
The University of Alabama in Huntsville
ECE Department

CPE 426 01
Midterm Exam Solution

Spring 2005

1. (10 points) A description of a 74194 4-bit bi-directional shift register follows: The CLRb input is
asynchronous and active low and overrides all the other control inputs. All other state changes occur
following the rising edge of the clock. If the control inputs S1 = S0 = 1, the register is loaded in parallel.
If S1 = 1 and S0 = 0, the register is shifted right and SDR (serial data right) is shifted into Q3. IF S1 = 0
and S0 = 1, the register is shifted left and SDL is shifted into Q0. If S1 = S0 = 0, no action occurs.

SDR

S0
S1

D3 D2 D1 D0

SDL
CLRb
CLK

Q3 Q2 Q1 Q0
Write a VHDL description of an 8-bit bi-directional shift register that uses two 74194s as components.
The parallel inputs and outputs to the 8-bit register are X and Y. The serial inputs are RSD and LSD.

library ieee;
use ieee.std_logic_1164.all;

entity SHIFTER8 is
 port (CLRB : in std_logic; CLK : in std_logic;
 S1, S0 : in std_logic; RSD, LSD : in std_logic;
 X : in std_logic_vector(7 downto 0);
 Y : out std_logic_vector(7 downto 0));
end SHIFTER8;

architecture STRUCTURE of SHIFTER8 is
 component S74194 is
 port (CLRB : in std_logic; CLK : in std_logic;
 S1, S0 : in std_logic; SDR, SDL : in std_logic;
 D : in std_logic_vector(3 downto 0);
 Q : out std_logic_vector(3 downto 0));
 end component;
 signal TEMP0, TEMP1 : std_logic_vector(3 downto 0);
begin
 U1 : S74194 port map(CLRB => CLRB, CLK => CLK, S1 => S1, S0 => S0,
 SDR => RSD , SDL => TEMP0(3),
 D => X(7 downto 4), Q => TEMP1);
 U2 : S74194 port map(CLRB => CLRB, CLK => CLK, S1 => S1, S0 => S0,
 SDR => TEMP1(0), SDL => LSD,
 D => X(3 downto 0),Q => TEMP0);
 Y(7 downto 4) <= TEMP1;
 Y(3 downto 0) <= TEMP0;
end STRUCTURE;

2. (1 point) VHDL is a strongly typed language. (True/False) _TRUE_

3. (15 points). Write a VHDL function that accepts a std_logic_vector of arbitrary length and an
integer that specifies the number of bits the std_logic_vector is to be rotated to the left and
returns the rotated std_logic_vector. Issue an error message if the integer is greater than the length
of the input. For example:

Input: 0101111, 2
Output: 0111101

library ieee;
use ieee.std_logic_1164.all;

package NEED_IT_TO_COMPILE is
 function ROTATE_LEFT(VECTOR : in std_logic_vector;
 N : in integer) return std_logic_vector;
end package;

package body NEED_IT_TO_COMPILE is
 function ROTATE_LEFT(VECTOR : in std_logic_vector;
 N : in integer) return std_logic_vector is
 variable NEW_VECTOR : std_logic_vector(VECTOR'range);
 alias TEMP_NEW : std_logic_vector(VECTOR'length-1 downto 0) is
NEW_VECTOR;
 variable TEMP_BIT : std_logic;
 begin
 TEMP_NEW := VECTOR;
 for I in 0 to N-1 loop
 TEMP_BIT := TEMP_NEW(VECTOR'length-1);
 for J in VECTOR'length-1 downto 1 loop
 TEMP_NEW(J) := TEMP_NEW(J-1);
 end loop;
 TEMP_NEW(0) := TEMP_BIT;
 end loop;
 return TEMP_NEW;
 end ROTATE_LEFT;
end package body;

4. (1 point) A(n) ___event_ occurs when a signal changes value.

5. (1 point) All statements inside of a process are ___sequential_.

6. (3 points) For the following function call, which function will be called? _a_

VARIABLE a, b : INTEGER;
b := decrement (a);

(a) FUNCTION decrement (x : INTEGER) RETURN INTEGER;
(b) FUNCTION decrement (x : REAL) RETURN REAL;

7. (1 point) A __configuration__ binds an instantiated component to a library model

8. (15 points) Design an address decoder. One input to the address decoder is an 8-bit address,

which can have any range with a length of 8, for example: std_logic_vector addr(8 to 15). The
second input is check : std_logic_vector(5 down to 0). The address decoder will output Sel = ‘1’
if the upper 6 bits of the 8-bit address match the 6-bit check vector. For example, if addr =
“10001010” and check = “1000--“ then Sel = ‘1’. Only the 6 leftmost bits of addr will be
compared; the remaining bits are ignored. An ‘-‘ in the check vector is a don’t care.(a) (4 points)
Write an entity for the device. (b) (11 points)Write an architecture for the device.

library ieee;
use ieee.std_logic_1164.all;

entity address_decoder is
 port (ADDRESS : in std_logic_vector;
 CHECK : in std_logic_vector(5 downto 0);
 SEL : out std_logic);
end ADDRESS_DECODER;

architecture BEHAV of ADDRESS_DECODER is
 alias ADDR : std_logic_vector(ADDRESS'length-1 downto 0) is ADDRESS;
begin
 process(ADDRESS, CHECK)
 variable MATCH : boolean;
 begin
 MATCH := TRUE;
 for I in ADDRESS'length-1 downto ADDRESS'length-1-5 loop
 if ((ADDR(I) /= CHECK(I-2)) and (CHECK(I-2) /= '-')) then
 MATCH := FALSE;
 end if;
 end loop;
 if (MATCH) then
 SEL <= '1';
 else
 SEL <= '0';
 end if;
 end process;
end BEHAV;

