
CPE 426 Midterm Exam Solution Spring 2014

Page 1 of 5

The University of Alabama in Huntsville
ECE Department

CPE 426 01
Midterm Exam Solution

Spring 2014

1. (20 points) Write a function, weaken, that maps a standard-logic value to the same value, but

with weak drive strength. Thus, ‘0’ and ‘L’ are mapped to ‘L’, ‘1’ and ‘H’ are mapped to ‘H’, ‘X’
and ‘W’ are mapped to ‘W’ and all other values are unchanged.

library ieee;

use ieee.std_logic_1164.all;

package MINE is

 function WEAKEN (I : std_logic) return std_logic;

end package MINE;

package body MINE is

 function WEAKEN (I : std_logic) return std_logic is

 variable TEMP : std_logic;

 begin

 case I is

 when '0' | 'L' => TEMP := 'L';

 when '1' | 'H' => TEMP := 'H';

 when 'X' | 'W' => TEMP := 'W';

 when others => TEMP := I;

 end case;

 return TEMP;

 end WEAKEN;

end MINE;

2. (10 points) Write the equivalent process for the conditional signal assignment statement

with bit_vector’(s, r) select

 Q <= unaffected when “00”,

 ‘0’ when “01”,

 ‘1’ when “10” | “11”;

entity SR is

 port (S, R : in bit;

 Q : out bit);

end SR;

architecture SEQUENTIAL of SR is

begin

 process (S, R)

 begin

 case bit_vector'(S, R) is

 when "01" => Q <= '0';

 when "10" | "11" => Q <= '1';

 when others => null;

 end case;

 end process;

end SEQUENTIAL;

CPE 426 Midterm Exam Solution Spring 2014

Page 2 of 5

3. (1 point) _Inertial_ delay is the delay which represents gate delay in VHDL

4. (1 point) A process is triggered whenever an event occurs on a signal that is in the _sensitivity

list_ of the process.

5. (1 point) In order to specify edge behavior the _’STABLE_ attribute is used in concurrent

statements.

6. (1 point) _False_(True or False) A D flip-flop and a D latch have the same behavior.

7. (1 point) _True_ (True or False) It is possible to make aggregate assignments in VHDL.

8. (15 points) A 4-bit magnitude comparator chip compares two unsigned 4-bit numbers A and B
and produces outputs to indicate whether A < B, A = B, or A > B. There are three output signals
to indicate each of the above conditions. Note that exactly one of the output lines will be high
and the other two lines will be low at any time. Write a behavioral VHDL model for the 4-bit
comparator.

entity COMPARE is

 port (A : in bit_vector (3 downto 0);

 B : in bit_vector (3 downto 0);

 LT, EQ, GT : out bit);

end entity COMPARE;

architecture BEHAV2 of COMPARE is

begin

 process (A, B)

 begin

 LT <= '0';

 GT <= '0';

 EQ <= '0';

 if (A = B) then

 EQ <= '1';

 elsif (A < B) then

 LT <= '1';

 else

 GT <= '1';

 end if;

 end process;

end BEHAV2;

architecture BEHAV3 of COMPARE is

begin

 GT <= '1' when A > B else '0';

 LT <= '1' when A < B else '0';

 EQ <= '1' when A = B else '0';

end BEHAV3;

CPE 426 Midterm Exam Solution Spring 2014

Page 3 of 5

9. (20 points) Develop a VHDL model of a 14-bit counter with parallel load inputs using instances of
the 4-bit counter whose entity is given. Ensure that any unused inputs are properly connected to
a constant driving value.

 entity COUNTER is

 port (CLK_N, LOAD_EN, RESET : in std_ulogic;

 D : in std_ulogic_vector (3 downto 0);

 Q : out std_ulogic_vector (3 downto 0));

 end entity COUNTER;

library ieee;

use ieee.std_logic_1164.all;

use WORK.all;

entity COUNTER_14 is

 port (D : in std_ulogic_vector (13 downto 0);

 CLK_N : in std_ulogic;

 LOAD_EN : in std_ulogic;

 RESET : in std_ulogic;

 Q : out std_ulogic_vector (13 downto 0));

end COUNTER_14;

architecture STRUCT of COUNTER_14 is

 signal TEMP : std_ulogic_vector (13 downto 0);

 signal LOAD : std_ulogic;

 signal LOAD_DATA : std_ulogic_vector (13 downto 0);

 signal USELESS : std_ulogic_vector (1 downto 0);

begin

 C3 : entity COUNTER

 port map (CLK_N => TEMP(11), LOAD_EN => LOAD, RESET => RESET,

 Q(3 downto 2) => USELESS,

 Q(1 downto 0) => TEMP(13 downto 12),

 D(3) => '0', D(2) => '0',

 D(1 downto 0) => LOAD_DATA(13 downto 12));

 C2 : entity COUNTER

 port map (CLK_N => TEMP(7), LOAD_EN => LOAD, RESET => RESET,

 Q => TEMP(11 downto 8),

 D => LOAD_DATA(11 downto 8));

 C1 : entity COUNTER

 port map (CLK_N => TEMP(3), LOAD_EN => LOAD, RESET => RESET,

 Q => TEMP(7 downto 4),

 D => LOAD_DATA(7 downto 4));

