
The University of Alabama in Huntsville
ECE Department

CPE 526 01
Midterm Exam Solution

October 16, 2007

1. (15 points) (a) (4 points) Create a VHDL entity named mux_16_to_1 that represents a 16 to 1

multiplexor. (b) (11 points) Create a VHDL architecture representing a structural model of the 16 to1
mux using as many mux_4_to_1 muxes as are needed. You do not need to write an entity or an
architecture for mux_4_to_1. You may also assume that a component has already been declared
and that no configuration statement is required.

entity MUX_16_TO_1 is
 port (I : in std_logic_vector(15 downto 0);
 SEL : in std_logic_vector(3 downto 0);
 O : out std_logic);
end MUX_16_TO_1;

architecture STRUCTURAL of MUX_16_TO_1 is
 component MUX_4_TO_1 is
 port (I : in std_logic_vector(3 downto 0);
 SEL : in std_logic_vector(1 downto 0);
 O : out std_logic);
 end component;
 signal INTERNAL : std_logic_vector(3 downto 0);
begin
 U1 : MUX_4_TO_1
 port map(I => I(15 downto 12), SEL => SEL(1 downto 0),
 O => INTERNAL(3));
 U2 : MUX_4_TO_1
 port map(I => I(11 downto 8), SEL => SEL(1 downto 0),
 O => INTERNAL(2));
 U3 : MUX_4_TO_1
 port map(I => I(7 downto 4), SEL => SEL(1 downto 0),
 O => INTERNAL(1));
 U4 : MUX_4_TO_1
 port map(I => I(3 downto 0), SEL => SEL(1 downto 0),
 O => INTERNAL(0));
 U5 : MUX_4_TO_1
 port map(I(3) => INTERNAL(3), I(2) => INTERNAL(2),
 I(1) => INTERNAL(1), I(0) => INTERNAL(0),
 SEL => SEL(3 downto 2), O => O);
end STRUCTURAL;

2. (1 point) The synthesizable subset of VHDL is standard. (True/False) __False__

3. (20 points).(a) (12 points) Write a VHDL function that will take two integer vectors, A and B, and

find the dot product C = Σ ai * bi. The function call should be of the form DOT(A,B), where A and B
are integer vector signals. Use attributes inside the function to determine the length and range of the
vectors. Make no assumptions about the high and low values of the ranges. For example,

 A(3 downto 1) = (1,2,3), B(3 downto 1) = (4,5,6), C = 3*6 + 2*5 + 1*4 = 32.
 A(0 to 4) = (1,3,5,7,9), B(9 downto 5) = (2,4,6,8,10) = 1*2 + 3*4 + 5*6 + 7*8 + 9*10 = 190
 Output a warning if the ranges are not the same.

(b)(8 points) Show an architecture that includes two calls to the function with the following
properties. 1 - returns a value, 2 – triggers a warning message.

package MINE is
 type INTEGER_VECTOR is array (NATURAL RANGE <>) of integer;
 function DOT_PRODUCT (L, R : INTEGER_VECTOR) return integer;
end MINE;

package BODY MINE is
 function DOT_PRODUCT (L, R : INTEGER_VECTOR)
 return integer is
 variable TEMP : integer := 0;
 alias new_l : INTEGER_VECTOR(L'LENGTH -1 downto 0) is L;
 alias new_r : INTEGER_VECTOR(L'LENGTH -1 downto 0) is R;
 begin
 assert (L'LENGTH = R'LENGTH)
 report "Ranges of operands are not the same"
 severity WARNING;
 for I in new_l'RANGE loop
 temp := temp + new_l(I)*new_r(I);
 end loop;
 return TEMP;
 end DOT_PRODUCT;
end MINE;

entity DOT_PRODUCT_CALL is
end DOT_PRODUCT_CALL;

architecture CALL of DOT_PRODUCT_CALL is
 signal A : INTEGER_VECTOR(2 to 8) := (1,3,5,6,4,2,0);
 signal B : INTEGER_VECTOR(24 downto 18) := (1,2,3,4,5,6,7);
 signal C : INTEGER_VECTOR(52 to 55) := (1,3,5,6);
 signal D : integer;
 signal E : integer;
begin
 D <= DOT_PRODUCT(A, B);
 E <= DOT_PRODUCT(A, C);
end CALL;

4. (1 point) All processes are executed at initialization. (True/False) ___True___

5. (1 point) A ___procedure___ is used when you have multiple return values.

