
CPE 221 Test 2 Solution Spring 2018

Page 1 of 6

The University of Alabama in Huntsville
Electrical and Computer Engineering Department

CPE 221 01
Test 2 Solution

Spring 2018

This test is closed book, closed notes. You may use a calculator. You should have the 6 page ARM
Instruction Reference. Please make sure you have all 6 pages of the test. You must show your work to
receive full credit.

1. (1 point) A _stack pointer_ points to a place on the stack and can change throughout the

lifetime of an instance of a procedure.

2. (1 point) A _microprogrammed_ control unit runs a program whose input is the machine-level

op-code to be executed and whose output is the bus enables, multiplexer controls, clocks, and

signal that control the processor.

3. (1 point) Pipelining is a technique in for improving the _throughput_ of instruction execution.

4. (1 point) A 1 address instruction has a register, called the _accumulator_ to hold one operand

and the result.

5. (1 point) _MIPS_ is a load/store RISC ISA that has 32 general purpose registers.

6. (10 points) A processor executes an instruction in the following four stages. The time required
by each stage in picoseconds (1,000 ps = 1 ns) is given for each stage.
IF Instruction fetch 320 ps
OF Operand fetch 280 ps
OE Execute 350 ps
OS Operand store (writeback) 220 ps

a. What is the time taken to fully execute an instruction assuming that this structure is pipelined in

four stages and that there is an additional 10 ps per stage due to the pipeline latches?
Time = 4*(max(320, 280, 350, 220)ps + 10 ps) = 4* 360 ps = 1440 ps = 1.44 ns

b. Suppose that 20% of instructions are branch instructions that are taken and cause a 2-cycle
penalty, what is the effective instruction execute time?
Time = (0.2 *(1+2) + 0.8*1)*360 ps = 504 ps

CPE 221 Test 2 Solution Spring 2018

Page 2 of 6

7. (30 points) Consider the following ARM program. Trace the values of the registers shown as they
change during program execution. Also, trace the writes to memory by the STR instruction(non-
stack) and the stack activity. Clearly indicate the value of the sp. There may be unused columns
or rows in the tables. If you need to add columns or rows, you may do so.

; This program multiplies two numbers by repeated addition.

; First, take absolute values of both numbers, do multiplication,

; then adjust result as necessary.

 AREA MULTIPLY_BY_ADDING, CODE, READONLY

 ENTRY

0 LDR r0, num1 ; Put num1 in r0.

4 LDR r1, num2 ; Put num2 in r1.

8 MOV fp, #0x0000C000

12 MOV sp, #0x00000000

16 ADR r10, case1

20 mpy_ne MOV r3, #0 ; Set r3 to 0, it will hold the result.

24 TEQ r0, #0 ; Compare first parameter to 0

28 BEQ done ; If first parameter is 0, done, result = 0.

32 TEQ r1, #0 ; Compare second parameter to 0

36 BEQ done ; If second parameter is 0, done, result = 0.

40 PUSH {fp} ; Save old frame pointer in preparation for

branching

44 MOV fp, sp ; Copy stack pointer into the frame pointer

48 SUB sp, sp, #8 ; Make space on the stack for one input, one

output

52 STR r1, [fp, #-4] ; Store the input parameter on the stack

56 BL abs ; Branch to abs routine and store return in lr

60 LDR r4, [fp, #-8] ; Copy result from the stack into r4

64 SUB sp, sp, #8 ; Make space on the stack for one input, one

output

68 STR r0, [fp, #-4] ; Store the input parameter on the stack

72 BL abs ; Branch to abs routine and store return in lr

76 LDR r5, [fp, #-8] ; Copy result from the stack into r5

80 MOV sp, fp ; Collapse the frame by moving the stack pointer

84 POP {fp} ; Pull the old frame pointer off the stack

88 adding ADD r3, r3, r5 ; Add num2.

92 SUBS r4, r4, #1 ; Decrement r4, the abs of num1.

96 BEQ adjust ; If r4 = 0, done adding, go to adjust.

100 B adding ; Otherwise, need to add again.

104 adjust MOVS r0, r0 ; Done adding, now adjust sign of result.

108 RSBMI r3, r3, #0 ; If num2 negative, negate result.

112 MOVS r1, r1

116 RSBMI r3, r3, #0 ; If num1 negative, negate result.

120 done STR r3, [r10] ; Store the result

124 final B final

128 abs LDR r9, [fp, #-4] ; Copy the input parameter off of the stack

132 CMP r9, #0 ; Test input parameter

136 BPL d_abs ; If zero or greater, we're done

140 RSB r9, r9, #0 ; If negative, make it positive

144 d_abs STR r9, [fp, #-8] ; Store the result on the stack

148 MOV pc, lr ; Put lr value in pc to return

152 num1 DCD -3 ; Give num1 a value

156 num2 DCD 2 ; Give num2 a value

160 case1 SPACE 4 ; Make space for result

 END

CPE 221 Test 2 Solution Spring 2018

Page 3 of 6

Results of the STR instructions not using stack.

