
The University of Alabama in Huntsville

ECE Department

CPE 526 01

Final Exam Solution

Fall 2007

1. (5 points) Draw the transistor-level diagram of a two-input CMOS NAND gate.

VCC

GND

x y z

x

y

f

2. (10 points) Write a VHDL entity (3 points) and architecture (7 points) of a D latch with the generics,

TPDQ, which reflects the time for a change on D to appear at the outputs and TGDQ, which reflects

the time for a change on the gate input, D, to appear at the outputs.

entity DLATCH is

 generic (TPDQ, TPGQ : time);

 port (D, G : in std_logic;

 Q, QB : out std_logic);

end DLATCH;

architecture DLATCH of DLATCH is

 signal QTEMP : std_logic;

begin

 process (D, G)

 begin

 if (G'event) then

 if (G = '1') then

 QTEMP <= D after TPGQ;

 end if;

 elsif (D'event) then

 if (G = '1') then

 QTEMP <= D after TPDQ;
 end if;

 end if;

 end process;

 Q <= QTEMP;

 QB <= not QTEMP;

end DLATCH;

3. (1 point) _Scheduling_ consists of assigning each operation to a control step.

4. (1 point) The ___utilization_ of a component is the ratio of the busy time for the component to the

execution time for the process.

5. (5 points) If the NRE costs for FPGA and ASIC circuits are $25,000 and $575,000, respectively, and

the cost of individual parts for FPGA and ASIC circuits are $22 and $7, respectively, what is the

break-even manufacturing volume for these two types of circuits?

 Let x be the volume

 $25,000 + ($22x) = $575,000 + ($7x)

 15x = 550,000

 x = 36,667

6. (10 points) Consider the dataflow graph shown below. As part of the cluster partitioning algorithm,

determine which two nodes should be merged and show the dataflow graph that results from the

merger.

1

42

3

5

 Common Neighbors
(1, 2) 2

(1, 3) 3

(1, 4) 1

(1, 5) 2

(2, 3) 2

(2, 5) 2

(3, 4) 1

(3, 5) 2

So, 1 and 3 have the most

common neighbors, merge

them.

1

42

5

7. (4 points) List the four types of paths that must be considered when doing timing analysis of

sequential circuits.

__primary inputs to primary outputs______________________

__primary inputs to inputs of storage elements______________

__outputs of storage elements to primary outputs____________

__outputs of storage elements to inputs of storage elements____

8. (1 point) _Synthesis_ is the process of transforming a behavioral description into a structural gate-

level circuit.

9. (1 point) __Routing__ is the process of making the connections between standard cells.

10. (10 points) For the data lifetime chart shown, use the left edge algorithm to obtain an efficient register

allocation.

 A B C D E F G H I J K L

S1 X X X

S2 X X X X X

S3 X X X X X X X

S4 X X X X X X X

S5 X X X X X X X

S6 X X X X X X

S7 X X

Sorting by earliest start and then by earliest end times,

 G J D I A K B F H E L C

S1 X X X

S2 X X X X X

S3 X X X X X X X

S4 X X X X X X X

S5 X X X X X X X

S6 X X X X X X

S7 X X

Doing the allocation

 R1 R2 R3 R4 R5 R6 R7

S1 G J D

S2 G J D I A

S3 K J D I A B F

S4 K H D I A B F

S5 K H E L A B F

S6 C H E L B F

S7 C L

11. (6 points) Translate the following VHDL use (a) block statement(s) instead of a process:

process (S1, S4, DI, S3, Q)

 begin

 if (S1 = '1' and S4 = '1') then

 Q <= DI after FFDEL;

 elsif (S1 = '0' and S4 = '0') then

 Q <="00000000" after FFDEL;

 end if;

 if (S3 = '1') then

 DO <= Q after BUFDEL;

 else

 DO <= "ZZZZZZZZ" after BUFDEL;

 end if;

 B1 : block

 begin

 Q <= DI after FFDEL when (S1 = '1' and S4 = '1') else

 "00000000" after FFDEL when (S1 = '0' and S4 = '0');

 DO <= Q after BUFDEL when (S3 = '1') else

 "ZZZZZZZZ" after BUFDEL;

 end block B1;

12. (9 points) (a) (5 points) Write a single VHDL model which represents an AND gate with an arbitrary

number of inputs, N. (b) (4 points) Use that model as a component in an entity that represents a four

input AND gate with inputs a, b, c, d and output f

entity N_AND is

 generic (N : integer);

 port (I : in std_logic_vector(N-1 downto 0);

