
CPE 221 Test 2 Spring 2018 

Page 1 of 6 

 

The University of Alabama in Huntsville 
Electrical and Computer Engineering Department 

CPE 221 01 
Test 2 

April 12, 2018 

 
This test is closed book, closed notes. You may not use a calculator. You should have the 6 page ARM 
Instruction Reference. Please check to make sure you have all 6 pages of the test. You must show your 
work to receive full credit. 

 Name: __________________________ 
 

1.  (1 point) A ________________________ points to a place on the stack and can change 

throughout the lifetime of an instance of a procedure. 

2. (1 point) A _________________________ control unit runs a program whose input is the 

machine-level op-code to be executed and whose output is the bus enables, multiplexer 

controls, clocks, and signal that control the processor. 

3. (1 point) Pipelining is a technique in for improving the ___________________ of instruction 

execution. 

4. (1 point) A 1 address instruction has a register, called the ____________________ to hold one 

operand and the result. 

5. (1 point) ___________ is a load/store RISC ISA that has 32 general purpose registers. 

6. (10 points) A processor executes an instruction in the following four stages. The time required 
by each stage in picoseconds (1,000 ps = 1 ns) is given for each stage. 
IF Instruction fetch  320 ps 
OF Operand fetch   280 ps 
OE Execute    350 ps 
OS Operand store (writeback) 220 ps 

 
a. (5 points) What is the time taken to fully execute an instruction assuming that this structure is 

pipelined in four stages and that there is an additional 10 ps per stage due to the pipeline 
latches? 

 
 
 
 
 
b. (5 points) Suppose that 20% of instructions are branch instructions that are taken and cause a 2-

cycle penalty, what is the effective instruction execute time? 
 

  



CPE 221 Test 2 Spring 2018 

Page 2 of 6 

 

7. (30 points) Consider the following ARM program. Trace the values of the registers shown as they 
change during program execution. Also, trace the writes to memory by the STR instruction 
(non-stack) and the stack activity. Clearly indicate the value of the sp. There may be unused 
columns or rows in the tables. If you need to add columns or rows, you may do so. 

 

; This program multiplies two numbers by repeated addition. 

; First, take absolute values of both numbers, do multiplication, 

;  then adjust result as necessary. 

 

 

        AREA MULTIPLY_BY_ADDING, CODE, READONLY 

        ENTRY 

0           LDR   r0, num1           ; Put num1 in r0. 

4           LDR   r1, num2           ; Put num2 in r1. 

8           MOV   fp, #0x0000C000  

12          MOV   sp, #0x00000000 

16          ADR   r10, case1 

20  mpy_ne  MOV   r3, #0             ; Set r3 to 0, it will hold the result. 

24          TEQ   r0, #0             ; Compare first parameter to 0 

28          BEQ   done               ; If first parameter is 0, done, result = 0. 

32          TEQ   r1, #0             ; Compare second parameter to 0 

36          BEQ   done               ; If second parameter is 0, done, result = 0. 

40          PUSH  {fp}               ; Save old frame pointer before branching 

44          MOV   fp, sp             ; Copy stack pointer into the frame pointer 

48          SUB   sp, sp, #8         ; Make space on the stack - one input, one output 

52          STR   r1, [fp, #-4]      ; Store the input parameter on the stack 

56          BL    abs                ; Branch to abs routine and store return in lr 

60          LDR   r4, [fp, #-8]      ; Copy result from the stack into r4 

64          SUB   sp, sp, #8         ; Make space on the stack - one input, one output 

68          STR   r0, [fp, #-4]      ; Store the input parameter on the stack 

72          BL    abs                ; Branch to abs routine and store return in lr 

76          LDR   r5, [fp, #-8]      ; Copy result from the stack into r5 

80          MOV   sp, fp             ; Collapse the frame by moving the stack pointer 

84          POP   {fp}               ; Pull the old frame pointer off the stack       

88  adding  ADD   r3, r3, r5         ; Add num2. 

92          SUBS  r4, r4, #1         ; Decrement r4, the abs of num1. 

96          BEQ   adjust             ; If r4 = 0, done adding, go to adjust. 

100         B     adding             ; Otherwise, need to add again. 

104 adjust  MOVS  r0, r0             ; Done adding, now adjust sign of result. 

