
The University of Alabama in Huntsville

Electrical and Computer Engineering Department
CPE 221 01

Final Exam Solution
Spring 2016

This test is closed book, closed notes. You may use a calculator. You should have the
reference packet that includes Figure 2.10 and Appendix B. You must show your work to
receive full credit.

1. (1 point).C ++ is an example of a _high-level_ language.

2. (1 point) _True_ (True or False) Pipelining is a technique for improving the throughput of

instruction execution.

3. (1 point) _False_ (True or False) Static RAM requires refreshing.

4. (1 point) _True_ (True or False) Most instructions take fewer cycles to execute on a 2-bus SRC

than they do on a 1-bus SRC.

5. (1 point) _Signed_ numbers may have either positive or negative values.

6. (4 points) In an SRC computer, r2 contains a value of --3621 in decimal. What is the binary value
of r1 after this instruction is executed?
not r1, r2

r2 = 1111_1111_1111_1111_1111_0001_1101_1011
r1 = 0000_0000_0000_0000_0000_1110_0010_0100

7. (4 points) In an SRC computer, r2 contains a value of 1698 in decimal. What is the binary value of

r1 after this instruction is executed?
neg r1, r2

r2 = 0000_0000_0000_0000_0000_0110_1010_0010
r1 = 1111_1111_1111_1111_1111_1001_0101_1110

8. (2 points) In an SRC computer, r2 contains a value of -3621 in decimal while r3 contains a value

of 1698 in decimal. What is the binary value of r1 after this instruction is executed?
and r1, r2, r3

r2 = 1111_1111_1111_1111_1111_0001_1101_1011
r3 = 0000_0000_0000_0000_0000_0110_1010_0010
r1 = 0000_0000_0000_0000_0000_0000_1000_0010

9. (2 points) Using the SRC, if we want to examine the last bit of a binary number to see whether it

was 0 or 1, we use a mask with a value of 1 and take the logical operation and of the two
operands; mask and number. What mask value would we use if we wanted to examine bit 19?

The mask value would be 219, or 0000_0000_0000_1000_0000_0000_0000_0000

10. (10 points) Encode 001_0100_1101 using the Hamming code and odd parity. What is the final
Hamming code?

PPDP_DDDP_DDDD_DDD
 111_111
1234_5678_9012_345
 0 010 1001_101

P1 = 1  (D3  D5  D7  D9  D11  D13  D15) = 1  (0  0  0  1  0  1  1) = 0

P2 = 1  (D3  D6  D7  D10  D11  D14  D15) = 1  (0  1  0  0  0  0  1) = 1

P4 = 1  (D5  D6  D7  D12  D13  D14  D15) = 1  (0  1  0  1  1  0  1) = 1

P8= 1  (D9  D10  D11  D12  D13  D14  D15) = 1  (1  0  0  1  1  0  1) = 1
Final Hamming Code: 0101_0101_1001_101

11. (8 points) What are the values of the following registers when the program executes “brnz

r30, r2” for the third time? Answer in decimal.

(a) (4points) r2: _6_ (b) (4 points) r3:_24_

data: .org 200
num1: .dc 8
num2: .dc 9
result: .dw 1
code: .org 1000
 la r30, again
 la r29, done
 ld r1, num1
 ld r2, num2
 sub r3, r3, r3
 brzr r29, r1
 brzr r29, r2
again: add r3, r3, r1
 addi r2, r2, -1
 brnz r30, r2
done: st r3, result
stop

12. _8_ (2 points) The fields ra, rb, and rc in the SRC instruction format are 5 bits long. If the register

file were enlarged to contain 256 registers, how many bits are required for each of these fields?
The number of bits required is log2 of the number of registers, log2 256 = 8

13. (6 points) For the following pair of instructions, indicate how many bubbles must be placed

between them in (a) (2 points) the absence of data forwarding, (b) (2 points) the presence of 3
to 3 forwarding only, and (c) (2 points) the presence of 4 to 3 forwarding only to resolve any
dependence.
 ld r2, (r4)
 st r6, 0(r2)

(a) Without forwarding, the ID(2) stage of the st must come one cycle after the WB(5) stage of

the ld, so 3 bubbles.

