The University of Alabama in Huntsville Electrical and Computer Engineering Department CPE 221 01 Spring 2016 Test 1 February 17, 2016

This test is closed book, closed notes. You may not use a calculator. You should have the reference packet that includes Figure 2.10 and Appendix B. You must show your work to receive full credit.

Name: _____

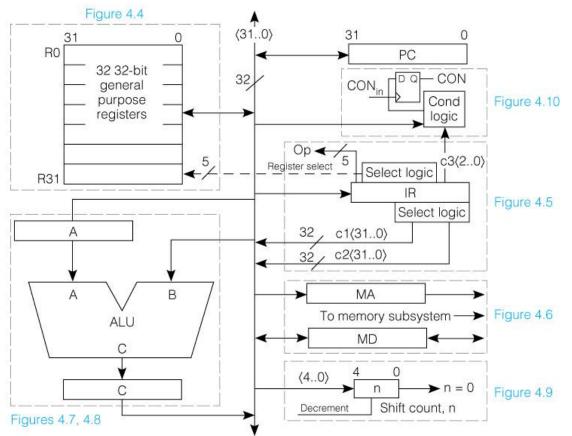
- 1. (1 point) The instruction _______ specifies the size and meaning of fields within the instruction.
- 2. (1 point) ______ instructions move data from a memory location or register to another memory location without changing its form.
- 3. (1 point) ______ instructions can alter the normal flow of control from executing the next instruction in sequence.
- 4. (1 point) A 0-address instruction uses a ______ to hold both operands and the result.
- 5. (1 point) ______ is an example of an addressing mode found in processors.
- 6. (10 points) Represent 208 and -132 as signed (2s complement) 16-bit numbers

7. (25 points) Consider the following SRC program. Trace the values of the registers shown as they change during program execution. Also, trace the writes to memory by the st instruction. There may be unused columns or rows in the tables. If you need to add columns or rows, you may do so...dc 1 reserves one word of storage and sets it equal to 1...dw 3 reserves 3 words but does not give those words a value.

```
.org 200
      .dc<sup>6</sup>
size:
       .dc 5
a:
       .dc 5, 3, -1, 2, 4, 37
x:
y:
       .dw 10
orig:
      .org 1000
              r29, loop
       la
       la
              r10, x
              r11, y
       la
       ld
              r1, size
       ld
              r2, a
loop:
       ld
              r3, 0(r10)
       add
              r3, r3, r2
       st
              r3, 0(r11)
       addi r10, r10, 4
             r11, r11, 4
       addi
             r1, r1, -1
       addi
              r29, r1
       brnz
       stop
```

r1							
r2							
r3							
r10							
r11							
r29							

Results of the st instruction.


Memory	Contents
Address	

8. (15 points) Translate the selected statements from the SRC program shown below into machine code (a series of ones and zeros), then express the result in hexadecimal.

mask: orig:	.dw 1 .dc 0 .dc 1 .org 1 lar lar lar ld	
		r2, r2, r2
		r5, r5, r5
	and addi brzr	r30, r1 r4, r1, r3 r5, r5, 1 r29, r4 r2, r2, 1
shift:		r1, r1, 1 r28, r1
done:	st st stop	

Address	Instruction	ор	ra	rb	rc	c1	c2	с3	Hexadecimal
	and r4, r1, r3								
	shr r1, r1, 1								
	brzr r29, r4								

9. (25 points) Write the code to implement the expression $A = ((B/F) + (C \times D)) \times E$ on 3-, 2-, 1-, and O-address machines. Do not rearrange the expression. In accordance with programming language practice, computing the expression should not change the values of its operands. When using a 0-address machine, the order used is SOS op TOS, where SOS is second on stack and TOS is top of stack. 10. (20 points) Extend the SRC instruction set by adding the instruction ldrr ra, rb, rc, that is described by the abstract RTN R[ra] ← M[R[rb] + R[rc]]. (a) Write concrete RTN steps for this new instruction using the 1-bus SRC microarchitecture shown. (b) Which format would be a good one to use for ldrr?

Copyright © 2004 Pearson Prentice Hall, Inc.

Т0	$MA \leftarrow PC : C \leftarrow PC + 4$
T1	$MD \leftarrow M[MA] : PC \leftarrow C$
T2	
Т3	
T4	
T5	
T6	
T7	