108         RSBMI r3, r3, #0         ; If num2 negative, negate result. 

112         MOVS  r1, r1                    

116         RSBMI r3, r3, #0         ; If num1 negative, negate result. 

120 done    STR   r3, [r10]          ; Store the result 

124 final   B     final  

128 abs     LDR   r9, [fp, #-4]      ; Copy the input parameter off of the stack 

132         CMP   r9, #0             ; Test input parameter  

136         BPL   d_abs              ; If zero or greater, we're done 

140         RSB   r9, r9, #0         ; If negative, make it positive 

144 d_abs   STR   r9, [fp, #-8]      ; Store the result on the stack 

148         MOV   pc, lr             ; Put lr value in pc to return 

152 num1    DCD   -3                 ; Give num1 a value 

156 num2    DCD   2                  ; Give num2 a value 

160 case1   SPACE 4                  ; Make space for result 

            END  



CPE 221 Test 2 Spring 2018 

Page 3 of 6 

 

 

Results of the STR instructions not using stack. 

Memory 
Address 

Contents 

  

  
 

 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

_______________________ 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

________________________ 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

_______________ 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

________________________

 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

________________________ 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

________________________ 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

________________________ 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

________________________

 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

_______________________ 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

________________________ 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

________________________ 

Address Value 

FFFF FFEC  

FFFF FFF0  

FFFF FFF4  

FFFF FFF8  

FFFF FFFC  

Instruction: 

________________________ 

 

 



CPE 221 Test 2 Spring 2018 

Page 4 of 6 

 

r0       

r1       

r3       

r4       

r5       

r9       

r10       

lr       

fp       

 
 
 
 
 

8. (20 points) Write the code to implement the expression A = (((B/(F – G)) + C)  D) + E on 3-, 2-, 
1-, and 0-address machines. Do not rearrange the expression. In accordance with programming 
language practice, computing the expression should not change the values of its operands. 
When using a 0-address machine, the order used is SOS op TOS, where SOS is second on stack 
and TOS is top of stack. 

 
  



CPE 221 Test 2 Spring 2018 

Page 5 of 6 

 

9.  (20 points) For the architecture shown, write the sequence of signals and control actions 
necessary to execute the instruction STRI (P), D0, D1, that stores the sum of D0 and D1 in 
the memory location pointed to by the contents of the memory location P. Assume that the 
address P is in the instruction register IR. The actions of this instruction are described by the 
abstract RTL M[M[P]]  D0 + D1. 

 

 
 

 

Cycle Concrete RTL Signals 

1   

2   

3   

4   

5   

6   

7   

8   

9   

10   

 

  



CPE 221 Test 2 Spring 2018 

Page 6 of 6 

 

 
10. (15 points) A RISC processor executes the following code. There are data dependencies but no 

internal forwarding. A source operand cannot be used until it has been written. Assume that the 
first instruction begins executing in the first cycle. 
MUL  r0, r1, r2 

ADD  r3, r1, r4 

ADD  r5, r1, r6 

ADD  r6, r0, r7 

LDR  r1, [r2] 

 
a. (8 points) Assuming a five-stage pipeline (fetch (IF), operand fetch (OF), execute (E), memory 
access (M), and register write (W)), what registers are being read during the fifth clock cycle and 
what register is being written? Are the values read the correct ones? Why or why not? 
 

 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 
MUL  r0, r1, r2                 
ADD  r3, r1, r4                 
ADD  r5, r1, r6                 
ADD  r6, r0, r7                 
LDR  r1, [r2]                 

 
b. (7 points) Assuming an eight-stage pipeline: fetch (F), decode (D), register read (O), execute 
1 (E1), execute 2 (E2), memory read (MR), memory write (MW), register write (WB), how long 
will it take to execute the entire sequence?  

 

 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 
MUL  r0, r1, r2                 
ADD  r3, r1, r4                 
ADD  r5, r1, r6                 
ADD  r6, r0, r7                 
LDR  r1, [r2]                 

 