 O : out std_logic);

end N_AND;

architecture N_AND of N_AND is

begin

 process(I)

 variable TEMP : std_logic := '1';

 begin

 for j in I'range loop

 TEMP := TEMP and I(j);

 end loop;

 O <= TEMP;

 end process;

end N_AND;

entity UPPER is

end UPPER;

architecture UPPER of UPPER is

 component N_AND is

 generic (N : integer);

 port (I : in std_logic_vector(N-1 downto 0);

 O : out std_logic);

 end component;

 signal a, b, c, d, f : std_logic;

begin

 U1 : N_AND generic map (N => 4)

 port map (I(0) => a,

 I(1) => b,

 I(2) => c,

 I(3) => d,

 O => f);

end UPPER;

13. (12 points) A sequential network with one input and one output is used to stretch the first two bits of a

4-bit sequence as follows:

 Input Output

 00dd 0000

 01dd 0011

 10dd 1100

 11dd 1111

 After every four bits, the network resets. Model this network in VHDL as a Moore state machine.

 a.(3 points) Write an entity. b. (9 points) Write an architecture.

entity STRETCH is

 port (X, CLK, RST : in std_logic;

 Z : out std_logic);

end STRETCH;

architecture STRETCH of STRETCH is

 type STATE is (S0, S1, S2, S3, S4, S5, S6, S7, S8);

 signal CURRENT_STATE, NEXT_STATE : STATE;

 signal TEMP : std_logic;

begin

 process(X, CURRENT_STATE)

 begin

 case CURRENT_STATE is

 when S0 => if (X = '0') then -- initial state

 NEXT_STATE <= S1; -- pick state to go to based on the

 else -- first input

 NEXT_STATE <= S2;

 end if;

 when S1 => TEMP <= X; -- have received a ‘0’, store next
 NEXT_STATE <= S3 -- input, output a ‘0’, go to the

 -- state where we output another ‘0’

 when S2 => TEMP <= X; -- have received a ‘1’, store next

 NEXT_STATE <= S4; -- input, output a ‘1’, go to the

 -- state where we output another ‘1’

 when S3 => if (TEMP <= '0') then -- output a ‘0’, pick state to go to

 NEXT_STATE <= S5; -- based on the value of TEMP

 else NEXT_STATE <= S6;

 end if;

 when S4 => if (TEMP <= '0') then -- output a ‘1’, pick state to go to

 NEXT_STATE <= S5; -- based on the value of TEMP
 else NEXT_STATE <= S6;

 end if;

 when S5 => NEXT_STATE <= S7; -- output first ‘0’ for second input

 when S6 => NEXT_STATE <= S8; -- output first ‘1’ for second input

 when S7 => if (X = '0') then -- output second ‘0’, pick state to

 NEXT_STATE <= S1; -- go to based on input (now first

 else -- bit of next four)

 NEXT_STATE <= S2;

 end if;

 when S8 => if (X = '0') then -- output second ‘1’, pick state to
 NEXT_STATE <= S1; -- go to based on input (now first

 Else -- bit of next four)

 NEXT_STATE <= S2;

 end if;

 end case;

 end process;

 process(CLK, RST)

 begin

 if (RST = '1')

 then CURRENT_STATE <= S0;

 elsif (CLK'event and CLK = '1') then

 CURRENT_STATE <= NEXT_STATE;

 end if;

 end process;

 process(CURRENT_STATE)

 begin

 case CURRENT_STATE is

 when S0|S1|S3|S5|S7 => Z <= '0';

 when S2|S4|S6|S8 => Z <= '1';

 end case;

 end process;

end STRETCH;

Consider the following VHDL code:

-- Entity declaration

entity SCHED2 is

 port (A, B, C, D, E, F: in INTEGER;

 CLK : in BIT;

 W, X, Y: out INTEGER);

end SCHED2;

-- Architecture declaration

architecture HIGH_LEVEL of SCHED2 is

 signal V, Z: INTEGER;

begin

 X <= ((A – B) * Z) * (C + V);

 Y <= ((A * B) + Z) * E + F;

 Z <= (C * D) + D * (E + F);

 W <= (A/F + C*C + D* (A – B))/V;

 V <= (C * (B + D*E)) + F;

end HIGH_LEVEL;

16. (15 points) The following task refers to the VHDL code above. Assume that all operations are done in

an ALU module and there are two ALU modules available. Derive a list schedule using the critical

path priority metric for the operations.

