
The University of Alabama in Huntsville

ECE Department

CPE 526 01

Midterm Solution

Spring 2013

1.. (1 point) A(n) _entity, architecture, package, configuration__ is an example of a design unit.

2. (1 point) A _port_ is a signal used in describing the interface of a VHDL model.

3. (10 points) Create a VHDL architecture representing a structural model of an 8-bit odd-parity checker

using the entity given and instances of the exclusive-or gate entity given.

entity ODD_PARITY_8 is

 port (I : in std_logic (7 downto 0);

 P : out std_logic) ;

end entity ODD_PARITY_8;

entity XOR2 is

 port (A, B : in std_logic;

 F : out std_logic);

end entity XOR;

The logic equation describing the parity checker is

 P = ((I0 I1) (I2 I3)) ((I4 I5) (I6 I7))

library ieee;

use ieee.std_logic_1164.all;

use work.ALL;

architecture STRUCT of ODD_PARITY_8 is

 signal TEMP : std_logic_vector (5 downto 0);

begin

 U1 : entity XOR2 port map (I(0), I(1), TEMP(0));

 U2 : entity XOR2 port map (I(2), I(3), TEMP(1));

 U3 : entity XOR2 port map (I(4), I(5), TEMP(2));

 U4 : entity XOR2 port map (I(6), I(7), TEMP(3));

 U5 : entity XOR2 port map (TEMP(0), TEMP(1), TEMP(4));

 U6 : entity XOR2 port map (TEMP(2), TEMP(3), TEMP(5));

 U7 : entity XOR2 port map (TEMP(4), TEMP(5), P);

end STRUCT;

4. (7 points) Write the equivalent process for the conditional signal assignment statement

mux_logic:

 z <= a and not b after 5 ns when enable and not sel else

 x or y after 6 ns when enable and sel else

 ‘0’ after 4 ns;

library ieee;

use ieee.std_logic_1164.all;

entity MUX is

end entity MUX;

architecture PROCESS_EQUIV of MUX is

 signal a, b, enable, sel, x, y, z : std_logic;

begin

 process (a, b, enable, sel, x, y) is

 begin

 if (enable and not sel) then

 z <= a and not b after 5 ns;

 elsif (enable and sel) then

 z <= x or y after 6 ns;

 else

 z <= '0' after 4 ns;

 end if;

 end process;

end architecture;

5. (15 points) (a) (10 points) Write a VHDL procedure called align_address that aligns a binary encoded

address in a bit-vector variable parameter. The procedure has a second parameter that indicates the

alignment size. If the size is 1, the address is unchanged. If the size is 2, the address is rounded to a

multiple of 2 by clearing the least significant bit. If the size is 4, two bits are cleared, and if the size is

8, three bits are cleared. The default alignment size is 4. (b)(5 points) Show an architecture that

includes two calls to the function with the following properties. 1 - returns a bit_vector with size of 1

length, 2 – passes only an address, not a size.

package MINE is

 procedure ALIGN_ADDRESS (ADDRESS : inout bit_vector;

 SIZE : in integer := 4);

end package MINE;

package body MINE is

 procedure ALIGN_ADDRESS (ADDRESS : inout bit_vector;

 SIZE : in integer := 4) is

 begin

 if (size = 2) then

 ADDRESS := ADDRESS (ADDRESS'length - 1 downto 1) & '0';

 elsif (size = 4) then

 ADDRESS := ADDRESS (ADDRESS'length - 1 downto 2) & "00";

 elsif (size = 8) then

 ADDRESS := ADDRESS (ADDRESS'length - 1 downto 3) & "000";

 end if;

 end procedure;

end package body;

use work.MINE.all;

entity ALIGN_ADDRESS_TEST is

end entity ALIGN_ADDRESS_TEST;

architecture IT of ALIGN_ADDRESS_TEST is

 signal A : bit_vector(11 downto 0);

 signal B : bit_vector(11 downto 0);

begin

 process

 variable VA : bit_vector(11 downto 0) := "100011101111";

 variable VB : bit_vector(11 downto 0) := "100011101111";

 begin

 ALIGN_ADDRESS (VA, 1);

 A <= VA;

 ALIGN_ADDRESS (VB);

 B <= VB;

 wait;

 end process;

end architecture;