6. (4 points) Translate the following statement to an if-then-else statement:

transmit <= signal_a when state = idle else
 signal_b when state = incoming else
 signal_c when state = outgoing else
 signal_d;

 if (state = idle) transmit <= signal_a;
 elsif (state = incoming) transmit <= signal_b;
 elsif (state = outgoing) transmit <= signal_c;
 else transmit <= signal_d;

7. (1 point) For every process, there is an equivalent concurrent statement. (True/False) _False_

8. (4 points) (a) (2 points) Specify a CLASSIFICATION enumeration data type that spells out the

various classifications for undergraduate students.(b) (2 points) Write a variable declaration
MY_CLASS that has a value equal to the rightmost element of the type.

 type CLASSIFICATION is (FRESHMAN, SOPHOMORE, JUNIOR, SENIOR);
 variable MY_CLASS : CLASSIFICATION := SENIOR;

9. (1 point) Multiple architectures can exist for a single entity. (True/False) _True_

10. (1 point) Multiple Choice: _a_ is the default delay in VHDL. (a) Inertial (b) Transport

11. (6 points) (a) (4 points) Write a declaration of an array that can be used to hold the student numbers

of the students in this class. (b) (2 points) Initialize the first element of this array with your student
number.

 type CLASS_ANUMBERS is array (0 to 15) of string(1 to 9);
 variable CPE_426_526 : CLASS_ANUMBERS (0 => A12345678, others => A00000000);

12. (20 points) Given the following VHDL, indicate all transactions and events. Give the values of A, B,

C, D, E, and F each time a change occurs. Carry this out until no further change occurs.

entity prob is
 port (D : inout bit);
end prob;

architecture PROB of PROB is
 signal A, B, C, E, F : bit;
begin
 process
 A <= ‘1’ after 5 ns,
 ‘0’ after 12 ns;
 wait;
 end process;
 P1: process (A, C)
 begin
 B <= A after 2 ns;
 E <= C after 7 ns;
 end process P1;
 C <= transport A and B
 after 6 ns;
 P2: process (C, E)
 begin
 F <= C or E after 4 ns;
 end process P2;
 D <= A or B or C or F after 1 ns;
end PROB;

Time A B C D E F
0 ns 0 0 0 0 0 0
5 ns 1 0 0 0 0 0
6 ns 1 0 0 1 0 0
7 ns 1 1 0 1 0 0

12 ns 0 1 0 1 0 0
13 ns 0 1 1 1 0 0
14 ns 0 0 1 1 0 0
17 ns 0 0 1 1 0 1
18 ns 0 0 0 1 0 1
22 ns 0 0 0 1 0 0
23 ns 0 0 0 0 0 0

Time Event Processes Triggered Scheduled Transactions Event?
5 ns A 0→1 P1 B ‘1’ 7 ns Y
 E ‘0’ 12 ns N
 C C ‘0’ 11 ns N
 D D ‘1’ 6 ns Y
6 ns D 0→1 None
7 ns B 0→1 C C ‘1’ 13 ns Y
 D D ‘1’ 8 ns N
12 ns A 1→0 P1 B ‘0’ 14 ns Y
 E ‘0’ 19 ns N
 C C ‘0’ 18 ns Y (append since transport)
 D D ‘1’ 13 ns N
13 ns C 0→1 P1 B ‘0’ 15 ns N (already have B ‘0’ 14 ns)

 E ‘1’ 20 ns Y (overwrites E ‘0’19 ns)
 P2 F ‘1’ 17 ns Y
 D D ‘1’ 14 ns N
14 ns B 1→0 C C ‘0’ 20 ns N
 D D ‘1’ 15 ns N
17 ns F 0→1 D D ‘1’ 18 ns N
18 ns C 1→0 P1 B ‘0’ 20 ns N
 E ‘0’ 25 ns N (overwrites E ‘1’20 ns)
 P2 F ‘0’ 22ns Y
 D D ‘1’ 19 ns N
22 ns F 1→0 D D ‘0’ 23 ns Y
23 ns D 1→0 None

13. (15 points) Design a priority encoder that is described by the following truth table. (d is for don’t

care)(a)(3 points) Write a VHDL entity. (b) (6 points) Use concurrent signal assignments to
implement the architecture. (c) (6 points) Use sequential statements to implement the architecture.
Include any necessary library references.

