
 The University of Alabama in Huntsville

ECE Department

CPE 426 01

Final Exam Solution

Spring 2013

1. (6 points) Draw the transistor-level diagram of a three-input CMOS NOR gate.

VCC

x y

z

x y

f

GND

z

2. (6 points) Has the following VHDL model been created following good synthesis style? If not,

identify any problems

No COUNT is an unconstrained integer

library IEEE;

use IEEE.std_logic_1164.all;

entity PAR_TO_SER is

port(START,SHCLK: in STD_LOGIC; PAR_IN: in STD_LOGIC_VECTOR(7 downto 0);

 SO: out STD_LOGIC);

end PAR_TO_SER;

architecture ALG1 of PAR_TO_SER is

begin

 P1:process(START,SHCLK)

 variable COUNT: INTEGER := 0;

 variable DONE: BOOLEAN;

 begin

 if START = '1' then

 COUNT := 7;

 DONE := FALSE;

 elsif SHCLK’event and SHCLK = '1' then

 if DONE = FALSE then

 SO <= PAR_IN(COUNT);

 COUNT := COUNT - 1;

 end if;

 if COUNT < 0 then

 DONE := TRUE;

 else

 DONE := FALSE;

 end if;

 end if;

 end process;

end ALG1;

3. (15 points) For the following VHDL architecture, give the values of A, B, C, D, and E, each time a

change occurs. Carry this out until no further change occurs.
entity prob is

 port (D : inout bit);

end prob;

architecture PROB of PROB is

 signal A, B, C, E : bit;

begin

 P1: process (A, C)

 begin

 B <= A after 3 ns;

 E <= C after 5 ns;

 end process P1;

 C1: C <= A after 10 ns;

 C2: D <= ((A or B) and C)

 or E after 1 ns;

 process

 begin process

 A <= ‘1’ after 5 ns;

 wait;

 end process;

end PROB;

Time A B C D E

0 ns 0 0 0 0 0

5 ns 1 0 0 0 0

8 ns 1 1 0 0 0

15 ns 1 1 1 0 0

16 ns 1 1 1 1 0

20 ns 0 1 1 1 1

Time Event Processes Triggered Scheduled Transactions Event?

5 ns A  1 P1 B ‘1’, 8 ns Yes

 P1 E ‘0’, 10 ns No

 C1 C ‘1’, 15 ns Yes

 C2 D ‘0’, 6 ns No

8 ns B  1 C2 D ‘0’, 9 ns No

15 ns C  1 P1 B ‘1’, 18 ns No

 P1 E ‘1’, 20 ns Yes

 C2 D ‘1’, 16 ns Yes

16 ns D  1 None

20 ns E  1 C2 D’1’, 21 ns No

Scheduling Rules Transport Inertial

New before existing Overwrite existing Overwrite existing

New after existing Append new If vnew = vexisting, append new

Elsif tnew-texisting > reject append new

Else overwrite existing

4. (10 points) Develop an entity and architecture for an inhibited toggle flip-flop. This flip-flop has inputs I0, T,

and Reset, and outputs Q and QN. Reset is active high and overrides the action of the other inputs. The flip-

flop works as follows. If I0 = ‘1’, the flip-flop changes state on the rising edge of T, if I0 = ‘0’, no state

change occurs (except on reset). Make the propagation delays from T to output and reset to output generics.

library ieee;

use ieee.std_logic_1164.all;

entity INHIBITED_TFF is

 generic (TPHTQ, TPHRQ : time);

 port (I0, T, RESET : in std_logic;

 Q, QN : out std_logic);

end INHIBITED_TFF;

architecture BEHAV of INHIBITED_TFF is

begin

 process (I0, T, RESET)

 begin

 if (RESET = '1') then

 Q <= '0' after TPHRQ;

 QN <= '1' after TPHRQ;

 elsif (T'event and T = '1' and I0 = '1') then

 Q <= not Q after TPHTQ;

 QN <= not QN after TPHTQ;

 end if;

 end process;

end BEHAV;

5. (1 point) _SDF_ files provide realistic delays for post-layout simulation.