6. (8 points) Consider the following combinational digital system, called a light-emitting diode (LED)

driver. The LED driver converts a 2-bit binary number (D1D0) into an LED-displayed numeral. For

example, D1D0 – 102 is displayed by asserting S0, S1, S2, S4, and S5.

entity LED_DRIVER is

 port (D : in bit_vector (1 downto 0);

 S : out bit_vector(6 downto 0));

end entity LED_DRIVER;

Use concurrent signal assignments to model the LED driver.

entity LED_DRIVER is

 port (D : in bit_vector (1 downto 0);

 S : out bit_vector (6 downto 0));

end entity LED_DRIVER;

architecture CONCURRENT of LED_DRIVER is

begin

 S <= "1111011" when D = "00" else

 "0001010" when D = "01" else

 "0110111" when D = "10" else

 "0011111" when D = "11";

end CONCURRENT;

7. (1 point) ‘RANGE is an example of a VHDL _attribute_.

8. (1 point) VHDL is a strongly typed language _True__ (True/False)

9. (2 points) Create a COLLEGE enumeration data type that has the values of the colleges at UAH.

 type college is (BUSINESS, ENGINEERING, LIBERAL_ARTS, NURSING, SCIENCE);

10. (1 point) A function is a primary design unit. (True/False) _False_.

D1

D0

S
S
S
S
S
S
S

S0

S1 S2

S3

S4

S5

S6

11. (3 points) Write a declaration of a two-dimensional table, TABLE_2D, with index values and table

entries all of type bit (which has been declared elsewhere and is visible). Initialize all elements of the

array to ‘1’;

 variable TABLE_2D is (bit, bit) of bit := (others => ‘1’);

12. (20 points) Given the following VHDL, indicate all transactions and events. Give the values of A, B,

C, D, E, and F each time a change occurs. Carry this out until no further change occurs.
entity prob is

 port (D : inout bit);

end prob;

architecture PROB of PROB is

 signal A, B, C, E, F : bit;

begin

 process

 A <= ‘1’ after 5 ns,

 ‘0’ after 12 ns;

 wait;

 end process;

 P1: process (A, C)

 begin

 B <= A after 2 ns;

 E <= C after 7 ns;

 end process P1;

 C1: C <= A and B after 6 ns;

 P2: process (C, E)

 begin

 F <= C and E after 4 ns;

 end process P2;

 C2: D <= A or B or C or F;

end PROB;

Time A B C D E F

0 ns 0 0 0 0 0 0

5 ns 1 0 0 0 0 0

5+ ns 1 0 0 1 0 0

7 ns 1 1 0 1 0 0

12 ns 0 1 0 1 0 0

14 ns 0 0 0 1 0 0

14+ ns 0 0 0 0 0 0

Time Event Processes Triggered Scheduled Transactions Event?

5 ns A 1 P1 B, ‘1’ at 7 ns Yes

 P1 E, ‘0’, at 12 ns No

 C1 C 0 at 11 ns No

 C2 D, ‘1’ at 5 + ns Yes

5 + ns D 1 None

7 ns B 1 C1 C, ‘1’, 13 ns Yes

 C2 D, ‘1’, 7 + ns No

12 ns A 0 P1 B, ‘0’, 14 ns Yes

 P1 E, ‘0’, 19 ns No

 C1 C, ‘0’, 16 ns No, overwrite C, ‘1’, 13 ns

 C2 D, ‘1’, 12 + D ns No

14 ns B 0 C1 C, ‘0’, 20 ns No

 C2 D, ‘0’, 14 + ns Yes

14 + ns D 0 None

New before existing Overwrite existing Overwrite existing

New after existing Append new If vnew = vexisting, append new

Elsif tnew-texisting > reject append new

Else overwrite existing

13. (15 points) Develop a behavioral model for a D-latch with tristate output. The entity declaration is

entity d_latch is

 port (latch_en, out_en, d : in std_logic;

 q : out std_logic);

end entity d_latch;

When latch_en is asserted, data from the d input enters the latch. When latch_en is negated, the

latch maintains the stored value. When out_en is asserted, data passes through to the output. When

out_en is negated, the output has the value ‘Z’ (high-impedance). The propagation delay from

latch_en to q is 3 ns and from d to q is 4 ns. The delay from out_en asserted to q active is 2 ns and

from out_en negated to q high-impedance is 5 ns.

