APPENDIX /A

VHDL LANGUAGE SUMMARY

Reserved words are in boldface type, Square brackets enclose optional items. Curly brackets
enclose items that are repeated zero or more times. A vertical bar (I) indicates or.
Disclaimer: This VHDL summary is not complete and contains some special cases. Only
VHDL statements used in this text are listed. For a complete description of VHDL syntax,
refer to references [7] and [17]. '

signal assignment statement: (sequential or concurrent statement)

signal <= [reject pulse-width | transport] expression [after delay_time];
Note: 1f concurrent, signal value is recomputed every time a change occurs on the right-
hand side. If after time-spec is omitted, signal is updated after delta time.

variable assignment statement: (sequential statement only)

variable := expression;
Note: This can be used only within a process, function, or procedure. The variable is
always updated immediately.

conditional assignment statement: (concurrent statement only)
signal <= expressionl when condition1
else expression2 when condition2

[else expression];
selected signal assignment statement: (concurrent statement only)
with expression select
signal <= expression] [after delay_time] when choicel,
expression?2 [after delay_time] when choice2,

[expression [after delay_time] when others];

420 ArpenDIX A ® VHDL LANGUAGE SUMMARY

entity declaration:
entity entity-name is
[generic (list-of-generics-and-their-types);]
[port (interface-signal-declaration);]
[declarations]
end entity-name;

interface-signal declaration:

list-of-interface-signals: mode type [:= initial-value]

{; list-of-interface-signals: mode type [:= initial-value]}
Note: An interface signal can be of mode in, out, inout, or buffer.

architecture declaration:
architecture architecture-name of entity-name is
[declarations] -- variable declarations not allowed
begin

architecture-body
end architecture-name;
Note: The architecture body may contain component-instantiation statements, processes,
blocks, assignment statements, procedure calls, etc.

integer type declaration:
type type_name is range integer_range;

enumeration type declaration:
type type_name is (list-of-names-or-characters);

subtype declaration:
subtype subtype_name is type_name [index-or-range-constraint];

variable declaration:
variable list-of-variable-names : type_name [:= initial_value };

signal declaration:
signal list-of-signal-names : type_name [:= initial_value];

constant declaration:
constant constant_name : type_name := constant_value;

alias declaration:
alias identifier [:identifier-type] is item-name;
Note: Item-name can be a constant, signal, variable, file, function name, type name, etc.

array type and object declaration:
type array_type_name is array index_range of element_type;
signal | variable | constant array_name: array_type_name [:= initial_values];

VHDL LANGUAGE SUMMARY ® APPENDIX A 421 |

process statement (with sensitivity list):
[process-label:] process (sensitivity-list)
[declarations] -- signal declarations not allowed
begin
sequential statements
end process [process-label];
Note: This form of process is executed initially and thereafter only when an item on the

sensitivity list changes value. The sensitivity list is a list of signals. No wait statements are
allowed.

process statement (without sensitivity list):
[process-label:] process
[declarations] -- signal declarations not allowed
begin
sequential statements
end process [process-label];
Note: This form of process must contain one or more wait statements. It starts execution
immediately and continues until a wait statement is encountered.

wait statements can be of the form:
wait on sensitivity-list;
wait until boolean-expression;
wait for time-expression;

if statement: (sequential statement only)
if condition then
sequential statements
{elsif condition then
sequential statements } -- O or more elsif clauses may be included
[else sequential statements]
end if;
case statement: (sequential statement only)

case expression is
when choicel => sequential statements
when choice2 => sequential statements

[when others => sequential statements]

end case;
for loop statement: (sequential statement oly)
[loop-label:] for identifier in range loop
sequential statements

end loop [loop-label];
Note: You may use exit to exit the current loop.

422

ApPENDIX A ® VHDL LANGUAGE SUMMARY

while loop statement: (sequential statement only)
[loop-label:] while boolean-expression loop
sequential statements
end loop [loop-label];

exit statement: (sequential statement only)
exit [loop-label] [when condition];

assert statement: (sequential or concurrent statement)
assert boolean-expression
[report string-expression]
[severity severity-level];

report statement: (sequential statement only)
report string-expression
[severity severity-level];

procedure declaration:
procedure procedure-name (parameter list) is
" [declarations]
begin
sequential statements
end procedure-name;
Note: Parameters may be signals, variables, or constants.

procedure call:

procedure-name (actual-parameter-list);
Note: An expression may be used for an actual parameter of mode in; types of the actual
parameters must match the types of the formal parameters; open cannot be used.

function declaration:
function function-name (parameter-list) return return-type is
[declarations]
begin
sequential statements -- must include return return-value;
end function-name;
Note: Parameters may be signals or constants.

JSunction call:

function-name (actual-parameter list)
Note: A function call is used within (or in place of) an expression.

library declaration:
library list-of-library-names;

VHDL LANGUAGE SUMMARY ® APPENDIX A 423 I

use statement:
use library_name.package_name.item; (.item may be .all)

package declaration:
package package-name is
package declarations
end [package][package-name];

package body:
package body package-name is
package body declarations
end [package body][package name];

component declaration:
component component-name
[generic (list-of-generics-and-their-types);]
port (list-of-interface-signals-and-their-types);
end component;

component instantiation:
label: component-name
[generic map (generic-association-list);]
port map (list-of-actual-signals);
Note: Use open if a component output has no connection.

generi ate statements:
generate_label: for identifier in range generate
[begin]
concurrent statement(s)
end generate [generate_label];

generate_label: if condition generate
[begin]

concurrent statement(s)
end generate [generate_label];

file type declaration:
type file_name is file of type_name;

file declaration:
file file_name: file_type [open mode] is "file_pathname";
Note: Mode may be read_mode, write_mode, or append_mode.

