
The University of Alabama in Huntsville
Electrical and Computer Engineering

CPE/EE 422/522
Spring 2005

Homework #7
Solution

From the book,
10.1 (20 points) (a) & (b) for q s-a-0 and d s-a-1

(a) Determine the necessary inputs to the following network to test for q s-a-0 and d s-a-1.
(b) For this set of inputs, determine which other stuck-at faults can be tested.

q s-a-0 ABCD = 1000 detects q s-a-0 and also detects c s-a-1, d s-a-1, r s-a-0, t s-a-1, v s-a-0, and

F s-a-0
 ABCD = 1100 detects q s-a-0 and also detects a s-a-0, r s-a-0, t s-a-1, v s-a-0, and F s-a-0
d s-a-1 ABCD = 1000 detects d s-a-1 and also detects q s-a-0, c s-a-1, r s-a-0, t s-a-1, v s-a-0, and
 F s-a-0
 ABCD = 0000 detects d s-a-1 and also detects c s-a-1, p s-a-1, q s-a-0, r s-a-0, s s-a-0,

and t s-a-1
 ABCD = 0100 detects d s-a-1 and also detects a s-a-1, c s-a-1, p s-a-0, r s-a-1, t s-a-1,

u s-a-1, v s-a-1, and F s-a-0

10.2 (20 points) Find a minimum set of tests that will test all single stuck-at-0 and stuck-at-1 faults in the
following network. For each test, specify which faults are tested for s-a-1 and s-a-1.
 abcdefi = 0001001 a s-a-1, b s-a-1, c s-a-1, g s-a-1
 abcdefi = 1000001 d s-a-1, e s-a-1, f s-a-1, h s-a-1
 abcdefi = 1001001 g s-a-0, h s-a-0, i s-a-0, Z s-a-0
 abcdefi = 0101001 b s-a-0

abcdefi = 0011001 c s-a-0
 abcdefi = 1000101 e s-a-0
 abcdefi = 1000011 f s-a-0
 abcdefi = 1001000 i s-a-1, Z s-a-1

10.7 (10 points) State graphs for two sequential machines are given below. The first graph represents a
correctly functioning machine, and the second represents the same machine with a malfunction.
Assuming that the two machines can be reset to their starting states (S0 and T0), determine the shortest
input sequence that will distinguish the two machines.

 Input: 0 0 0 1 1 1 1
 Correct Output: 1 1 1 0 0 0 1
 Incorrect Output: 1 1 1 0 0 0 0

From other sources
(25 points) Design a hardware multiplier circuit (M) that computes the product of two, positive 2-bit
binary numbers.

A0

B1

B0

A1
M0

M3

M1
M2

A1A0 represents one 2-bit number, B1B0 represents the second 2-bit number and M3M2M1M0 represents
the 4-bit product. For example, if A1A0 = 10 and B2B1B0 = 11, then M3M2M1M0 –0110. Model your
circuit by performing the following steps.

a. Develop a VHDL entity declaration for the multiplier.
b. Develop an algorithmic behavioral architectural body for the multiplier.
c. Simulate to verify the correctness of your model.

entity MULTIPLIER is
 port (A:in bit_vector (1 downto 0);
 B: in bit_vector (1 downto 0);
 M: out bit_vector (3 downto 0));
end MULTIPLIER;

architecture BEHAVE of MULTIPLIER is
begin
 process(A,B)
 variable temp : bit_vector (3 downto 0);
 begin
 temp := A & B;
 case TEMP is
 when "0000"|"0001"|"0010"|"0011"|"0100"|"1000"|"1100" => M <= "0000";
 when "0101" => M <= "0001";
 when "0110"|"1001" => M <= "0010";
 when "0111"|"1101" => M <= "0011";
 when "1010" => M <= "0100";
 when "1011"|"1110" => M <= "0110";
 when "1111" => M <= "1001";
 end case;
 end process;
end BEHAVE;

(25 points) Design a sequential circuit that converts a 4-bit Gray code into a 4-bit BCD code. The inputs
and outputs are timed by the same system clock. Assume that the device receives a START pulse
coincident with the left most bit of the Gray code. The remaining bits of the Gray code are received one
bit at a time (from left to right). At the end of each 4-bit Gray code, the device outputs the corresponding
4-bit BCD code in parallel along with a DAV signal. The next input could start during the clock period
following the last input bit or at any time after that. The device must have a RESET input that initializes
the device to the correct starting state. The figure given shows a block diagram and sample timing
diagram. Use the table below for the Gray and BCD codes.

Decimal Digit Gray Code BCD Code
0 0000 0000
1 0001 0001
2 0011 0010
3 0010 0011
4 0110 0100
5 1110 0101
6 1010 0110
7 1011 0111
8 1001 1000
9 1000 1001

Model the device using VHDL and do a simulation to verify your model.

SGTBCDSI
START

CLOCK
RESET

BCD
DAV

4

CLOCK

START

SI
1 1 1 0 0 0 0 0

DAV

BCD 0101 0000

0

entity SGRAY2BCD is
 port (R, SI, START, CLK: in BIT;
 BCD: out BIT_VECTOR(3 downto 0);
 DAV: out BIT);
end SGRAY2BCD;

architecture FSM_RTL of SGRAY2BCD is
 type STATE_TYPE is (S0, S1, S2, S3, S4);
 signal STATE: STATE_TYPE;
 signal SHIFT_REG: BIT_VECTOR (3 downto 0);
begin
-- Process to update state at end of each clock period.

NEXT_STATE: process (R, CLK)
 begin
 if (R = '0') then
 STATE <= S0;
 elsif (CLK='1'and CLK'event) then
 case STATE is
 when S0 =>
 if (START = '1') then
 STATE <= S1;
 SHIFT_REG <= SHIFT_REG(2 downto 0) &SI;
 end if;
 when S1 =>
 SHIFT_REG <= SHIFT_REG(2 downto 0) & SI;
 STATE <= S2;
 when S2 =>
 SHIFT_REG <= SHIFT_REG(2 downto 0) & SI;
 STATE <= S3;
 when S3 =>
 SHIFT_REG <= SHIFT_REG(2 downto 0) & SI;
 STATE <= S4;
 when S4 =>
 if (START = '1') then
 STATE <= S1;
 SHIFT_REG <= SHIFT_REG(2 downto 0) & SI;
 else
 STATE <= S0;
 end if;
 end case;
 end if;
 end process NEXT_STATE;
--
-- Output process
--
 OUTPUT: process (STATE)
 Begin
 case STATE is
 when S0|S1|S2|S3 =>
 BCD <= "0000";
 DAV <= '0';
 when S4 =>
 DAV <= '1';
 case SHIFT_REG is
 when "0000" => BCD <= "0000";
 when "0001" => BCD <= "0001";
 when "0011" => BCD <= "0010";
 when "0010" => BCD <= "0011";
 when "0110" => BCD <= "0100";
 when "1110" => BCD <= "0101";
 when "1010" => BCD <= "0110";
 when "1011" => BCD <= "0111";
 when "1001" => BCD <= "1000";
 when "1000" => BCD <= "1001";
 when others => BCD <= "0000";
 end case;
 end case;
 end process OUTPUT;
end FSM_RTL;

