
CPE 221 Test 2 Solution Fall 2018 

Page 1 of 6 
 

The University of Alabama in Huntsville 
Electrical and Computer Engineering Department 

CPE 221 01 
Test 2 Solution 

Fall 2018 
 

This test is closed book, closed notes. You may use a calculator. You should have the 6 page ARM 
Instruction Reference. Please check to make sure you have all 6 pages of the test. You must show your 
work to receive full credit. 

 
1.  (1 point) High-level language programmers use _variables_ to represent any type of data 

element they define. 

2. (1 point) An _exception_ is an event that forces the computer to stop normal processing and to 

switch control to the operating system. 

3. (1 point) _Pipelining_ is a technique for improving the throughput of instruction execution. 

4. (1 point) A _frame_ is a region of temporary storage at the top of the current stack. 

5. (1 point) The computer has a _program counter_ that contains the address of the next 

instruction to be executed. 

6. (10 points) A processor executes an instruction in the following five stages. The time required by 
each stage in picoseconds (1,000 ps = 1 ns) is: 
IF Instruction fetch  320 ps 
OF Operand fetch   280 ps 
OE Execute    350 ps 
M Memory   450 ps 
OS Operand store (writeback) 220 ps 

 
a. (5 points) What is the time taken to fully execute an instruction assuming that this structure is 

pipelined in five stages and that there is an additional 20 ps per stage due to the pipeline 
latches?  5 * (max(IF, OF, OE, M, OS) + latch) = 5 * (max(320, 280, 350, 450, 220) + 20) ps = 
5*470 = 2350 ps 

 
b. (5 points) What is the time to execute an instruction if the processor is not pipelined? 1 * (IF + 

OF + OE + M + OS) = (320 + 280 + 350 + 450 + 220) ps = 1620 ps 
  



CPE 221 Test 2 Solution Fall 2018 

Page 2 of 6 
 

7. (30 points) Consider the following ARM program. Trace the values of the registers shown as they 
change during program execution. Also, trace the stack activity. Clearly indicate the value of the 
sp and the fp. There may be unused columns or rows in the tables. If you need to add columns 
or rows, you may do so. 

 
#include <stdio.h> 
int Factorial (int); 
 
int main() 
{ 
  int n = 1; 
  int f; 
  f = Factorial(n); 
} 
    
int Factorial (int n) 
{ 
  if (n == 1) 
    return 1; 
  else 
    return n*Factorial(n-1); 
} 
 
       AREA  FACTORIAL, CODE, READONLY 
       ENTRY 
main  
0         mov    lr, #60 
4         mov    fp, #0x0000C000 
8         push   {fp} 
12        sub    sp, sp, #8 
16        add    fp, sp, #0 
20        movs   r0, #1 
24        bl     factorial 
28        str    r0, [fp, #4] 
32        movs   r3, #0 
36        mov    r0, r3 
40        adds   fp, fp, #8 
44        mov    sp, fp 
48        pop    {fp} 
52  stop  b      stop 
factorial 
56        str    r0, [fp, #-4] 
60        ldr    r3, [fp, #-4] 
64        cmp    r3, #1 
68        bne    L4 
72        movs   r3, #1 
76        b      L5 
L4 
80        ldr    r3, [fp, #-4] 
84        subs   r3, r3, #1 
88        mov    r0, r3 
92        bl     factorial 
96        mov    r2, r0 
100       ldr    r3, [fp, #-4] 
104       mul    r4, r3, r2 
108       mov    r3, r4 
L5 
112       mov    r0, r3 
116       mov    pc, lr 
       END 
            END  



CPE 221 Test 2 Solution Fall 2018 

Page 3 of 6 
 

 
Address Value 

FFFF FFEC  
FFFF FFF0  
FFFF FFF4  
FFFF FFF8  
FFFF FFFC 0x0000 C000 

Inst: _8 push {fp}_ 

Address Value 
FFFF FFEC  
FFFF FFF0 1 
FFFF FFF4  
FFFF FFF8  
FFFF FFFC 0x0000 C000 

Inst: _56 str [fp, #-4]_ 

Address Value 
FFFF FFEC  
FFFF FFF0 1 
FFFF FFF4  
FFFF FFF8 1 
FFFF FFFC 0x0000 C000 

Inst: _44 mov sp, fp_ 

 
Address Value 

FFFF FFEC  
FFFF FFF0  
FFFF FFF4  
FFFF FFF8  
FFFF FFFC 0x0000 C000 

Inst: _12 sub sp, sp, #8_ 

Address Value 
FFFF FFEC  
FFFF FFF0 1 
FFFF FFF4  
FFFF FFF8 1 
FFFF FFFC 0x0000 C000 

Inst: _28 str r0, [fp, #4]_ 

Address Value 
FFFF FFEC  
FFFF FFF0 1 
FFFF FFF4  
FFFF FFF8 1 
FFFF FFFC 0x0000 C000 