(b) With 3 to 3 forwarding, the result of ld is not available until after the ME(4) stage, so it’s

like there is no forwarding at all, 3 bubbles.

(c) With 4 to 3 forwarding, the result is forwarded from ME(4) to EX(3) after one bubble.

14. (15 points) Write concrete RTN steps for the SRC instruction st using the 1-bus SRC

microarchitecture shown.

T0 MA  PC : C  PC + 4

T1 MD  M[MA] : PC  C

T2 IR  MD

T3 A  (rb = 0  0: rb  0  R[rb])

T4 C  A + c2 {sign extend}

T5 MA  C

T6 MD  R[ra]

T7 M[MA]  MD

15. (10 points) A certain memory system has a 1024 MB main memory and a 64 MB cache. Blocks
are 32 bytes in size. Show the fields in a memory address if the cache is 16-way set associative.

Main memory address = log2 1024 MB = 30
Block offset = log2 32 bytes = 5

𝟔𝟒 𝑴𝑩 ×
𝟏 𝒃𝒍𝒐𝒄𝒌

𝟑𝟐 𝒃𝒚𝒕𝒆𝒔
×

𝟏𝒔𝒆𝒕

𝟏𝟔 𝒃𝒍𝒐𝒄𝒌𝒔
= 𝟐𝟏𝟕 𝒔𝒆𝒕𝒔, 𝒃𝒊𝒕𝒔 𝒐𝒇 𝒊𝒏𝒅𝒆𝒙 = 𝟏𝟕

bits of tag = address bits – index bits – block offset bits = 30 – 5 – 17 = 8

0429 22 521

tag index offset

16. (6 points) If you want to build a 248 word, 64-bits-per-word memory and the only parts you have
available to you are static RAM chips that contain 240 8 bit words each. (a) (2 points) How many
rows are required? (b) (2 points) How many columns are required? (c) (2 points) How many
chips in all?
(a) 248/240 = 28 or 256 rows
(b) 64/8 = 8 rows
(c) 256 x 8 = 2048 or 211

17. (6 points) Encode the lar r31, loop statement from the SRC program shown below in

hexadecimal.

 .org 0

0 seq: .dc 1
4 ans: .dw cnt

 .org 1000
 1000 lar r31, loop
 1004 la r0, 8

1008 la r1, seq
1012 loop: ld r2, 0(r1)
1016 ld r3, 4(r1)
1020 add r2, r2, r3
1024 st r2, 8(r1)
1028 addi r1, r1, 4
1032 addi r0, r0, -1
1036 brnz r31, r0

Instruction op ra rb rc c1 c2 c3
lar r31, loop 6 31 8

Instruction = 0011_0111_1100_0000_0000_0000_0000_1000 = 37C0_0008H

18. (20 points) Complete the SRC assembly language program below so that it implements the
following C++ statements. You must store the calculated tax rate in the memory location
pointed to by the label tax.

; This program calculates a tax rate based on the value of income as
; follows.
; if (income < level1)
; tax = 0;
; else
; if (income < level2)
; tax = 5;
; else
; tax = 10;
;

 .org 200
income: .dc 25000
level1: .dc 15000
level2: .dc 25000
tax: .dw 1
orig: .org 1000
 la r31, done
 la r30, five
 la r6, tax
 ld r7, income
 ld r8, level1
 ld r9, level2
 la r10, 0
 sub r11, r7, r8
 brmi r31, r11
 sub r11, r7, r9
 brmi r30, r11
 la r10, 10
 br r31
five: la r10, 5
done: st r10, 0(r6)
 stop