6. (1 point) _Xilinx_ and _Altera_ are the two main FPGA vendors.

7. (1 point) _False_ (True or False) Gate delay is by far the biggest contributor to circuit delay.

8. (1 point) _True_ (True or False) A synthesis tool will ignore all after clauses in a VHDL model.

9. (5 points) If the NRE costs for CBIC and ASIC circuits are $100,000 and $750,000, respectively, and the cost

of individual parts for CBIC and ASIC circuits are $20 and $6, respectively, what is the break-even

manufacturing volume for these two types of circuits?

 $100,000 + $20x = $750,000 + $6x

 14x = 650,000

 x = 46429

10. (10 points) Write a VHDL procedure called scan_results with an in-mode std_logic_vector signal

parameter results, and out-mode variable parameters majority_value of type std_logic,

majority_count of type natural and tie of type Boolean. The procedure counts the occurrences of ‘0’ and

‘1’ values in results. It sets majority_value to the most frequently occurring value, majority_count to

the number of occurrences and tie to true if there are an equal number of occurrences of ‘0’ and ‘1’. If the

number of occurrences is equal, the procedure sets majority_value to ‘X’ and majority_count to the

number of occurrences.

library ieee;

use ieee.std_logic_1164.all;

package MINE is

 procedure scan_results (signal results : in std_logic_vector;

 variable majority_value : out std_logic;

 variable majority_count : out natural;

 variable tie : out Boolean);

end package MINE;

package body MINE is

 procedure scan_results (signal results : in std_logic_vector;

 variable majority_value : out std_logic;

 variable majority_count : out natural;

 variable tie : out Boolean) is

 variable one_count, zero_count : natural:= 0;

 begin

 tie := false;

 majority_value := 'X';

 for i in results'range loop

 if results(i) = '0' then

 zero_count := zero_count + 1;

 elsif results(i) = '1' then

 one_count := one_count + 1;

 end if;

 end loop;

 if (one_count = zero_count) then

 tie := true;

 majority_count := zero_count;

 elsif (one_count > zero_count) then

 majority_value := '1';

 majority_count := one_count;

 else

 majority_value := '0';

 majority_count := zero_count;

 end if;

 return;

 end scan_results;

end package body MINE;

11. (15 points) Design an FSM circuit for controlling a simple home security system. The operation of the system

is as follows.

Inputs: Front gate switch (FS)

Motion detector switch (MS)

Asynchronous reset switch (R)

Clear switch (C)

Outputs: Front gate melody (FM)

Motion detector melody (MM)

 When the reset switch (R) is asserted, the FSM goes to the initialization state (S_init) immediately.

 From state S_init, the FSM unconditionally goes to the wait state (S_wait).

 From state S_wait, the FSM waits for one of the four switches to be activated. All the switches are active-

high, so when a switch is pressed or activated, it sends out a 1. The following actions are taken when a

switch is pressed:

o When FS is pressed, the FSM goes to state S_front. In state S_front, the front gate melody is

turned on by setting FM = 1. The FSM remains in state S_frontuntil the clear switch is pressed.

Once the clear switch is pressed, the FSM goes back to S_wait.

o When MS is activated, the FSM goes to state S_motion. In state S_motion, MM is turned on with

a 1. MM will remain on for two more clock periods and then the FSM will go back to S_wait.

o From any state, as soon as the reset switch is pressed, the FSM immediately goes back to state

S_init.

o Pressing the clear switch only affects the FSM when it is in state S_front. The clear switch had no

effect on the FSM when it is in any other state.

o Any unused state encoding will have S_init as their next state.

entity ALARM is

 Port (CLK, R, MS, FS, C : in bit;

