The University of Alabama in Huntsville
Electrical and Computer Engineering
CPE/EE 422/522
Spring 2005
Homework #5 Solution

3.2 (a)(10), (e)(20), 3.3(30), 3.6(20), 4.6(a)(20)

3.2

An older-model Thunderbird car has three left and three right tail lights, which flash in unique
patterns to indicate left and right turns.

Left-turn pattern: Right-turn pattern:
LC LB LA RA RB RC LC LB LA RA RB RC

O O OO0 O O © O 0|0 O O
O O (O O O © O O|@® O O
C @ ¢/0 O O O O Ol & @
® ¢ ¢ O O O © O O|® @& ¢

Design a Moore sequential network to control these lights. The network has three inputs, LEFT,
RIGHT, and HAZ. LEFT and RIGHT come from driver’s turn-signal switch and cannot be 1 at
the same time. As indicated above, when LEFT = 1, the lights flash in a pattern LA on, LA and
LB on, LA, LB, and LC on and all off; then the sequence repeats. When RIGHT = 1, the light
sequence is similar. IF a switch from LEFT to RIGHT (or vice versa) occurs in the middle of a
flashing sequence, the network should immediately go to the IDLE state (lights off) and then start
the new sequence. HAZ comes from the hazard switch, and when HAZ = 1, all six lights flash on
and off in unison. HAZ takes precedence if LEFT or RIGHT is also on. Assume that a clock
signal is available with a frequency equal to the desired flashing rate.

@ Draw the state graph (8 states).

001000

10

0
S2
011000

100

(e) Write a VHDL model
library ieee;
use ieee.std logic 1164.all;

entity THUNDERBIRD is
port (L, R, H, CLK = in std_logic;
LC, LB, LA, RA, RB, RC : out std logic);
end THUNDERBIRD;

architecture BEHAVE of THUNDERBIRD is
type STATE_TYPE is (SO, S1, S2, S3, S4, S5, S6, S7);
signal CURRENT_STATE, NEXT_STATE : STATE_TYPE;
begin
process(CURRENT_STATE, L, R, H)
variable INPUTS : std_logic_vector(2 downto 0);
begin
INPUTS := L&R&H;
case CURRENT_STATE is
when SO => if (INPUTS = "000'") then
NEXT_STATE <= SO;
elsit (INPUTS = "100'") then
NEXT_STATE <= S1;
elsit (INPUTS = "010") then
NEXT_STATE <= S4;

else
NEXT_STATE <= S7;
end if;
when S1 => if (INPUTS(0) = "1") then
NEXT_STATE <= S7;
elsif (INPUTS = "100'") then
NEXT_STATE <= S2;
else
NEXT_STATE <= SO;
end if;
when S2 => if (INPUTS(0) = "1%) then

NEXT_STATE <= S7;
elsit (INPUTS = "100") then
NEXT_STATE <= S3;
else
NEXT_STATE <= SO;
end if;
when S3|S6 => if (INPUTS(0) = "17) then
NEXT_STATE <= S7;
else
NEXT_STATE <= SO;
end if;
when S4 => if (INPUTS(0) "1") then
NEXT_STATE <= S7;
elsit (INPUTS = "010") then
NEXT_STATE <= S5;
else
NEXT_STATE <= SO;
end if;
when S5 => if (INPUTS(O) "1") then
NEXT_STATE <= S7;
elsift (INPUTS = "010') then
NEXT_STATE <= S6;

else
NEXT_STATE <= SO;
end if;
when S7 => NEXT_STATE <= SO;

end case;
end process;

process (CLK)
begin
if (CLK"event and CLK = "1%) then
CURRENT_STATE <= NEXT_STATE;
end if;
end process;
process(CURRENT_STATE)
begin
LC <= "0"; LB <= "0"; LA <= "0";
RA <= "0"; RB <= "0"; RC <= "0";
case CURRENT_STATE 1is
when SO => null;
when S1 => LA <= "1%;
when S2 => LA <= "1"; LB <= "1";
when S3 => LA <= "1%; LB <= "1"; LC
when S4 => RA <= "1°%;
when S5 => RA <= "1"; RB <= "1°;
when S6 => RA <= "1"; RB <= "1"; RC
when S7 => LA <= "1"; LB <= "1"; LC
RA <= "1"; RB <= "1"; RC

