
CPE 426 Final Exam Spring 2017

Page 1 of 8

The University of Alabama in Huntsville
ECE Department

CPE 426 01
Final Exam

April 27, 2017

 Name: ________________________________

1. (5 points) Draw the transistor-level diagram of a CMOS inverter.

2. (5 points) If the NRE costs for FPGA and ASIC circuits are $50,000 and $3,500,000, respectively,

and the cost of individual parts for FPGAand ASIC circuits are $63 and $14, respectively, what is
the break-even manufacturing volume for these two types of circuits?

3. (1 point) A _________________ provides stimuli and captures responses.

4 (1 point) A ___ _____________ is a set of relational expressions that must be true for the

chosen value of the variables.

5. (1 point) _______________________ are pieces of declarative code that check the relationships

between design signals, either once or over a period of time.

CPE 426 Final Exam Spring 2017

Page 2 of 8

6. (6 points) For the process given below, A, B, C, and D are all integers that have a value of 0 at
time = 10 ns. If E changes from ‘0’ to ‘1’ at time 20 ns, specify all resulting changes. Indicate the
time at which each change will occur, the signal/variable affected, and the value to which it will
change.

process

 variable F : integer := 1; variable A : integer := 0;

begin

 wait on E;

 A := 1;

 F := A + 5;

 B <= E + 3 after 4 ns;

 C <= F + 2;

 D <= A + 5 after 12 ns;

 A := A + 5;

end process;

Scheduling Rules Transport Inertial

New before existing Overwrite existing Overwrite existing

New after existing Append new If vnew = vexisting, append new

Elsif tnew-texisting > reject append new

Else overwrite existing

Time A B C D E F

10 ns 0 0 0 0 0 1

20 ns 1 0 0 0 1 1

7. (1 point) ____________________ are primitives that are all the same height and varying widths.

8. (1 point) A _______________ is a signal used in describing the interface of a VHDL model.

CPE 426 Final Exam Spring 2017

Page 3 of 8

9. (15 points) Design a 4 bit counter that has an asynchronous clear input that is active low. It also
has active high LOAD, UP and DOWN inputs. When data is loaded into the counter, counting
proceeds from that loaded value. If UP and DOWN are both active, the counter counts up. (a) (5
points) Write an entity for the counter. (c) (11 points) Write an architecture for the counter

4

Data

Clearb

Load
Clk

Up

Down

4

Count

CPE 426 Final Exam Spring 2017

Page 4 of 8

10. (10 points) Design a 2 to 4 decoder with enable. All outputs are tristated when the enable input
= ‘0’. When the enable input = ‘1’, one of the four output D0, D1, D2, D3 is active based on the
binary value of the two select inputs S1 and S0. (a) (2 points) Write a VHDL entity. (b) (4 points)
Use concurrent signal assignments to implement the architecture. (c) (4 points) Use sequential
statements to implement the architecture. Include any necessary library references.

11. (3 points) List three types of coverage used in determining the quality of a test scenario.

CPE 426 Final Exam Spring 2017

Page 5 of 8

12. (15 points) (4 points) Create a VHDL entity named adder_32.(b) (11 points) Create a VHDL
architecture representing a structural model of the 32 bit adder using as many adder_8
components as are needed. You do not need to write an architecture for adder_8. Include any
necessary library references.

entity adder_8 is

 port (a, b : in signed (7 downto 0);

 cin : std_logic;

 f : out signed (7 downto 0);

 cout : out std_logic);

end entity adder_8;

13. (1 point) _______ (True or False) All sequential statements are synthesized into sequential

circuits.

14. (1 point) ________ (True/False) Operators may be overloaded in VHDL

15. (1 point)) _______ (True/False) Multiple assignments to a signal within a process can cause that

signal to have multiple drivers.

16. (1 point). _____(True or False) A D flip-flop and a D latch have the same behavior.

17. (1 point) ______ (True or False) It is possible to make aggregate assignments in VHDL.

CPE 426 Final Exam Spring 2017

Page 6 of 8

18. (10 points An ARM Advanced High-performance Bus (AHB) has the following signals.

Signal Width Direction Description

HCLK 1 Output Clock

HADDR 21 Output Address

HWRITE 1 Output Write flag: 1=write, 0=read

HTRANS 2 Output Transaction type: 2’b00=IDLE, 2’b10=NONSEQ

HWDATA 8 Output Write data

HRDATA 8 Input Read data

Create a class to encapsulate the AHB transactions. In this class constrain:

a. The address (HADDR) to be in the lower 5 addresses and upper 5 addresses each with
probability 40% and the other addresses with probability 20%.

b. HTRANS to NONSEQ (HTRANS = 2’b10) and IDLE (HTRANS = 2’b00)..

c. All other AHB signals are randomized but unconstrained.

