
The University of Alabama in Huntsville
Electrical and Computer Engineering

CPE/EE 422/522
Spring 2005

Homework #6 Solution

5.3(a)(20), 5.6(c)(20), 5.12(20), 8.2(20), 8.8(20)

5.3 (a) For the following SM chart: Draw a timing chart that shows the clock, the state (S0, S1 or S2),
the inputs (X1, X2 and X3) and the outputs. The input sequence is X1 X2 X3 = 011, 101, 111, 010,
110, 101, 001. Assume that all state changes occur on the rising edge of the clock, and the inputs
change on the falling edge of the clock.

0X2

X1

X3

Z2Z1

Z3
X2

S1/Z1

X1

S2/Z1

S0/

0

0 0

0

1

1
1

1

1

CLK

X1

X2

STATE

X3

S0 S2

Z1

Z2

Z3

S0 S2 S1 S2 S0 S1

5.6(c) For the given SM chart: Write a VHDL description of the system.

S0/

X1

X2

Z1

S1/Z3

X3

Z2

0 1

0

X4

Z3 X4

S2/

1

0

1 1

1

0

0

library ieee;
use ieee.std_logic_1164.all;

entity SM_CHART5_6 is
 port (X1, X2, X3, X4, X5 : in std_logic;
 Z1, Z2, Z3 : out std_logic;
 CLK, RESET : in std_logic);
end SM_CHART5_6;

architecture BEHAVE of SM_CHART5_6 is
 type STATE_TYPE is (S0, S1, S2);
 signal STATE, NEXT_STATE : STATE_TYPE;
begin
 process(X1, X2, X3, X4, X5, STATE)
 begin
 Z1 <= '0'; Z2 <= '0'; Z3 <= '0';
 case STATE is
 when S0 => if (X1 = '0') then
 NEXT_STATE <= S0;
 else
 if (X2 = '0') then
 Z1 <= '1';
 NEXT_STATE <= S1;
 else
 NEXT_STATE <= S2;
 end if;
 end if;
 when S1 => Z3 <= '1';
 if (X3 = '0') then
 NEXT_STATE <= S2;
 else
 Z2 <= '1';
 NEXT_STATE <= S1;
 end if;
 when S2 => if (X4 = '0') then
 if (X5 = '0') then
 NEXT_STATE <= S2;
 else
 NEXT_STATE <= S0;
 end if;
 else
 Z3 <= '1';
 NEXT_STATE <= S1;
 end if;
 end case;
 end process;
 process(CLK, RESET)
 begin
 if (RESET = '1') then
 STATE <= S0;
 elsif (CLK = '1' and CLK'event) then
 STATE <= NEXT_STATE;
 end if;
 end process;
end BEHAVE;

5.12 The block diagram for an elevator controller for a building with two floors is shown below. The

inputs FB1 and FB2 are floor buttons in the elevator. The inputs CALL1 and CALL2 are call
buttons in the hall. The inputs FS1 and FS2 are floor switches that output a 1 when the elevator is
at the first or second floor landing. Outputs UP and DOWN control the motor, and the elevator is
stopped when UP = DOWN = 0. N1 and N2 are flip-flops that indicate when the elevator is
needed on the first or second floor. R1 and R2 are signals that reset these flip-flops. DO = 1
causes the door to open, and DC = 1 indicates that the door is closed. Draw an SM chart for the
elevator controller (four states).

Storage�
Network

Storage�
Network

FB1

CALL1

FB2
CALL2

N1

N2

UP

DOWN

FS1

FS2 DO Door
Mechanism

DC

R2

R1

Elevator�
Control�
Network

0FS2

F12/

0

0

0

0

1

1

1

1

UP

R2, DO

F22/

N2

N1

DC

R2, DO

DOWN

1

FS1

F21/

DOWN

R1, DO

F11/

N2

N1

DC

UP

R1, DO
1

0

0

1

0

1

8.2 Design an address decoder. One input to the address decoder is an 8-bit address, which can have
any range with a length of 8, for example: std_logic_vector addr(8 to 15). The second input is
check : std_logic_vector(5 down to 0). The address decoder will output Sel = ‘1’ if the upper 6
bits of the 8-bit address match the 6-bit check vector. For example, if addr = “10001010” and
check = “1000--“ then Sel = ‘1’. Only the 6 leftmost bits of addr will be compared; the remaining
bits are ignored. An ‘-‘ in the check vector is a don’t care.

library ieee;
use ieee.std_logic_1164.all;

entity address_decoder is
 port (ADDRESS : in std_logic_vector;
 CHECK : in std_logic_vector(5 downto 0);
 SEL : out std_logic);
end ADDRESS_DECODER;

architecture BEHAV of ADDRESS_DECODER is
 alias ADDR : std_logic_vector(ADDRESS'length-1 downto 0) is ADDRESS;
begin
 process(ADDRESS, CHECK)
 variable MATCH : boolean;
 begin
 MATCH := TRUE;
 for I in ADDRESS'length-1 downto ADDRESS'length-1-5 loop
 if ((ADDR(I) /= CHECK(I-2)) and (CHECK(I-2) /= '-')) then
 MATCH := FALSE;
 end if;
 end loop;
 if (MATCH) then
 SEL <= '1';
 else
 SEL <= '0';
 end if;
 end process;
end BEHAV;

8.8 Write a VHDL function to compare two IEEE std_logic_vectors to see whether they are equal.

Report an error if any bit in either vector is not ‘0’, ‘1’, or ‘-‘ (don’t care), or if the lengths of the
vector are not the same. The function call should pass only the vectors. The function should
return TRUE if the vectors are equal, else FALSE. When comparing the vectors, consider that ‘0’
= ‘-‘ and ‘1’ = ‘-‘. Make no assumptions about the index range of the two vectors.

library ieee;
use ieee.std_logic_1164.all;

package MINE is
 function "=" (L, R : std_logic_vector) return boolean;
end MINE;

package body MINE is
 function "=" (L, R : std_logic_vector) return boolean is
 variable EQUAL : boolean;
 alias LEFT : std_logic_vector(L'length-1 downto 0) is L;
 alias RIGHT : std_logic_vector(L'length-1 downto 0) is R;
 begin
 assert L'length = R'length
 report "Vectors are not the same length"
 severity error;
 EQUAL := TRUE;
 for I in LEFT'range loop
 case LEFT(I) is
 when '0' => case RIGHT(I) is
 when '0'|'-' => null;
 when others => EQUAL := FALSE;
 end case;
 when '1' => case RIGHT(I) is
 when '1'|'-' => null;
 when others => EQUAL := FALSE;
 end case;
 when '-' => case RIGHT(I) is
 when '0'|'1' => null;
 when others => EQUAL := FALSE;
 end case;
 when others => assert FALSE
 report "First vector has invalid value"
 severity error;
 end case;
 assert (RIGHT(I)='0' or RIGHT(I)='1' or RIGHT(I)='-')
 report "Second vector has invalid value"
 severity error;
 end loop;
 return EQUAL;
 end "=";
end MINE;