<=

<=
<=
<=

'1';

-1-;
-1-;
'1';

end case;
end process;
end BEHAVE;
3.3 Find a minimum-row PLA table to implement the following set of functions.
(@) (15 points) fi(A, B, C, D) =m(4, 5, 10, 11, 12),
f,(A, B, C,D)=m(0, 1, 3, 4, 8, 11)
f3(A, B, C, D) =m(0, 4, 10, 12, 14)
A[B[C[D|[Ff1[f2[f3
f ¢ f ¢ f ¢ 0[1]/0]-]|1 |0 |O
1 2 3
0lo]o]o [o [M]o/ojo| [=[ilolo[t [0 |1
1/o[1]-]1 [0 |0
IT_“OOB |i|000,3 M]OOEB-OOOOlo
1] o] o]0 ololofo 11 o] of[1 -Jo[1[1]0 [1 |O
A A A of-]ofofo [1 |1
ofo[1]1] 1] o][1] 0 0[0]0|l1ff [oTol-Tzl0 [1 o
D D D 1[-]1]0]0 |0 |1
(b) fi(A, B, C,D)=m(3,4,6,9, 11),
f,(A, B, C,D)=m(2, 4, 8, 10, 11, 12)
f3(A, B, C, D) =m(3, 6, 7, 10, 11)
f) ¢ f, ¢ fy ¢ A[B[C|D|FL]| T2 3
0| 0|1 o ojo|o[] 00|10 1[0[-]1][1 [0 |0
-Jof1|1]1 |0 |1
ooB 000B OO|11501—0100
AOOOO A1000 AOOOO 1{of1]-]0 |1 J1
-JoJ1]0o]0o |1 |0O
ofmo] "l “LlET B
D D D 1]/-]/ofo0]0 |1 |0O
oOl1]1]-]0 [0 |1

3.6 (modified) Write a VHDL model on a 6-bit binary up-down counter with reset. Simulate the model
and verify that the counter works.

library ieee;
use ieee.std_logic_1164._all;
use ieee.std logic_arith.all;

entity UP_DOWN_COUNTER is
port (UP, DOWN, CLK, RESET : std_logic;
QOUT : out UNSIGNED(5 downto 0));
end UP_DOWN_COUNTER;

architecture BEHAVE of UP_DOWN_COUNTER 1is
begin
process(UP, DOWN, RESET, CLK)
variable QTEMP : UNSIGNED(5 downto 0);
begin
if (RESET = "1") then
QTEMP := "000000";
elsit (CLK"event and CLK = *1%) then
if (UP = "1") then
if (QTEMP = UNSIGNED®(*'111111')) then

QTEMP :-= '*000000";
else
QTEMP := QTEMP + "1°7;
end if;
elsift (DOWN = "17) then
it (QTEMP = UNSIGNED" (*'000000')) then
QTEMP :-= "111111";
else
QTEMP := QTEMP - "1°%;
end if;
end if;
end if;

QOUT <= QTEMP;
end process;
end BEHAVE;

4.6 In Section 4.4 we developed an algorithm for multiplying signed binary fractions, with negative
fractions represented in 2’s complement. (a) lllustrate this algorithm by multiplying 1.0111 by
1.101.

0 0|0|0]|O

1 0O|1(1]|1

1 0O|1(1]|1 add

1 1(0(1|1|1 shift w/sign extend
1 1(1(0f1|1|1 shift w/sign extend
1 0O|1/1]|1

1 0/1({0|0|1 |1 add

1 1(0(1|/0|0|1]|1 shift w/sign extend
0 10|01

0 0Oj|0|1|1|0|1|1 add 2’s complement

