
CPE 426 Midterm Exam Spring 2014

Page 1 of 6

The University of Alabama in Huntsville
ECE Department

CPE 426 01
Midterm Exam
March 6, 2014

 Name: _______________________________

1. (20 points) Write a function, weaken, that maps a standard-logic value to the same value, but

with weak drive strength. Thus, ‘0’ and ‘L’ are mapped to ‘L’, ‘1’ and ‘H’ are mapped to ‘H’, ‘X’
and ‘W’ are mapped to ‘W’ and all other values are unchanged.

CPE 426 Midterm Exam Spring 2014

Page 2 of 6

2. (10 points) Write the equivalent process for the conditional signal assignment statement

with bit_vector’(s, r) select

 Q <= unaffected when “00”,

 ‘0’ when “01”,

 ‘1’ when “10” | “11”;

3. (1 point) ______________ delay is the delay which represents gate delay in VHDL

4. (1 point) A process is triggered whenever an event occurs on a signal that is in the

_______________________ of the process.

5. (1 point) In order to specify edge behavior the ______________ attribute is used in concurrent

statements.

6. (1 point) _____(True or False) A D flip-flop and a D latch have the same behavior.

7. (1 point) ______ (True or False) It is possible to make aggregate assignments in VHDL.

CPE 426 Midterm Exam Spring 2014

Page 3 of 6

8. (15 points) A 4-bit magnitude comparator chip compares two unsigned 4-bit numbers A and B
and produces outputs to indicate whether A < B, A = B, or A > B. There are three output signals
to indicate each of the above conditions. Note that exactly one of the output lines will be high
and the other two lines will be low at any time. Write a behavioral VHDL model for the 4-bit
comparator.

entity COMPARE is

 port (A : in bit_vector (3 downto 0);

 B : in bit_vector (3 downto 0);

 LT, EQ, GT : out bit);

end entity COMPARE;

CPE 426 Midterm Exam Spring 2014

Page 4 of 6

9. (20 points) Develop a VHDL model of a 14-bit counter with parallel load inputs using instances of
the 4-bit counter whose entity is given. Ensure that any unused inputs are properly connected to
a constant driving value.

 entity COUNTER is

 port (CLK_N, LOAD_EN : in std_ulogic;

 D : in std_ulogic_vector (3 downto 0);

 Q : out std_ulogic_vector (3 downto 0));

 end entity COUNTER;

CPE 426 Midterm Exam Spring 2014

Page 5 of 6

10. (20 points) Given the following VHDL, indicate all transactions and events. Give the values of A,
B, C, D, E, and F each time a change occurs. Carry this out until no further change occurs.
entity PROB is

 port (D : inout bit);

end PROB;

architecture PROB of PROB is

 signal A, B, C, E, F : bit;

begin

 process

 A <= ‘1’ after 5 ns, ‘0’ after 12

ns;

 wait;

 end process;

 P1: process (A, C)

 begin

 B <= A after 2 ns;

 E <= C after 7 ns;

 end process P1;

 C1: C <= transport A and B after 6

ns;

 P2: process (C, E)

 begin

 F <= reject 3 ns inertial C and E

 after 5 ns;

 end process P2;

 C2: D <= A or B or C or F after 2 ns;

end PROB;

Time A B C D E F

0 ns 0 0 0 0 0 0

5 ns 1 0 0 0 0 0

Time Event Processes Triggered Scheduled Transactions Event?

Scheduling Rules Transport Inertial

New before existing Overwrite existing Overwrite existing

New after existing Append new If vnew = vexisting, append new
Elsif tnew-texisting > reject append new
Else overwrite existing

CPE 426 Midterm Exam Spring 2014

Page 6 of 6

11. (10 points) Draw the state diagram for the following state machine. Is it a Moore machine or a
Mealy machine?

entity STATE_MACHINE is

 port (SIG_IN ; in bit; CLK, RST : in bit;

 SIG_OUT : out bit);

end STATE_MACHINE;

architecture STATE_MACHINE of STATE_MACHINE is

 type STATE_TYPE is (A, B, C, D, E);

 signal CURRENT_STATE, NEXT_STATE : STATE_TYPE;

begin

 process (SIG_IN, CURRENT_STATE)

 begin

 SIG_OUT <= ‘0’;

 NEXT_STATE <= C;

 case CURRENT_STATE

 when A =>

 if SIG_IN = ‘0’ then

 NEXT_STATE <= C;

 SIG_OUT <= ‘1’;

 else

 NEXT_STATE <= D;

 end if;

 when B =>

 if SIG_IN = ‘0’ then

 NEXT_STATE <= B;

 else

 NEXT_STATE <= C;

 end if;

 SIG_OUT <= ‘1’;

 when C =>

 if SIG_IN = ‘1’ then

 SIG_OUT <= ‘1’;

 NEXT_STATE <= A;

 else

 NEXT_STATE <= B;

 end if;

 SIG_OUT <= ‘1’;

 when D =>

 if SIG_IN = ‘0’ then

 NEXT_STATE <= E;

 end if;

 when E =>

 if SIG_IN = ‘1’ then

 NEXT_STATE <= C;

 end if;

 end case;

 end process;

 process (CLK)

 begin

 if (RST = ‘0’) THEN

 CURRENT_STATE <= A;

 elsif (CLK’event and CLK = ‘1’) then

 CURRENT_STATE <= NEXT_STATE;

 end if;

 end process;
end STATE_MACHINE;

