The University of Alabama in Huntsville ECE Department CPE/EE 422/522 01 Midterm Exam Solution

1. (10 points) A sequential network consists of a PLA and a D flip-flop, as shown. The propagation delay for the PLA is in the range 5 to 10 ns, and the propagation delay from clock to output of the D flip-flop is 5 to 10 ns. Assuming that X always changes at the same time as the falling edge of the clock, what is the maximum setup and hold time specifications that the flip-flop can have and still maintain proper operation of the network?

For both the setup time and hold time, there are two paths to consider, one from X to the D input of the flip-flop and the other from Q to the D input of the flip-flop. From the timing diagram, tck = 40 ns, tx = 20 ns and ty = 20 ns, where tck is the clock period, tx is the time from a change on X to the active edge of the clock and ty is the time from the active edge of the clock to a change on X. The following equations apply: For Q: (1) $t_{ck} \ge t_{pdmax} + t_{cmax} + t_{su}$, (2) $t_h \ge t_{pdmin} + t_{cmin}$

For X: (3) $t_x \ge t_{su} + t_{cmax}$, (4) $t_h \ge t_y + t_{cmin}$ where t_{pd} is the propagation delay through the flip-flop and t_c is the propagation delay through the combinational circuit (PLA)

So, for setup

setup,	So, for hold,
(1) 40 ns \ge 10 ns + 10 ns + t _{su} , t _{su} \le 20 ns	(2) $t_h \ge 5 \text{ ns} + 5 \text{ ns}, t_h \ge 10 \text{ ns}$
(3) 20 ns \geq t_{su} + 10 ns , t_{su} \leq 10 ns	(4) $t_h \ge 20 \text{ ns} + 5 \text{ ns}, t_h \ge 25 \text{ ns}$

For both the setup and the hold times to be always satisfied, we must take the smaller numbers so $t_{su} = t_h = 10 \text{ ns}$

2. (10 points) Write a short VHDL description of a 4-to-1 multiplexer using a VHDL process.

```
entity MUX4 1 is
  port (I3, I2, I1, I0, S1, S0 : in bit;
        F : out bit);
end MUX4 1;
architecture MUX4 1of MUX4 1 is
begin
  process (I3, I2, I1, I0, S1, S0)
  begin
    if (S1 = '0' \text{ and } S0 = '0') then
      F <= I0;
                 0' and SO = 1' then
    elsif (S1 =
      F <= I1;
    elsif (S1 = '1' \text{ and } S0 = '0') then
      F <= I2;
    else
      F <= I3;
    end if;
end MUX4 1;
```

3. (15 points) For the following VHDL, assume that A changes to '1' at 5 ns. Give the values of A, B, C, D, E, and F each time a change occurs. Carry this out until no further change occurs. I

```
entity prob is
 port (D : inout bit);
end prob;
architecture PROB of PROB is
  signal A, B, C, E, F : bit;
begin
 P1: process (A, C)
 begin
   B <= A after 3 ns;
   E <= C after 5 ns;
  end process P1;
  C1: C <= A after 10 ns;
  P2: process (C, E)
 begin
    F \ll C and E after 4 ns;
 end process P2;
  C2: D <= A or B or C or F after 1 ns;
end PROB;
```

Time	А	В	С	D	Е	F
0 ns	0	0	0	0	0	0
5 ns	1	0	0	0	0	0
6 ns	1	0	0	0	0	0
8 ns	1	1	0	1	0	0
15 ns	1	1	1	1	0	0
20 ns	1	1	1	1	1	0
24 ns	1	1	1	1	1	1

Time 5 ns	Event $A \rightarrow '1'$	Process Triggered P1 P1 C1	Scheduled Transaction B '1' 8 ns E '0' 10 ns C '1' 15 ns	Event? Yes No Yes
		C2	D '1' 6 ns	Yes
6 ns	$D \rightarrow `1'$	none		
8 ns	$B \rightarrow `1'$	C2	D '1' 9 ns	No
15 ns	$C \rightarrow `1'$	P1	B '1' 18 ns	No
		P1	E '1' 20 ns	Yes
		P2	F '0' 19 ns	No
		C2	D '1' 16 ns	No
20 ns	$E \rightarrow `1'$	P2	F '1' 24 ns	Yes
24 ns	$F \rightarrow `1'$	C2	D '1' 25 ns	No