9. (6 points) Design a 2-to-1 multiplexer. (a) (2 points) Write a VHDL entity. (b) (4 points) Use
concurrent signal assignments to implement the architecture.

library ieee;
use ieee.std_logic_1164.all;

entity MUX2_1 is
 port (I1, I0, SEL : in std_logic;
 F : out std_logic);
end MUX2_1;

architecture CONCURRENT of MUX2_1 is
begin
 F <= I1 when SEL = '1' else
 I0 when SEL = '0';
end CONCURRENT;

10. (10 points)A DD flip-flop is similar to a D flip-flop, except that the flip-flop can change state (Q+
= D) on both the rising edge and falling edge of the clock input. The flip-flop has a direct reset
input R, and R = 0 resets the flip-flop to Q = 0 independent of the clock. (a) (2 points) Write a
VHDL entity for the DD flip-flop. (b) (6 points) Write a VHDL architecture for a DD flip-flop.
(b) (2 points) Is this description synthesizable? Why or why not? As it turns out, Synopsys
refuses to synthesize it and Leonardo synthesizes it to a latch, which does not work the same as
the behavioral model. The problem is having a change occur on both edges of the clock.

library ieee;
use ieee.std_logic_1164.all;

entity DD_FF is
 port (D, R, CLK : in std_logic;
 Q, QB : out std_logic);
end DD_FF;

architecture BEHAV of DD_FF is
 signal QTEMP : std_logic;
begin
 process (R, CLK)
 begin
 if (R = '0') then
 QTEMP <= '0';
 elsif (CLK'event) then
 QTEMP <= D;
 end if;
 end process;
 Q <= QTEMP;
 QB <= not QTEMP;
end BEHAV;

11. (15 points) For the following VHDL, assume that A changes to ‘1’ at 5 ns. Give the values of A,

B, C, D, E, and F each time a change occurs. Carry this out until no further change occurs. I

entity prob is
 port (D : inout bit);
end prob;

architecture PROB of PROB is
 signal A, B, C, E, F : bit;
begin
 P1: process (A, C)
 begin
 B <= A after 3 ns;
 E <= C after 5 ns;
 end process P1;
 C1: C <= A after 10 ns;
 P2: process (C, E)
 begin
 F <= C and E after 4 ns;
 end process P2;
 C2: D <= A or B or C or F after 1 ns;
end PROB;

Time A B C D E F
0 ns 0 0 0 0 0 0
5 ns 1 0 0 0 0 0

 Time Event Process Triggered Scheduled Transaction Event?
 5 ns A → ‘1’ P1 B ‘1’ 8 ns Yes
 P1 E ‘0’ 10 ns No
 C1 C ‘1’ 15 ns Yes
 C2 D ‘1’ 6 ns Yes
 6 ns D → ‘1’ none
 8 ns B → ‘1’ C2 D ‘1’ 9 ns No
 15 ns C → ‘1’ P1 B ‘1’ 18 ns No
 P1 E ‘1’ 20 ns Yes
 P2 F ‘0’ 19 ns No
 C2 D ‘1’ 16 ns No
 20 ns E → ‘1’ P2 F ‘1’ 24 ns Yes
 24 ns F → ‘1’ C2 D ‘1’ 25 ns No

12. (21 points) Specify type declarations for the following data types.

 a. (4 points) A four valued logic system, MVL4, with values ‘0’, ‘1’, ‘X’ and ‘Z’. Values ‘0’ and ‘1’

have the usual logic meaning and ‘X’ means unknown. Any uninitialized data item of this type should
have value ‘X’.

 type MVL4 is ('X', '0', '1', 'Z');

 b. (4 points) A GRADE_LEVEL enumeration data type.
type GRADE_LEVEL is (FIRST, SECOND, THIRD, FOURTH,
 FIFTH, SIXTH, SEVENTH, EIGHTH,
 NINTH, TENTH, ELEVENTH, TWELFTH);

 c. (2 points) A data type AGE that can have integer values in the range from 1 to 120.

 type AGE is range 1 to 120; or
 subtype AGE is integer range 1 to 120;

 d. (2 points) A data type COST that can have real values between $0.00 and $1,405.00.

 type cost is range 0.0 to 1405.00; or
 subtype SUB_COST is real range 0.0 to 1405.0;

 e. (2 points) A descending range data type HIGH_WORD with integer values from 63 to 32.

 type HIGH_WORD is range 63 downto 32; or
 subtype SUB_HIGH_WORD is integer range 63 downto 32;

 f. (3 points) A 64-bit ascending-index register composite data type, REG_64_HIGH, with index
valued from the type HIGH_WORD declared above, and component values of type MVL4.

 type REG_64_HIGH is array (HIGH_WORD) of MVL4; or
 type SUB_REG_64_HIGH is array (SUB_HIGH_WORD) of MVL4;

 g. (4 points) A four-dimensional table, TABLE_4D, with index values and table entries all of type
std_logic (which has been declared elsewhere and is visible).

 type TABLE_4D is array (std_logic, std_logic, std_logic,
 std_logic) of std_logic;

13. (1 point) __Communication_ is the hardest problem.

	Spring 2005