library ieee;

use ieee.std_logic_1164.all;

entity D_LATCH is

 generic (TPH : time := 3 ns);

 port (LATCH_EN, OUT_EN, D : in std_logic;

 Q : out std_logic);

end entity D_LATCH;

architecture TIMING of D_LATCH is

 signal TEMP, LATCH_EN_DELAYED : std_logic;

begin

 LATCH_EN_DELAYED <= LATCH_EN'DELAYED(TPH);

 process (LATCH_EN_DELAYED)

 begin

 if (LATCH_EN_DELAYED = '1') then

 assert D'stable (TPH)

 report "Hold time violated"

 severity warning;

 end if;

 end process;

 process (D, LATCH_EN)

 begin

 if (D'event and LATCH_EN = '1') then

 TEMP <= D after 4 ns;

 elsif (LATCH_EN'event and LATCH_EN = '1') then

 TEMP <= D after 3 ns;

 end if;

 end process;

 process (TEMP, OUT_EN)

 begin

 if OUT_EN then

 Q <= TEMP after 2 ns;

 else

 Q <= 'Z' after 5 ns;

 end if;

 end process;

end TIMING;

14. (15 points) Draw the state diagram for the following state machine. Is it a Moore machine or a Mealy

machine?

library ieee;

use ieee.std_logic_1164.all;

entity THUNDERBIRD is

 port (L, R, H, CLK : in std_logic;

 LC, LB, LA, RA, RB, RC : out std_logic);

end THUNDERBIRD;

architecture BEHAVE of THUNDERBIRD is

 type STATE_TYPE is (S0, S1, S2, S3, S4, S5, S6, S7);

 signal CURRENT_STATE, NEXT_STATE : STATE_TYPE;

begin

 process(CURRENT_STATE, L, R, H)

 variable INPUTS : std_logic_vector(2 downto 0);

 begin

 INPUTS := L&R&H;

 case CURRENT_STATE is

 when S0 => if (INPUTS = "000") then

 NEXT_STATE <= S0;

 elsif (INPUTS = "100") then

 NEXT_STATE <= S1;

 elsif (INPUTS = "010") then

 NEXT_STATE <= S4;

 else

 NEXT_STATE <= S7;

 end if;

 when S1 => if (INPUTS(0) = '1') then

 NEXT_STATE <= S7;

 elsif (INPUTS = "100") then

 NEXT_STATE <= S2;

 else

 NEXT_STATE <= S0;

 end if;

 when S2 => if (INPUTS(0) = '1') then

 NEXT_STATE <= S7;

 elsif (INPUTS = "100") then

 NEXT_STATE <= S3;

 else

 NEXT_STATE <= S0;

 end if;

 when S3|S6 => if (INPUTS(0) = '1') then

 NEXT_STATE <= S7;

 else

 NEXT_STATE <= S0;

 end if;

 when S4 => if (INPUTS(0) = '1') then

 NEXT_STATE <= S7;

 elsif (INPUTS = "010") then

 NEXT_STATE <= S5;

 else

 NEXT_STATE <= S0;

 end if;

 when S5 => if (INPUTS(0) = '1') then

 NEXT_STATE <= S7;

 elsif (INPUTS = "010") then

 NEXT_STATE <= S6;

 else

 NEXT_STATE <= S0;

 end if;

 when S7 => NEXT_STATE <= S0;

 end case;

 end process;

 process (CLK)

 begin

 if (CLK'event and CLK = '1') then

 CURRENT_STATE <= NEXT_STATE;

 end if;

 end process;

 process(CURRENT_STATE)

 begin

 LC <= '0'; LB <= '0'; LA <= '0';

 RA <= '0'; RB <= '0'; RC <= '0';

 case CURRENT_STATE is

 when S0 => null;

 when S1 => LA <= '1';

 when S2 => LA <= '1'; LB <= '1';

 when S3 => LA <= '1'; LB <= '1'; LC <= '1';

 when S4 => RA <= '1';

 when S5 => RA <= '1'; RB <= '1';

 when S6 => RA <= '1'; RB <= '1'; RC <= '1';

 when S7 => LA <= '1'; LB <= '1'; LC <= '1';

 RA <= '1'; RB <= '1'; RC <= '1';

 end case;

 end process;

 end BEHAVE;

Moore, outputs depend only on the state.

