
1

Electrical and Computer Engineering
1 of 23

UAH CPE 112

Looping

• A loop executes the same statement (simple
or compound) over and over, as long as a
condition or set of conditions is satisfied.

• A loop is a control structure that causes a
statement or group of statements to be
executed repeatedly.

Electrical and Computer Engineering
2 of 23

UAH CPE 112

The while Statement

• WhileStatement
While (Expression)

Statement

• Example:
while (inputVal != 25)

cin >> inputVal;

• If the expression has a value of false, the program
skips the loop body and execution continues at the
statement immediately following the loop.

Electrical and Computer Engineering
3 of 23

UAH CPE 112

Phases of Loop Execution

• Loop test – the point at which the while
expression is evaluated.

• Loop entry – the point at which the flow of control
reaches the first statement of the loop body

• Iteration – an individual repetition of the body of a
loop

• Loop exit – the point at which control passes to
the first statement following the loop

• Termination condition – the condition causing a
loop exit

Electrical and Computer Engineering
4 of 23

UAH CPE 112

Loops Using the While Statement

• Count-controlled loop
– Executes a specified number of times

• Event-controlled loop
– Terminates when something changes the

expression’s value

Electrical and Computer Engineering
5 of 23

UAH CPE 112

Count-Controlled Loops

• A loop control variable is used – it must be
initialized before it is tested and it must be updated
in the body of the loop.

• Example:
loopCount = 1;

while (loopCount <= 10)

{
.
.
.

loopCount = loopCount + 1;

}

Electrical and Computer Engineering
6 of 23

UAH CPE 112

Count-Controlled Loops

• A loop control variable is used – it must be
initialized before it is tested and it must be updated
in the body of the loop.

• Example:
loopCount = 1;

while (loopCount <= 10) loop test

{
.
.
.

loopCount = loopCount + 1;

}

2

Electrical and Computer Engineering
7 of 23

UAH CPE 112

Count-Controlled Loops

• A loop control variable is used – it must be
initialized before it is tested and it must be updated
in the body of the loop.

• Example:
loopCount = 1;

while (loopCount <= 10)

{
. loop entry
.
.

loopCount = loopCount + 1;

}

Electrical and Computer Engineering
8 of 23

UAH CPE 112

Count-Controlled Loops

• A loop control variable is used – it must be
initialized before it is tested and it must be updated
in the body of the loop.

• Example:
loopCount = 1;

while (loopCount <= 10)

{
.
. iteration
.

loopCount = loopCount + 1;

}

Electrical and Computer Engineering
9 of 23

UAH CPE 112

Count-Controlled Loops

• A loop control variable is used – it must be
initialized before it is tested and it must be updated
in the body of the loop.

• Example:
loopCount = 1;

while (loopCount <= 10)

{
.
.
.

loopCount = loopCount + 1;

}

loop exit
Electrical and Computer Engineering

10 of 23

UAH CPE 112

Count-Controlled Loops

• A loop control variable is used – it must be
initialized before it is tested and it must be updated
in the body of the loop.

• Example:
loopCount = 1;

while (loopCount <= 10) termination condition

is loopCount = 11

{
.
.
.

loopCount = loopCount + 1;

}

Electrical and Computer Engineering
11 of 23

UAH CPE 112

Event-Controlled Loops

• Sentinel-Controlled Loops
– Execute until a special value is encountered

• End-of-File Controlled Loops
– Execute until all data in a file has been read

• Flag-Controlled Loops
– Execute until a flag changes value

Electrical and Computer Engineering
12 of 23

UAH CPE 112

Sentinel-Controlled Loops

• A special data value is used to signal the
program that there is no more data to be
processed.

• A sentinel value must be something that
never shows up in the normal input to a
program.

3

Electrical and Computer Engineering
13 of 23

UAH CPE 112

Sentinel-Controlled Loop Example

while (!(month == 2 && day == 31))
{

cin >> month >> day;

.

.

.

}

• Problem: month and day aren’t initialized

Electrical and Computer Engineering
14 of 23

UAH CPE 112
More On Sentinel-
Controlled Loops

cin >> month >> day;

while (!(month == 2 && day == 31))

{

cin >> month >> day;
.
.
.

}

Electrical and Computer Engineering
15 of 23

UAH CPE 112
More On Sentinel-
Controlled Loops

cin >> month >> day;
while (!(month == 2 && day == 31))
{

cin >> month >> day;
.
.
.

}

cin >> month >> day;
while (!(month == 2 && day == 31))
{

.

.

.
cin >> month >> day;

}

Electrical and Computer Engineering
16 of 23

UAH CPE 112

Infinite Loop Example

cin >> dataValue >> sentinel;

while (sentinel = 1)

{

.

.

.

cin >> dataValue >> sentinel;

}

Electrical and Computer Engineering
17 of 23

UAH CPE 112

End-of-File Controlled Loops

• After a program has read the last piece of data from an
input file, the computer is at the end of the file (EOF).

• If we try to input any more values, the stream goes into the
fail state.

• We can use the failure of the input stream as a sentinel.
• Example:

inData >> intVal;
while (inData)
{

cout << intVal << endl;
inData >> intVal;

}

Electrical and Computer Engineering
18 of 23

UAH CPE 112

More on End-of-File Loops

• Keep in mind that the input stream can fail even
though we haven’t reached the end of the file.

• EOF-controlled loops are similar to sentinel-
controlled loops in that the program doesn’t know
in advance how many data items are to be input.

• It is possible to use an EOF-controlled loop when
we read from the standard input device via the cin
stream instead of a data file.

4

Electrical and Computer Engineering
19 of 23

UAH CPE 112

cin EOF Example

cout << “Enter an integer (or Ctrl-D to quit): ”;

cin >> someInt;

while (cin)

{

cout << someInt << “ doubled is ”

<< 2 * someInt << endl;

cout << “Next number (or Ctrl-D to quit): ”;

cin >> someInt;

}

Electrical and Computer Engineering
20 of 23

UAH CPE 112

Flag-Controlled Loops

• A flag is a Boolean variable that is used to control
the logical flow of a program.

• We can use the Boolean variable to record
whether or not the event that controls the process
has occurred.

Electrical and Computer Engineering
21 of 23

UAH CPE 112

Flag-Controlled Loop Example

sum = 0;

nonNegative = true; // Initialize flag

while (nonNegative)

{

cin >> number;

if (number < 0)

nonNegative = false; // Test input value

else // Set flag if event

sum = sum + number; // occurred.

}

Electrical and Computer Engineering
22 of 23

UAH CPE 112

An Equivalent Loop

sum = 0;
negative = false; // Initialize flag

while (!negative)

{

cin >> number;

if (number < 0)

negative = true; // Test input value

else // Set flag if event

sum = sum + number; // occurred.

}

Electrical and Computer Engineering
23 of 23

UAH CPE 112

Another Equivalent Loop

sum = 0;

cin >> number;

while (number > 0) // Test input value

{

sum = sum + number;

}