 MM, FM : out bit);

end ALARM;

architecture BEHAV of ALARM is

 type STATES is (S_INIT, S_WAIT, S_FRONT, S_MOTION0, S_MOTION1, S_MOTION2);

 signal NEXT_STATE, CURRENT_STATE : STATES;

begin

 process (CURRENT_STATE, C, MS, FS)

 begin

 case (CURRENT_STATE) is

 when S_INIT => NEXT_STATE <= S_WAIT;

 when S_WAIT => if (FS = '1') then

 NEXT_STATE <= S_FRONT;

 elsif (MS = '1') then

 NEXT_STATE <= S_MOTION0;

 else

 NEXT_STATE <= S_WAIT;

 end if;

 when S_FRONT => if (C = '1') then

 NEXT_STATE <= S_WAIT;

 else

 NEXT_STATE <= S_FRONT;

 end if;

 when S_MOTION0 => NEXT_STATE <= S_MOTION1;

 when S_MOTION1 => NEXT_STATE <= S_MOTION2;

 when S_MOTION2 => NEXT_STATE <= S_WAIT;

 end case;

 end process;

 process (R, CLK)

 begin

 if (R = '1') then

 CURRENT_STATE <= S_INIT;

 elsif (CLK'event and CLK = '1') then

 CURRENT_STATE <= NEXT_STATE;

 end if;

 end process;

 process (CURRENT_STATE)

 begin

 case CURRENT_STATE is

 when S_INIT | S_WAIT => MM <= '0';

 FM <= '0';

 when S_FRONT => MM <= '0';

 FM <= '1';

 when S_MOTION0 | S_MOTION1 | S_MOTION2 => MM <= '1';

 FM <= '0';

 end case;

 end process;

end BEHAV;

12. (1 point) The starting point from which a verification plan can be created is a _design specification_.

13. (1 point) List one type of coverage considered during the verification process. _code, path, assertion,

functional_

14. (2 points) List two layers that may be present in a layered testbench:

 __scenario____

 __transaction__

15. (1 point) A(n) _interface_ is a construct in System Verilog that represents a bundle of wires and has

intelligence.

16. (10 points) Create a VHDL entity named en_mux_821 that represents a 8:1 multiplexer with an active-low

enable input which has an architecture that uses a case statement to represent the functionality of the

multiplexer. Create a second entity and its accompanying architecture that represents a 16:1 multiplexer by

using two instances of the en_mux_821 entity.

library ieee;

use ieee.std_logic_1164.all;

entity EN_MUX_821 is

 port (EN : in std_logic;

 S : in std_logic_vector(2 downto 0);

 D : in std_logic_vector(7 downto 0);

 O : out std_logic);

end EN_MUX_821;

architecture BEHAVE of EN_MUX_821 is

begin

 process (EN, S, D)

 variable TEMP : std_logic;

 begin

 case S is

 when "000" => TEMP := d(0);

 when "001" => TEMP := d(1);

 when "010" => TEMP := d(2);

 when "011" => TEMP := d(3);

 when "100" => TEMP := d(4);

 when "101" => TEMP := d(5);

 when "110" => TEMP := d(6);

 when "111" => TEMP := d(7);

 when others => TEMP := d(0);

 end case;

 if (EN = '0') then

 O <= TEMP;

 else

 O <= 'Z';

 end if;

 end process;

end BEHAVE;

library ieee;

use ieee.std_logic_1164.all;

entity EN_MUX_1621 is

 port (EN : in std_logic;

 S : in std_logic_vector(3 downto 0);

 d : in std_logic_vector(15 downto 0);

 O : out std_logic);

end EN_MUX_1621;

architecture STRUCT of EN_MUX_1621 is

 signal T0, T1 : std_logic;

begin

 T0 <= not S(3);

 U1: entity work.EN_MUX_821(behave)

 port map (EN => T0, S => S(2 downto 0),

 D => D(7 downto 0), O => t1);

 U2: entity work.EN_MUX_821(behave)

 port map (EN => s(3), s => S(2 downto 0),

 D => D(15 downto 8), O => T1);

 O <= T1 when EN = '0' else 'Z';

end STRUCT;

17. (1 point) _False_ (True or False) A signal initialized in its declaration will be properly initialized post-

synthesis.

