
The University of Alabama in Huntsville
Electrical & Computer Engineering Department

CPE/EE 42/521 01
Sample Homework Solutions

Chapter 2

1. a. [M(0)] = 12
 b. [M([M[(7)])] = M[(6)] = M4
 c. [M([M[([M(0)])])] = [M([M(12)])] = [M(6)] = 4
 d. [M(3 + 4)] = [M(7)] = 6
 e. [M([M(9)] + 4)] = [M(5 + 4)] = [M(9)] = 5
 f. [M([M(9)] + [M(2)])] = [M(5 + 7)] = [M(12)] = 6
 g. [M(2)] * [M(13)] = 7 * 3 = 21
 h. [M(0)] * 3 + [M(1)] * 4 = 12 * 3 + 17 * 4 = 36 + 68 = 104
 i. [M([M(5)] + [M(13)] + 2 * [M(14)])] = [M(4 + 3 + 2 * 2)] = [M(7 + 4)] = [M(11)] = 7

14. a. Copy the address in A0 to A3. Therefore, A3 is loaded with 4.
 b. Copy the address –2 +[A0] to A3. Therefore A3 is loaded with –2 + 4 = 2.
 c. Move the value pointed at by [PC] + 4 into D2. [PC] + 4 = 10 + 4 = 14. [M(14)] = 2 is copied into

D2.
 d. Copy the byte pointed at by 2+[PC]+[A1] into D7. The effective address is 2 + 10 + 2 = 14, and the

contents of location 14 = 2.
 e. Copy the address 10+[A0]+[D0] into A3. This value is 10+4+0=14 which is loaded into A3.
 f. Add the contents of location 12 to D0. D0 contains 0 initially, the contents of memory location 12

are 6, therefore the final value in D0 is 6.
 g. The effective address is –1 + [A0] + [A1] = -1 + 4 + 2 = 5. The contents of location 5 (4) are

copied into D4.
 h. The effective address is 4 + 4 + 2 = 10. To the contents of this location (12) are added the contents

of D0(0)
 i. This instruction copies the contents of location 8 (0) to D0.

15. a. Should use a MOVEA.L instruction to load an address register. However, note that many

assemblers will accept this instruction.
 b. Cannot use a destination register as a destination address with LEA.
 c. The source operand for an EOR instruction must be a data register; for example, EOR Di, <ea>.
 d. The destination for a MOVEA must be an address register.
 e. Literal data must be in range 1 to 8 for ADDQ.
 f. Bye operations are not allowed on the contents of address registers.
 g. The only permitted addressing modes for MOVEP are MOVEP Di,d(Aj) and MOVEP

d(Aj),Di.
 h. SWAP operates only on data registers.
 i. PC relative addressing is not allowed for destination operands.
 j. Byte operations not permitted on the contents of an address register. Also, the literal operand range

for an ADDQ instruction is 1 to 8.
 k. Wrong if “FC” is assumed to be a hexadecimal literal (it should be $FC). Ok if FC is a symbolic

name.
 l. The EXG instruction exchanges the entire 32 bit contents of two registers. Byte exchanges are not

permitted.
 m. LEA does not permit an autoincrementing source address.

 n. UNLK requires an address register as an operand (e.g., UNLK A6).
 o. ANDI means AND immediate and the source must be a literal; for example ANDI #4, D5.
 p. NOT takes only a single operand.
 q. The immediate operand range for shift instructions is only 1 to 8.
 r. RTS has no extension.
 s. A .B extension has no meaning with a BRA instruction. BRA.S indicates a short branch.
 t. MOVEQ operates on a longword destination.
 u. The DIVU instruction may not specify an address register as either a destination or a source

operand.
 v. CMPM permits only the (Ai)+, (Ay)+ addressing modes.
 w. CL:R cannot be applied to an address register.
 x. CMPM permits only the (Ai)+, (Ay)+ addressing modes.
 y. LEA is a longword operation only. Note also that the source operand does not take a “#”.
 z. DIVU does not permit a byte operand. Also, the destination operand should be a data register.

23.
 Pseudocode version

 Set destination pointer to $2000
 REPEAT
 Get byte
 Store it at pointer
 Increment pointer
 UNTIL byte = 0
 Set source pointer to $2000
 Get byte at pointer
 Increment pointer
 WHILE (byte is not 0)
 IF (byte mod 2) = 0 THEN Print it
 Get byte at pointer
 Increment pointer
 END WHILE

 6800 Assembly version

 ORG $400
 LEA $2000, A0 A0 is the pointer to the text
Next BSR IN_CHAR Get byte
 MOVE.B D0,(A0)+ Store byte, increment pointer
 BNE Next Repeat until byte = 0
 LEA $2000,A0 Reset pointer in A0
 MOVE.B (A0)+,D0 Get a byte, increment pointer
Next1 BEQ Exit If zero THEN exit (end of list)
 BTST.B #0,D0 WHILE: Test bit 0 of byte
 BNE Next2 If not 0, don’t print
 BSR OUT_CHAR If zero, byte even; print
Next2 MOVE.B (A0)+,D0 Get next byte; increment pointer
 BRA Next1
Exit

Chapter 3

3. ORG $400
 LEA $1500,A7 Set up the stack pointer
 PEA A Push address of variable A
 LEA -2(A7),A7 Make room for the result
 BSR ADDABC Call the subroutine
 LEA 4(A7),A7 Clean up the stack
 STOP #$2700
ADDABC MOVEM.L A0/D0, -(A7) Save working registers A0 and D0
 MOVE.L 14(A7),A0 Get address of A
 MOVE.W (A0),D0 Get value of A
 ADD.W 2(A0),D0 Add B
 MOVE.W D0,12(A7) Put result on the stack
 MOVEM.L (A7)+, A0/D0 Restore working registers
 RTS
 ORG $1000 Data area
A DC.W 9 Dummy A
B DC.W 5 Dummy B
 END $400

11. ORG $400
 LEA $2000,A7 Set up initial stack pointer
 LEA $A6A6A6A6, A6 Set up dummy initial A6 to help tracing
 MOVE.W X,-(A7) Push the value of x on the stack
 PEA Y Push address of y on the stack
 BSR Calc Call subroutine
 LEA (6,A7),A7 Clean up stack
 STOP #$2700
Calc LINK A6, #-8 Create a stack frame for two longwords
 MOVEM.L A0/D0, -(A7) Save working registers A0 and D0
 CLR.L D0 Clear D0 to use .W and .L operations
 MOVE.W (12,A6),D0 Copy value of x to D0
 MOVE.L D0,(-4,A6) Save x in stack frame
 MULU D0,D0 Calculate x2

 MOVE.L D0,(-8,A6) Save x2 in stack frame
 MULU D0,D0 Calculate x4

 ADD.L (-8,A6),D0 Calculate x4 + x2

 ADD.L (-4,A6),D0 Calculate x4 + x2 +x
 MOVEA.L (8,A6),A0 Pull address of result off stack
 MOVE.L D0,(A0) Pass result to calling program
 MOVEM.L (A7)+, A0/D0 Restore working registers
 UNLK A6 Collapse the stack frame
 RTS
 ORG $1000 Put the data here
X DC.W 4 Provide a dummy value for x
Y DS.L 1 Reserve a long word for the result
 END $400

V

O
R

Saved D0 A7
Saved A0
alue of x * x -8
Value of x -4

ld value of A6 A6
eturn address +4
Address of y +8

value of x +12
Old TOS