 C0 : entity COUNTER

 port map (CLK_N => CLK_N, LOAD_EN => LOAD, RESET => RESET,

 Q => TEMP(3 downto 0),

 D => LOAD_DATA(3 downto 0));

 LOAD <= '1' when RESET = '1' else

 '1' when TEMP(13 downto 0) = "11111111111111" else

 LOAD_EN;

 LOAD_DATA <= "00000000000000" when RESET = '1' else

 "00000000000000" when TEMP(13 downto 0) = "11111111111111" else

 LOAD_DATA;

 Q <= TEMP;

end STRUCT;

CPE 426 Midterm Exam Solution Spring 2014

Page 4 of 5

10. (20 points) Given the following VHDL, indicate all transactions and events. Give the values of A,
B, C, D, E, and F each time a change occurs. Carry this out until no further change occurs.
entity PROB is
 port (D : inout bit);
end PROB;
architecture PROB of PROB is
 signal A, B, C, E, F : bit;
begin
 process
 A <= ‘1’ after 5 ns, ‘0’ after 12

ns;
 wait;
 end process;
 P1: process (A, C)
 begin
 B <= A after 2 ns;
 E <= C after 7 ns;
 end process P1;
 C1: C <= transport A and B after 6

ns;

 P2: process (C, E)

 begin
 F <= reject 3 ns inertial C and E
 after 5 ns;
 end process P2;
 C2: D <= A or B or C or F after 2 ns;
end PROB;

Time A B C D E F

0 ns 0 0 0 0 0 0

5 ns 1 0 0 0 0 0

7 ns 1 1 0 1 0 0

12 ns 0 1 0 1 0 0

13 ns 0 1 1 1 0 0

14 ns 0 0 1 1 0 0

18 ns 0 0 0 1 0 0

20 ns 0 0 0 0 0 0

Time Event Processes Scheduled Transactions Event?
 Triggered
5 ns A  ‘1’ P1 B (‘1’, 7 ns) Y
 E (‘0’ 12 ns) N
 C1 C (‘0’ 11ns) N
 C2 D (‘1’, 7 ns) Y
7 ns B  ‘1’ C1 C (‘1’, 13 ns) appended Y
 C2 D (‘1’, 9 ns) N
 D  ‘1’ none
12 ns A ‘0’ P1 B (‘0’, 14 ns) Y
 E (‘0’, 19 ns) overwritten by E (‘1’, 20ns) N
 C1 C (‘0’, 18 ns) appended Y
 C2 D (‘1’, 14 ns) N
13 ns C  ‘1’ P1 B (‘0’, 15 ns) N
 E (‘1’, 20 ns) overwritten by E (‘0’, 25 ns) Y
 P2 F (‘0’, 18 ns) N
 C2 D (‘1’, 15 ns) N
14 ns B  ‘0’ C1 C (‘0’, 20ns) appended N
 C2 D (‘1’, 16 ns) N
18 ns C  ‘0’ P1 B (‘0’, 20 ns) N
 E (‘0’, 25 ns) N
 P2 F (‘0’, 23 ns) appended N
 C2 D (‘0’, 20 ns) appended Y
20 ns D ‘0’ none

Scheduling Rules Transport Inertial

New before existing Overwrite existing Overwrite existing

New after existing Append new If vnew = vexisting, append new
Elsif tnew-texisting > reject append new
Else overwrite existing

CPE 426 Midterm Exam Solution Spring 2014

Page 5 of 5

11. (10 points) Draw the state diagram for the following state machine. Is it a Moore machine or a
Mealy machine? Mealy

entity STATE_MACHINE is

 port (SIG_IN ; in bit; CLK, RST : in bit;

 SIG_OUT : out bit);

end STATE_MACHINE;

architecture STATE_MACHINE of STATE_MACHINE is

 type STATE_TYPE is (A, B, C, D, E);

 signal CURRENT_STATE, NEXT_STATE : STATE_TYPE;

begin

 process (SIG_IN, CURRENT_STATE)

 begin

 SIG_OUT <= ‘0’;

 NEXT_STATE <= C;

 case CURRENT_STATE

 when A =>

 if SIG_IN = ‘0’ then

 NEXT_STATE <= C;

 SIG_OUT <= ‘1’;

 else

 NEXT_STATE <= D;

 end if;

 when B =>

 if SIG_IN = ‘0’ then

 NEXT_STATE <= B;

 else

 NEXT_STATE <= C;

 end if;

 SIG_OUT <= ‘1’;

 when C =>

 if SIG_IN = ‘1’ then

 SIG_OUT <= ‘1’;

 NEXT_STATE <= A;

 else

 NEXT_STATE <= B;

 end if;

 SIG_OUT <= ‘1’;

 when D =>

 if SIG_IN = ‘0’ then

 NEXT_STATE <= E;

 end if;
 when E =>

 if SIG_IN = ‘1’ then

 NEXT_STATE <= C;

 end if;

 end case;

 end process;

 process (CLK)

 begin

 if (RST = ‘0’) THEN

 CURRENT_STATE <= A;

 elsif (CLK’event and CLK = ‘1’) then

 CURRENT_STATE <= NEXT_STATE;

 end if;

 end process;

end STATE_MACHINE;