18. (1 point) _True_ (True or False) Wait statements can be used to imply clocked behavior to the synthesis tool.

19. (1 point) The @ construct in System Verilog is similar to the _wait_ construct in VHDL.

20. (1 point) A _constrained random_ test environment allows you to run hundreds of tests without having to

hand check the results.

21. (10 points) Develop a functional model of a 4-bit carry-look-ahead adder. The-adder has two 4-bit

data inputs a (3 downto 0) and b (3 downto 0); a 4-bit data output, s (3 downto 0); a carry input,

c_in; a carry output, c_out; a carry generate output, g, and a carry propagate output, p. The adder is

described by the logic equations:

 Si = Ai  Bi Ci-1  (delay is 5 ns)

 Gi = AiBi (delay is 2 ns)

 Pi = Ai + Bi (delay is 3 ns)

 Ci = Gi + PiCi-1

 G = G3 + P3G2 + P3P2G1 + P3P2P1G0

 P = P3P2P1P0

where the Gi are the intermediate carry generate signals, the Pi are the intermediate carry propagate

signals and the Ci are the intermediate carry signals. C-1 is c_in and C3 is c_out. Use a loop construct for

Si, Gi, Pi and Ci.

library ieee;

use ieee.std_logic_1164.all;

entity CLA_ADDER is

 port (A, B : in std_logic_vector(3 downto 0);

 S : out std_logic_vector(3 downto 0);

 C_IN : in std_logic;

 C_OUT, P, G : out std_logic);

end CLA_ADDER;

architecture BEHAVE of CLA_ADDER is

 signal PS, GS : std_logic_vector(3 downto 0);

begin

 process (A, B, C_IN)

 variable C : std_logic_vector(3 downto 0);

 begin

 S(0) <= A(0) xor B(0) xor C_IN after 5 ns ;

 PS(0) <= A(0) or B(0) after 3 ns;

 GS(0) <= A(0) and B(0) after 2 ns;

 C(0) := GS(0) or (PS(0) and C_IN);

 for i in 1 to 3 loop

 S(i) <= A(i) xor B(i) xor C(i-1) after 5 ns;

 PS(i) <= A(i) or B(i) after 3 ns;

 GS(i) <= A(i) and B(i) after 2 ns;

 C(i) := GS(i) or (PS(i) and C(i-1));

 end loop;

 C_OUT <= C(3);

 G <= GS(3) or (PS(3) and GS(2)) or (PS(3) and PS(2) and GS(1))

 or (PS(3) and PS(2) and PS(1) and GS(0));

 P <= PS(3) and PS(2) and PS(1) and PS(0);

 end process;

end BEHAVE;

Bonus:

(5 points) A synchronous (4-bit) up/down decade counter with outputs COUNT and CO works as follows: All

state changes occur on the rising edge of the CLK input, except the asynchronous clear (CLR). When CLR =

0, the counter is reset regardless of the values of the other inputs. The inputs are DATA, CLR, LOAD, EN,

UP.

 If the LOAD input is 0, the data input DATA is loaded into the counter.

 If LOAD = EN = UP =1, the counter is incremented.

 If LOAD = EN =1, and UP = 0, the counter is decremented.

 If LOAD = EN = UP = 1, the carry output (CO) =1 when the counter is in state 9.

 If LOAD = EN = 1 and UP = 0, the carry output (CO) =1 when the counter is in state 0.

 Create a SystemVerilog interface for this circuit that has a clocking block that defines directions

relative to the test bench.

interface counter_if(input bit CLK);

 logic LOAD, EN, UP, CO, CLR;

 logic [3:0] COUNT, DATA;

 clocking cb @(posedge CLK);

 input COUNT, CO;

 output LOAD, EN, UP, CLR, DATA;

 endclocking

 modport TEST (clocking cb);

endinterface