19. (6 points) Given the following constraints, what are the solution probabilities?

Class MemTrans;

 Rand bit x;

 Rand bit [1:0] y;

 Constraint c_xy

 {

 y inside {[x:3]};

 solve x before y;

 }

Endclass

Solution x y Probability
A 0 0

B 0 1

C 0 2

D 0 3

E 1 0

F 1 1

G 1 2

H 1 3

CPE 426 Final Exam Spring 2017

Page 7 of 8

20. (15 points) An arbiter is a circuit that allows at most one subsystem at a time to use a shared
resource. A four-way arbiter is shown below. Each subsystem sets its request signal to 1 when it
wants to use the resource. When the arbiter sets the grant signal to 1, the subsystem uses the
resource. The subsystem sets its request back to 0 when it has finished, and waits for grant to be
0 before starting a subsequent request. While a subsystem is granted use of the resource, other
requests must wait, rather than pre-empting the active subsystem. Subsystems are granted
requests in order, starting with 0, then 1, 2, 3 and back to 0. A subsystem is skipped if it has no
pending request.

Reset

Clock

Rqst0 Grant0

Grant1

Grant2

Grant3

Rqst1

Rqst2

Rqst3

As part of creating a SystemVerilog testbench for this device, an interface and a packet for
randomization has been created. The requests are being driven by the request device modeled
in VHDL below. Each req_dev has an associated test program. The test program is responsible
for issuing a signal to the req_dev to reset it and providing a time parameter. After reset, the
requesting device raises its request line high and keeps it high for the amount of time provided
by the test program. Since req_dev works on the positive edge of the clock, the test program
will provide inputs to it on the negative edge of the clock. Complete the test0 program so that it
repeats the following process 100 times.
1) waits a random number of clock cycles to set the reset for reqdev to 1.
2) then provides a random number of cycles that reqdev will hold a request high.
3) sets the reset to 0 after one clock cycle
4) waits one more cycle
5) waits for req_dev to lower request to 0
6) waits one more clock cycle

interface arbiter_if(input bit clk);

 logic [3:0] REQUEST, GRANT, GEN_REQ;

 logic RESET;

 int REQ_TIME3, REQ_TIME2, REQ_TIME1, REQ_TIME0;

endinterface

module top;

 bit clk;

 always #5ns clk = ~clk;

 arbiter_if arbiterif(clk);

 arbiter u1 (.CLK (clk), .REQ (arbiterif.REQUEST),

 .GRANT (arbiterif.GRANT), RESET (arbiterif.RESET));

 req_dev u2 (.GEN_REQ (arbiterif.GEN_REQ[3]), .REQ_TIME (arbiterif.REQ_TIME3),

 .REQUEST (arbiterif.REQUEST[3]), .GRANT (arbiterif.GRANT[3]),

 .RESET (arbiterif.RESET),.CLK (clk));

 req_dev u3 (.GEN_REQ (arbiterif.GEN_REQ[2]), .REQ_TIME (arbiterif.REQ_TIME2),

 .REQUEST (arbiterif.REQUEST[2]), .GRANT (arbiterif.GRANT[2]),

 .RESET (arbiterif.RESET), .CLK (clk));

 req_dev u4 (.GEN_REQ (arbiterif.GEN_REQ[1]), .REQ_TIME (arbiterif.REQ_TIME1),

 .REQUEST (arbiterif.REQUEST[1]), .GRANT (arbiterif.GRANT[1]),

 .RESET (arbiterif.RESET),.CLK (clk));

 req_dev u5 (.GEN_REQ (arbiterif.GEN_REQ[0]), .REQ_TIME (arbiterif.REQ_TIME0),

CPE 426 Final Exam Spring 2017

Page 8 of 8

 .REQUEST (arbiterif.REQUEST[0]), .GRANT (arbiterif.GRANT[0]),

 .RESET (arbiterif.RESET), .CLK (clk));

 test3 t1(arbiterif);

 test2 t2(arbiterif);

 test1 t3(arbiterif);

 test0 t4(arbiterif);

 testr t5(arbiterif);

endmodule : top

package mine;

 class Packet_g;

 // The random variables

 rand int generate_t, request_t;

 // Limit the values

 constraint c1 {generate_t < 300; generate_t > 100;

 request_t < 101; request_t > 0;}

 endclass : Packet_g

endpackage : mine

entity REQ_DEV is

 port(GEN_REQ : in std_logic;

 REQ_TIME : in integer range 0 to 100;

 REQUEST : out std_logic;

 GRANT : in std_logic;

 RESET, CLK : in std_logic);

end REQ_DEV;

import mine::*;

module test0(arbiter_if arbif);

endmodule : test0