Inputs Outputs
D0 D1 D2 D3 x y v
0 0 0 0 Z Z 0
1 0 0 0 0 0 1
d 1 0 0 0 1 1
d d 1 0 1 0 1
d d d 1 1 1 1

entity P_ENCODE is
 port (D : in std_logic_vector(3 downto 0);
 X, Y, V : out std_logic);
end P_ENCODE;

architecture CONCURRENT of P_ENCODE is
begin
 V <= '1' when (D(3) = '1') else '1' when (D(2) = '1') else
 '1' when (D(1) = '1') else '1' when (D(0) = '1') else
 '0' when (D = "0000") else 'Z';
 X <= '1' when (D(3) = '1') else '1' when (D(2) = '1') else
 '0' when (D(1) = '1') else '0' when (D(0) = '1') else 'Z';
 Y <= '1' when (D(3) = '1') else '0' when (D(2) = '1') else
 '1' when (D(1) = '1') else '0' when (D(0) = '1') else 'Z';
end CONCURRENT;

architecture SEQUENTIAL of P_ENCODE is
begin
 process(D)
 variable TEMP : std_logic_vector(2 downto 0);
 begin
 if (D(3) = '1') then TEMP := "111";
 elsif (D(2) = '1') then TEMP := "101";
 elsif (D(1) = '1') then TEMP := "011";
 elsif (D(0) = '1') then TEMP := "001";
 elsif (D = "0000") then TEMP := "ZZ0";
 else TEMP := "ZZZ";
 end if;
 X <= TEMP(2);
 Y <= TEMP(1);
 V <= TEMP(0);
 end process;
end SEQUENTIAL;

14. (10 points) Draw the state diagram for the following state machine. Is it a Moore machine or a Mealy
machine? Moore
ENTITY state_machine IS
 PORT (sig_in ; IN BIT; clk, rst : IN BIT;
 sig_out : OUT BIT);
END state_machine;

ARCHITECTURE state_machine OF state_machine
IS
 TYPE tate_type IS (a, b, c, d, e); s
 SIGNAL current_state, next_state :

_type; state
BEGIN
 PROCESS (sig_in, current_state)

 sig_out <= ‘0’;

BEGIN

 next_state <= c;
 CASE current_state
 WHEN a =>
 IF sig_in = ‘0’ THEN
 next_state <= a;
 sig_out <= ‘1’;
 ELSE
 next_state <= d;
 sig_out <= ‘1’;
 END IF;
 WHEN b =>
 IF sig_in = ‘0’ THEN
 next_state <= b;
 ELSE
 next_state <= c;
 END IF;
 sig_out <= ‘1’;

 IF sig_in = ‘1’ THEN

WHEN c =>

 sig_out <= ‘1’;
 ext_state <= a; n
 ELSE
 next_state <= b;

 sig_out <= ‘1’;

END IF;

 WHEN d =>
 IF sig_in = ‘0’ THEN
 _state <= e; next
 END IF;
 WHEN e =>
 IF sig_in = ‘1’ THEN
 next_state <= c;
 END IF;
 END CASE;
 END PROCESS;
 PROCESS (clk)
 BEGIN
 IF (rst = ‘0’) then
 curre <=
 ELSIF (clk’EVENT AND clk = ‘1’) THEN

nt_state a;

 current_state <= next_state;
 END IF;
 END PROCESS;
END state_machine;

a
1

0

b
1

d
0

c
1

e
0

1

0

1
0

1

0

1

0,1

15. (10 points) An M-N flip-flop responds to the falling clock edge as follows:

 If M = N = ‘0’, the flip-flop changes state.
 If M = ‘0’ and N = ‘1’, the flip-flop output is set to ‘1’.
 If M = ‘1’ and N = ‘0’, the flip-flop output is set to ‘0’.
 If M = N = ‘1’, no change of flip-flop state occurs.
 The flip-flop is cleared asynchronously if CLRn = ‘0’.

 Write a complete module that implements an M-N flip-flop.

entity M_N_FF is
 port (M, N, CLRn, CLK : std_logic;
 Q, QB : out std_logic);
end M_N_FF;

architecture M_N_FF of M_N_FF is
 signal TEMP : std_logic;
begin
 process(CLRn, CLK)
 begin
 if (CLRn = '0') then
 TEMP <= '0';
 elsif (CLK'event and CLK = '0') then
 if (M = '1' and N = '1') then
 TEMP <= not TEMP;
 elsif (M = '0' and N = '1') then
 TEMP <= '1';
 elsif (M = '1' and N = '0') then
 TEMP <= '0';
 end if;
 end if;
 end process;
 Q <= TEMP;
 QB <= not TEMP;
end M_N_FF;

	October 16, 2007