4. (5 points) Obtain a minimum product of sums expression for the following function: $f(A, B, C, D) = \Pi M(0, 1, 2, 4, 5, 8, 9, 10)$

				С	
	0	0	1	0	
	0	0	1	1	р
A	1	1	1	1	В
A	0	0	1	0	
		D			

f' = (B'C' + A'C' + B'D')'= (B'C')'(A'C')'(B'D')= (B + C)(A + C)(B + D)

- 5. (15 points) A Mealy sequence detector detects a sequence of four consecutive 1 inputs. The detector has a single binary input, X, and a single binary output, Z. Signal Z should be logic 1 if and only if the last four inputs were all logic 1. Here is an example input-output sequence:
 - X 01011111101101011110
 - Z 00000011110000000010

Derive a Mealy state graph and table with a minimum number of states for this sequence detector

	Next State		Output	
Present State	X = 0	X = 1	X = 0	X = 1
SO	S 0	S1	0	0
S1	S 0	S2	0	0
S2	S 0	S 3	0	0
S 3	S 0	S 3	0	1

6. (10 points) For the following Ft, find all static-1 hazards. For each hazard, specify the values of the input variables and which variable is changing when the hazard occurs. Ft = ab' + ac' + bb' + bc' + a'd'

For hazard 1, a is changing and bcd = 000For hazard 2, a is changing and bcd = 010

7. (10 points) Reduce the following state table to a minimum number of states. Show all your work in determining the state equivalents

	Next		
Present State	X = 0	X = 1	Output
А	Ι	С	1
В	В	Ι	1
С	С	G	1
D	Ι	С	0
E	D	Е	0
F	Ι	С	0
G	Е	F	0
Н	Н	А	1
Ι	Α	С	1

	Next		
Present State	$\mathbf{X} = 0$	X = 1	Output
Α	А	С	1
В	В	А	1
С	С	G	1
D	А	С	0
Е	D	Е	0
G	Е	D	0

8. (5 points) Write out the truth table for the following equation. $F = (A \bullet B') + C$

А	В	С	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

9. (5 points) Draw a timing diagram that illustrates the difference between a D flip-flop and a D latch.

- 10. (1 point) __Synchronous_ design is a technique that uses a clock to coordinate the operation of all flip-flops, registers and counters in the system.
- 11. (1 point) The value of a _____variable__ changes instantaneously in VHDL
- 12. (1 point) A process with a sensitivity list is activated whenever _an event occurs on any signal_____in the sensitivity list_.
- 13. (1 point) VHDL is case-sensitive (True/False) __False_
- 14. (1 point) <u>Sequential</u> networks commonly use flip-flips as storage devices.
- 15. (10 points) Draw the state diagram for the following state machine. Is it a Moore machine or a Mealy machine?

```
ENTITY state_machine IS
   PORT (sig_in ; IN BIT; clk : IN BIT;
          sig_out : OUT BIT);
END state_machine;
ARCHITECTURE state_machine OF state_machine IS
   TYPE state type IS (a, b, c, d, e);
   SIGNAL current_state, next_state : state_type;
BEGIN
   PROCESS (sig_in, current_state)
   BEGIN
      sig_out <= `0'; next_state <= b;</pre>
      CASE current_state
      WHEN a =>
         IF sig_in = `0' THEN next_state <= e; sig_out <= `1';</pre>
         ELSE next_state <= d;</pre>
         END IF;
      WHEN b =>
         IF sig_in = `0' THEN next_state <= b;</pre>
         ELSE next_state <= d; sig_out <= `1';</pre>
         END IF;
     WHEN C =>
       IF sig_in = `1' THEN next_state <= a;</pre>
```

```
ELSE next_state <= d;</pre>
       END IF;
     WHEN d =>
       IF sig_in = `0' THEN next_state <= e;</pre>
       END IF;
     WHEN e =>
       IF sig_in = `1' THEN next_state <= a;</pre>
       END IF;
      END CASE;
   END PROCESS;
   PROCESS (clk)
   BEGIN
      IF (clk'EVENT AND clk = `1') THEN
           current_state <= next_state;</pre>
      END IF;
   END PROCESS;
END state_machine;
```

Mealy

Extra Credit (5 points): Rework problem 6 using a Moore machine.

	Next		
Present State	$\mathbf{X} = 0 \mathbf{X} = 1$		Output
SO	S 0	S1	0
S1	S 0	S2	0
S2	S 0	S3	0
S3	S 0	S4	0
S4	S 0	S4	1