >> score;

while (scoreFile)

{

 sum = sum + score;

 count++;

 scoreFile >> score;

}

if (count > 0)

 average = float(sum) / float(count);

 8.
hour = 1;

tenMinute = 0;

am = true;

done = false;

while (!done)

{

 cout << setw(2) << hour << ':' << tenMinute << '0';

 if (am)

 cout << " A.M. ";

 else

 cout << " P.M. ";

 tenMinute++;

 if (tenMinute > 5)

 {

 cout << endl;

 tenMinute = 0;

 hour++;

 if (hour == 13)

 hour = 1;

 else if (hour == 12)

 am = !am;

 }

 if (hour == 1 && tenMinute == 0 && am)

 done = true;

}

9. int NumStrings = 0;

int NumStringsWithE = 0;

 string InputLine;

 string CurrentString;

cout << “Enter line (terminated with ‘End’): “ << endl;

cin >> InputLine;

while (CurrentString != “End”)

{

 NumStrings++;

 if (CurrentString.find(“e”) != string:npos)

 NumStringsWithE++;

 cin >> InputLine;

}

output << NumStrings << " strings read" << endl;

output << NumStringsWithE << " strings contained an 'e'" << endl;

output << setw(2) << setprecision(0)

 << (NumStringsWithE/float(NumStrings)))*100

 << " %" << " contained an 'e'" << endl;

10. int NumStrings = 0;

int NumStringsWithE = 0;

int TotalNumStrings = 0;

int TotalNumStringWithE = 0;

 string InputLine;

 string CurrentString;

 string InputFileName;

 istream InputFile;

cout << “Enter file name: “;

cin >> InputFileName;

InputFile.open(InputFileName.c_str());

InputFile >> CurrentString;

while (InputFile)

{

 while (CurrentString != “End”)

 {

 NumStrings++;

 if (CurrentString.find(“e”) != string:npos)

 NumStringsWithE++;

 InputFile >> CurrentString;

 }

 output << NumStrings << " strings read" << endl;

 output << NumStringsWithE << " strings contained an 'e'" << endl;

 output << setw(2) << setprecision(0)

 << (NumStringsWithE/float(NumStrings)))*100

 << " %" << " contained an 'e'" << endl;

 output << endl; // spacer

 NumString = 0;

 // reset

 NumStringWithE = 0; // reset

}

11. int NumStrings = 0;

int NumStringsWithE = 0;

int TotalNumStrings = 0;

int TotalNumStringWithE = 0;

 string InputLine;

 string CurrentString;

 string InputFileName;

 istream InputFile;

cout << “Enter file name: “;

cin >> InputFileName;

InputFile.open(InputFileName.c_str());

While (InputFile)

{

 while (CurrentString != “End”)

 {

 NumStrings++;

 if (CurrentString.find(“e”) != string:npos)

 NumStringsWithE++;

 }

 output << NumStrings << " strings read" << endl;

 output << NumStringsWithE << " strings contained an 'e'" << endl;

 output << setw(2) << setprecision(0)

<< (NumStringsWithE/float(NumStrings)))*100

 << " %" << " contained an 'e'" << endl;

 output << endl; // spacer

 TotalNumStrings = TotalNumStrings + NumStrings;

 TotalNumStringWithE = TotalNumStringsWithE + NumStringWithE;

 NumStrings = 0;

// reset

 NumstringWithE = 0; //
reset

}

 output
<<
TotalNumStrings << " strings read" << endl;

 output
<<
TotalNumStringsWithE << " strings contained an 'e'"

 << endl;

 output << setw(2) << setprecision(0)

<< (TotalNumStringsWithE/float(TotalNumStrings)))*100

 << " %" << " contained an 'e'" << endl;

Case Study Follow-Up
1.
int main()

{
 



 incFile.open(fileName.c_str());

 if (!incFile)

 {

 cout << "** Can't open input file **" << endl;

 return 1;

 }

 incFile >> sex >> amount;

 femaleCount = 0;

 femaleSum = 0.0;

 maleCount = 0;

 maleSum = 0.0;

 while (incFile)

 {

 cout << "Sex: " << sex << " Amount: " << amount << endl;

 if (amount < 0.0) // Check for invalid salary

 cout << "** Bad data‑‑negative salary **" << endl;

 else

 if (sex == 'F')

 {

 femaleCount++;

 femaleSum = femaleSum + amount;

 }

 else if (sex == 'M')

 {

 maleCount++;

 maleSum = maleSum + amount;

 }

 else // Reject invalid sex code

 cout << "** Bad data‑‑invalid sex code **" << endl;

 incFile >> sex >> amount;

 }

 if (femaleCount <= 0)

 cout << "No females" << endl; // Avoid division by zero

 else

 {

 femaleAverage = femaleSum / float(femaleCount);

 cout << "For " << femaleCount << " females, the average "

 << "income is " << femaleAverage << endl;

 }

 if (maleCount <= 0)

 cout << "No males" << endl; // Avoid division by zero

 else

 {

 maleAverage = maleSum / float(maleCount);

 cout << "For " << maleCount << " males, the average "

 << "income is " << maleAverage << endl;

 }

 return 0;

}

1. To compute the highest and lowest incomes for each gender the following changes need to be made:
a . Add the following declarations:

int femaleHighest,

// highest income for females

 femaleLowest,

// lowest income for females

 maleHighest,

// highest income for males

 makeLowest;

// lowest income for males

b. Add the following initialization :

femaleHighest = 0;

femaleLowest = 0;

maleHighest = 0;

maleLowest = 0;

 c. Replace the loop with:

while (incFile)

{

 incFile << sex << amount;

 if (sex == ‘F’)

 {

 femaleCount++;

 femaleSum = femaleSum + amount;

 if (amount > femaleHighest)

 femaleHighest = amount;

 if (amount < femaleLowest)

 femaleLowest = amount;

 }

 else

 {

 maleCount++;

 maleSum = maleSum + amount;

 if (amount > maleHighest)

 maleHighest = amount;

 if (amount < maleLowest)

 maleLowest = amount;

 }

 }

 d. Finally, change the cout statements at the end of the program to:

cout << “For “ << femaleCount

 << “ females, the average income is “ << femaleAverage

 << “ the highest income is “ << femaleHighest

 << “ and the lowest income is “ << femaleLowest << endl;

cout << “For “ << maleCount

 << “ males, the average income is “ << maleAverage

 << “ the highest income is “ << maleHighest

 << “ and the lowest income is “ << maleLowest << endl;

2. To test the modified program Incomes we use the following set of data:

M 10000.00

F 30000.00

M 30000.00

F 50000.00

M 20000.00

F 40000.00

Expected Output:

For 3 females, the average income is 40000.00, the highest income is 50000.00, and the lowest income

income is 30000.00

For 3 males, the average income is 20000.00, the highest income is 30000.00, and the lowest income

income is 10000.00

84

85