Memory
Address

Contents

0x000000A0 -6

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4

FFFF FFF8

FFFF FFFC

I: _12 MOV fp, #0x0000C000_

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4

FFFF FFF8

FFFF FFFC 0x0000C000

I: _44 MOV fp, sp _

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4 2

FFFF FFF8 2

FFFF FFFC 0x0000C000

I: _144 STR r9, [fp,#-8]_

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4 3

FFFF FFF8 -3

FFFF FFFC 0x0000C000

I: _144 STR r9, [fp, #-8]_

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4

FFFF FFF8

FFFF FFFC

I: _12 MOV sp, #0, sp = 0

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4

FFFF FFF8

FFFF FFFC 0x0000C000

I: _48 SUB sp, sp, #8_

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4 2

FFFF FFF8 2

FFFF FFFC 0x0000C000

I: _64 SUB sp, sp, #8 _

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4 3

FFFF FFF8 -3

FFFF FFFC 0x0000C000

I: _80 MOV sp,_fp_

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4

FFFF FFF8

FFFF FFFC 0x0000C000

I: _40 PUSH {fp}__

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4

FFFF FFF8 2

FFFF FFFC 0x0000C000

I: _52 STR r1, [fp, #-4]_

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4 2

FFFF FFF8 -3

FFFF FFFC 0x0000C000

I: _68 STR r0, [fp, #-4]

Address Value

FFFF FFEC

FFFF FFF0

FFFF FFF4 3

FFFF FFF8 -3

FFFF FFF8 0x0000C000

I:_84 POP {fp}_sp=0_

Yellow – sp
Blue – fp
Green – sp, fp
I - Instruction

CPE 221 Test 2 Solution Spring 2018

Page 4 of 6

r0 -3 -3

r1 2 2

r3 0 3 6 -6

r4 2 1 0

r5 3

r9 2 -3 3

r10 160

lr 60 76

fp 0x0000C000 0xFFFFFFFC 0x0000C000

8. (20 points) Write the code to implement the expression A = (((B/(F – G)) + C) D) + E on 3-, 2-,
1-, and 0-address machines. Do not rearrange the expression. In accordance with programming
language practice, computing the expression should not change the values of its operands.
When using a 0-address machine, the order used is SOS op TOS, where SOS is second on stack
and TOS is top of stack.

3-address 2-address 1-address 0-address
SUB A, F, G

DIV A, B, A

ADD A, A, C

MPY A, A, D

ADD A, A, E

LOAD A, F

SUB A, G

LOAD T, B

DIV T, A

LOAD A, C

ADD A, T

MPY A, D

ADD A, E

LDA F

SUB G

STA A

LDA B

DIV A

ADD C

MPY D

ADD E

STA A

PUSH E

PUSH D

PUSH C

PUSH B

PUSH F

PUSH G

SUB

DIV

ADD

MPY

ADD

POP A

CPE 221 Test 2 Solution Spring 2018

Page 5 of 6

9. (20 points) For the architecture shown, write the sequence of signals and control actions
necessary to execute the instruction STRI (P), D0, D1, that stores the sum of D0 and D1 in
the memory location pointed to by the contents of the memory location P. Assume that the
address P is in the instruction register IR. The actions of this instruction are described by the
abstract RTL M[M[P]] D0 + D1.

].

Cycle Concrete RTL Signals

1 Latch1 IR EIR, CL1

2 MAR Latch 1 F = 000, CMAR

3 Latch 1 M[MAR] READ, EMSR CL1

4 MAR Latch 1 F = 000, CMAR

5 Latch 1 D0 ED0, CL1

6 Latch 2 D1 ED1, CL2

7 M[MAR] Latch 1 + Latch 2 F = 110, EMSW, WRITE

8

9

10

CPE 221 Test 2 Solution Spring 2018

Page 6 of 6

10. (15 points) A RISC processor executes the following code. There are data dependencies but no

internal forwarding. A source operand cannot be used until it has been written. Assume that the
first instruction begins executing in the first cycle.
MUL r0, r1, r2

ADD r3, r1, r

ADD r5, r1, r6

ADD r6, r0, r7

LDR r1, [r2]

a. Assuming a five-stage pipeline (fetch (IF), operand fetch (OF), execute (E), memory access
(M), and register write (W)), what registers are being read during the fifth clock cycle and what
register is being written? Are the values read the correct ones? Why or why not?

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
MUL r0, r1, r2 IF OF E M W
ADD r3, r1, r4 IF OF E M W
ADD r5, r1, r6 IF OF E M W
ADD r6, r0, r7 IF OF OF E M W
LDR r1, [r2] IF IF OF E M W

In the fifth cycle, the registers being read are r0 and r7 because ADD r6, r0, r7 is in the operand
fetch stage. The value of r7 is correct but the value of r0 is not the one produced by MUL r0,
r1, r2 because that instruction has not yet completed the W stage.

b. Assuming an eight-stage pipeline: fetch (F), decode (D), register read (O), execute 1 (E1),
execute 2 (E2), memory read (MR), memory write (MW), register write (WB), how long will it
take to execute the entire sequence? It takes 15 cycles to complete, the ADD r6, r0, r7 needs
the value of r0 produces by MUL r0, r1, r2 so it must wait to fetch (O) until after the value is
written (WB).

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MUL r0, r1, r2 F D O E1 E2 MR MW WB
ADD r3, r1, r4 F D O E1 E2 MR MW WB
ADD r5, r1, r6 F D O E1 E2 MR MW WB
ADD r6, r0, r7 F D O O O O E1 E2 MR MW WB
LDR r1, [r2] F D D D D O E1 E2 MR MW WB