-

*

+

*

* + * *

A B C D E F

1 2 3
4 5

11

12

17

Z

*

ED

+ 10

*

+

13

16

+

C

18

23

X

A B

+ 19

*

+

Y

/ * -

*

+

+

/
21

22

20

15

14

9

6 7 8

E FB A F CC A B D

W

Node Distance

1 3

2 5

3 6

4 6

5 4

6 3

7 4

8 5

9 4

10 5

11 5

12 4

13 4

14 3

15 2

16 3

17 2

18 2

19 3

20 1

21 2

22 1

23 1

List priority {3, 4, 2, 8, 10, 11, 5, 7, 9, 12, 13, 1, 6, 14, 16, 19, 15, 17, 18, 21, 20, 22, 23}

Step 1 Ready {1, 2, 3, 4, 5, 6, 7, 8} Schedule {3, 4}

Step 2 Ready {1, 2, 5, 6, 7, 8, 10, 11} Schedule {2, 8}

Step 3 Ready {1, 5, 6, 7, 9, 10, 11} Schedule {10, 11}

Step 4 Ready {1, 5, 6, 7, 9, 12, 13} Schedule {5, 7}

Step 5 Ready {1, 6, 9, 12, 13} Schedule {9, 12}

Step 6 Ready {1, 6, 13, 14, 19} Schedule {1, 13}

Step 7 Ready {6, 14, 16, 17, 19} Schedule {6, 14}

Step 8 Ready {15, 16, 17, 19} Schedule {16, 19}

Step 9 Ready {15, 17, 18, 21} Schedule {15, 17}

Step 10 Ready {18, 20, 21} Schedule {18, 21}

Step 11 Ready {20, 22, 23} Schedule {20, 22}

Step 12 Ready {23} Schedule {23}

-

A B

1

* 11

+ 12

* 17

*

C D

2

+

E F

3 * 4

ED

*5

A B

* 23

+ 10

* 13

+ 16

+ 18

+ 19

* 21

+ 22

/6

A F

* 7

CC

- 8

A B

* 9

+14

+ 15

/ 20

Step 1

Step 2

B

D

C

F

CE

F

Y X W

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

17. (10 points) Write a VHDL model for a shift register module that includes a 16-bit shift register, a

controller, and a 4-bit down counter. The shifter can shift a variable number of bits depending on a

count provided to the shifter module. Inputs to the module are a number N (indicating a shift count)

in the range 1 to 15, a 16-bit vector par_in, a clock and a start signal, St. When St = ‘1’, N is loaded

in the down counter, and par_in is loaded into the shift register. Then the shift register does a left

shift N times and the controller returns to the start state. Assume that St is only ‘1’ for one clock

time. All operations are synchronous on the falling edge of the clock.

entity SHIFT is

 port (PAR_IN : in std_logic_vector(15 downto 0);
 CLK, ST : std_logic;
 N : in integer range 1 to 15;

 PAR_OUT : out std_logic_vector(15 downto 0));

end SHIFT;

architecture SHIFT of SHIFT is

begin

 process(CLK)

 variable TEMP : std_logic_vector(15 downto 0);

 variable COUNT : integer range 1 to 15;

 variable READY : std_logic;

 begin

 if (CLK'event and CLK = '0') then

 if (ST = '1' and READY = '1') then

 COUNT := N;

 TEMP := PAR_IN;

 READY := '0';

 else

 if (COUNT > 0) then

 COUNT := COUNT - 1;

 TEMP := TEMP(14 downto 0) & '0';

 else

 READY := '1';

 end if;

 end if;

 end if;

 PAR_OUT <= TEMP;

 end process;

end SHIFT;

18. (10 points) A Mealy sequence detector detects a sequence of four consecutive 1 inputs. The detector

has a single binary input, X, and a single binary output, Z. Signal Z should be logic 1 if and only if

the last four inputs were all logic 1. Here is an example input-output sequence:

 X 010111111101101011110

 Z 000000111100000000010

 Model this detector in VHDL.

entity FOUR_ONES is

 port (CLK, RST, X : in std_logic;

 Z : out std_logic);

end FOUR_ONES;

architecture FOUR_ONES of FOUR_ONES is

begin

 process(CLK, RST, X)

 variable TEMP : std_logic_vector(3 downto 0);

 begin

 if (RST = '1') then

 TEMP := "0000";

 elsif (CLK'event and CLK = '1') then

 TEMP := TEMP(2 downto 0) & X;

 if (TEMP = "1111") then

 Z <= '1';

 else

 Z <= '0';

 end if;

 end if; --RST = '1'

 end process;

end FOUR_ONES;

