CPE/EE 422/522 SP2004, Lab Assignment 4

4-bit Signed Binary Number (2 s complement) Multiplier

(Undergraduate 100 points -- Graduate 80 points)

The purpose of this laboratory project is to give each student the opportunity to develop a practical logic design using both schematic capture and/or VHDL that will implement a 4-bit multiplier for signed binary number using Booth s algorithm. The design will take two 4-bit singed binary numbers (2 s complement) from Altera UP 1 Educational Trainer's FLEX_SW1 switches and display the product in decimal format as well as the sign on two of the Altera UP 1 Educational Trainer's seven-segment LEDs.

Background

Problem 4.15 (pages 158-159) of the textbook has a detailed description of the Booth s algorithm. You can try this nice on-line Booth s algorithm simulator also: (http://www.ecs.umass.edu/ece/koren/arith/simulator/Booth/)

Pin Assignment

Altera Pin Numbers for FLEX_PB1 push button

FLEX_PB1 push button connects to pin 28 of the EPF10K20 FPGA device

Altera Pin Numbers for Crystal Oscillator

The Altera UP 1 Educational Trainer's board contains a 25.175-MHz crystal oscillator. The output of the oscillator drives a global clock input on the EPF10K20 FPGA device (Pin91).

FLEX_SW1 Pin Assignment		
Switch	EPF10K20 Pin	
FLEX_SW1-1	41	
FLEX_SW1-2	40	
FLEX_SW1-3	39	
FLEX_SW1-4	38	
FLEX_SW1-5	36	
FLEX_SW1-6	35	
FLEX_SW1-7	34	
FLEX_SW1-8	33	

Altera Pin Numbers for the FLEX_SW1 switches connections

Note: use SW1- SW4 to set up multiplier, and SW5 — SW8 to set up multiplicand

FLEX_DIGIT Segment I/O Connections			
Display segment	Pin for Digit 1	Pin for Digit 2	
А	6	17	
В	7	18	
С	8	19	
D	9	20	
Е	11	21	
F	12	23	
G	13	24	
Decimal Point	14	25	

Altera Pin Numbers for the FLEX DIGIT Segment I/O Connections

Note: Decimal Point for DIGIT 1 will be used to display the signed of the result. On represents negative, while off represents positive.

Assignment

- 1. You <u>have to</u> provide control over the multiplication process in the following way: a user starts a multiplication process by pressing and releasing FLEX_PB1 push button. Before pressing the FLEX_PB1 button user prepares inputs by setting corresponding switches. Any change on switches after the button is released does not result in a change on the LED. If we want new multiplication we should press/release button PB1 again.
- 2. Write <u>VHDL code</u> for the Booth s algorithm multiplication. (**No credit for non- Booth s** algorithm implementation)
- 3. Simulate the VHDL design in 2 using ModelSim Simulator for the following test cases:

0110 x 0011 1000 x 0010 0110 x 1110 1100 x 1001

- 4. Develop the other necessary components for this designs using schematic capture and/or VHDL.
- 5. Simulation and design result must be demonstrated to the lab instructor and fully documented in lab report.

Due Day

Lab: 4/16 and Lab Report: 4/23