Inst: _48 pop {fp},  
sp = 0x0000 0000,  
fp = 0x0000 C000_ 

 
Address Value 

FFFF FFEC  
FFFF FFF0  
FFFF FFF4  
FFFF FFF8  
FFFF FFFC 0x0000 C000 

Inst: _16 add fp, sp, #0_ 

Address Value 
FFFF FFEC  
FFFF FFF0 1 
FFFF FFF4  
FFFF FFF8 1 
FFFF FFFC 0x0000 C000 

Inst: _40 adds fp, fp #4_ 

sp indicated in yellow, fp in blue, green indicates sp and fp have the same value 
 

r0 1 1 0    
r1 1 1 0    
r3       
r4       
r5       
r9       
r10       
lr 60 28     
fp 0x0000 C000 0xFFFF FFF4 0xFFFF FFFC 0x0000 C000   

 
  



CPE 221 Test 2 Solution Fall 2018 

Page 4 of 6 
 

8. (20 points) Write the code to implement the expression A = (B*(F – G))/(C × (D + E)) on 3-, 2-, 1-, 
and 0-address machines. Do not rearrange the expression. In accordance with programming 
language practice, computing the expression should not change the values of its operands. 
When using a 0-address machine, the order used is SOS op TOS, where SOS is second on stack 
and TOS is top of stack. 

 
3-address 2-address 1-address 0-address 
SUB  A, F, G 
MUL  A, B, A 
ADD  T, D, E 
MPY  T, T, C 
DIV  A, A, T 

LOAD  A, F 
SUB   A, G 
MPY   A, B 
LOAD  T, D 
ADD   T, E 
MPY   T, C 
DIV   A, T 

LDA   D 
ADD   E 
MPY   C 
STA   T 
LDA   F 
SUB   G 
MPY   B 
DIV   T 
STA   A 

PUSH  B 
PUSH  F 
PUSH  G 
SUB 
MPY 
PUSH  C 
PUSH  D 
PUSH  E 
ADD 
MPY 
DIV 
POP  A 

  



CPE 221 Test 2 Solution Fall 2018 

Page 5 of 6 
 

9.  (20 points) For the architecture shown, write the sequence of signals and control actions 
necessary to execute the instruction STRI (P), R0, R1, that stores the sum of R0 and R1 in 
the memory location pointed to by the contents of the memory location P. Assume that the 
address P is in the instruction register IR. The actions of this instruction are described by the 
abstract RTL M[M[P]] ← R0 + R1. 

 
 

F2 F1 F0 Operation 
0 0 0 A = B 
0 0 1 A = C 
0 1 0 A = B + 1 
0 1 1 A = C + 1 
1 0 0 A = B – 1 
1 0 1 A = C – 1 
1 1 0 A = B + C 
1 1 1 A = C - B 

 
 

 
 

Cycle Concrete RTL Signals 

1 MAR ← IR EIR_B, F = 000, CMAR 
2 MBR ← M[MAR] READ, CMBR 
3 MAR ← MBR EMBR_B, F= 000, CMAR 
4 MBR ← R0 + R1 ER0_B, ER1_C, F = 110, CMBR 
5 M[MAR] ← MBR WRITE 

 

  



CPE 221 Test 2 Solution Fall 2018 

Page 6 of 6 
 

10. (15 points) A RISC processor executes the following code. There are data dependencies but no 
internal forwarding. A source operand cannot be used until it has been written. Assume that the 
first instruction begins executing in the first cycle. 
a  MUL  r0, r1, r2 
b  ADD  r3, r1, r4 
c  LDR  r1, [r2] 
d  ADD  r5, r1, r6 
e  ADD  r6, r0, r7 
f  STR  r3, [r2] 

 
The dependences that exist are: 
a-e, b-f, c-d 
 
a. (6 points) Assuming a four-stage pipeline (fetch (IF), operand fetch (OF), execute (E), 
operand write (W)), what registers are being read during the seventh clock cycle and what 
register is being written?  
ADD r5, r1, r6 is in the OF stage, reading r1 and r6 
No instruction is in the W stage, not writing any register 
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 
MUL  r0, r1, r2 IF OF E W          
ADD  r3, r1, r4  IF OF E W         
LDR  r1, [r2]   IF OF E W        
ADD  r5, r1, r6    IF   OF E W     
ADD  r6, r0, r7       IF OF E W    
STR  r3, [r2]        IF OF E W   

 
b. (9 points) Assuming a six-stage pipeline: fetch (F), register read (O), execute (E), memory 
read (MR), memory write (MW), register write (WB), how long will it take to execute the entire 
sequence? 15 cycles as indicated in the table. 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

MUL  r0, r1, r2 F O E MR MW WB          
ADD  r3, r1, r4  F O E MR MW WB         
LDR  r1, [r2]   F O E MR MW WB        
ADD  r5, r1, r6    F     O E MR MW WB   
ADD  r6, r0, r7         F O E MR MW WB  
STR  r3, [r2]          F O E MR MW WB 

 


