## The University of Alabama in Huntsville ECE Department CPE 426 01 Final Exam April 23, 2020

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Name:                                                                                                                                           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
| 1. | (6 points) Draw the transist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tor-level diagram of a three input CMOS NAND gate.                                                                                              |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
| 2. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or FPGA and CBIC circuits are \$50,000 and \$800,000, respectively, and for FPGA and CBIC circuits are \$52 and \$11, respectively, what is the |
|    | The state of the s | volume for these two types of circuits?                                                                                                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                 |
| 3. | (1 point) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | provides stimuli and captures responses.                                                                                                        |
| 4  | (1 point) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | is a set of relational expressions that must be true for the chosen                                                                             |
|    | value of the variables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 |
| 5. | (1 point)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | are pieces of declarative code that check the relationships                                                                                     |

between design signals, either once or over a period of time.

6. (6 points) For the process given below, A, B, C, and D are all integers that have a value of 0 at time = 10 ns. If E changes from '0' to '1' at time 20 ns, specify all resulting changes. Indicate the time at which each change will occur, the signal/variable affected, and the value to which it will change.

```
process
   variable F : integer := 1; variable A : integer := 0;
begin
   wait on E;
   A := 1;
   F := A + 5;
   B <= E + 3 after 4 ns;
   A := A + 5;
   C <= F + 2;
   D <= A + 5 after 12 ns;</pre>
```


## end process;

| Scheduling Rules    | Transport          | Inertial                                                          |  |
|---------------------|--------------------|-------------------------------------------------------------------|--|
| New before existing | Overwrite existing | Overwrite existing                                                |  |
| New after existing  | Append new         | If v <sub>new</sub> = v <sub>existing</sub> , append new          |  |
|                     |                    | Elsif t <sub>new</sub> -t <sub>existing</sub> > reject append new |  |
|                     |                    | Else overwrite existing                                           |  |

| Time  | Α | В | С | D | Ε | F |
|-------|---|---|---|---|---|---|
| 10 ns | 0 | 0 | 0 | 0 | 0 | 1 |
| 20 ns | 1 | 0 | 0 | 0 | 1 | 1 |
|       |   |   |   |   |   |   |
|       |   |   |   |   |   |   |
|       |   |   |   |   |   |   |
|       |   |   |   |   |   |   |
|       |   |   |   |   |   |   |
|       |   |   |   |   |   |   |
|       |   |   |   |   |   |   |
|       |   |   |   |   |   |   |
|       |   |   |   |   |   |   |

| 7.  | (1 point )         | _ (True/False) Gate delay is the dominant factor in determining the delay of a |
|-----|--------------------|--------------------------------------------------------------------------------|
|     | path.              |                                                                                |
| 8.  | (1 point)          | _ (True/False) Design verification is a trivial task.                          |
| 9.  | (1 point)          | are primitives that are all the same height and varying widths.                |
| 10. | (1 point) A        | is used in VHDL to bind an architecture to an                                  |
|     | instantiation of a | n entity.                                                                      |

11. (8 points) Create a System Verilog interface for a 4 bit counter that has an asynchronous clear input that is active low. It also has active high LOAD, UP and DOWN inputs. When data is loaded into the counter, counting proceeds from that loaded value. Include as part of the interface a clocking block that uses a rising edge clocking scheme. Also include modports from a testbench and from a DUT perspective.



| 12. | (4 points) List the four types of paths that must be considered when determining the maximum |
|-----|----------------------------------------------------------------------------------------------|
|     | frequency of a circuit                                                                       |

|      | <br> |
|------|------|
|      |      |
|      |      |
|      |      |
|      | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |

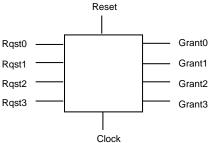
(15 points) a. (3 points) VHDL entity, b. (12 points) VHDL architecture Design a finite state machine for control of lights used to start a race, which works as follows.
 Inputs: Reset, Start, Clock Outputs: Red, Yellow, Green

Only one light can be on at any time.

- The Reset signal forces the circuit into a state in which the red light is turned on.
- When the Start signal is activated, the red light stays on for at least one second, then the yellow light is turned on.
- The yellow light stays turned on one second and then the green light is turned on.
- The green light stays on for at least three seconds and then the red light is turned on and the circuit returns to its reset state.
- The input clock has a period of 1 sec.

14. (15 points) Create a VHDL architecture for a 3-to-8 decoder with an active-low enable input which uses a case statement to represent the functionality of the decoder. Create a VHDL entity and its accompanying architecture that represents a 4-to-16 decoder by using two instances of the en\_dec\_328 entity. a. (6 points) 3-to-8 decoder architecture, b. (3 points) 4-to-8 decoder entity, c. (6 points) 4-to-8 decoder architecture

```
entity en_dec_328 is
  port (a : in std_logic_vector (2 downto 0);
        en : std_logic;
        d : out std_logic_vector (7 downto 0));
end entity en_dec_328;
```


- (1 point) \_\_\_\_\_\_ (True/False) Multiple assignments to a signal within a process can cause that signal to have multiple drivers.
   (1 point). \_\_\_\_\_ (True/False) If you give a SystemVerilog simulator the same seed and the same testbench, it always produces the same results.
   (1 point) \_\_\_\_\_ (True/False) Assertions in System Verilog use negative logic.
- 18. (10 points An ARM Advanced High-performance Bus (AHB) has the following signals.

| Signal | Width | Direction | Description                                |  |
|--------|-------|-----------|--------------------------------------------|--|
| HCLK   | 1     | Output    | Clock                                      |  |
| HADDR  | 21    | Output    | Address                                    |  |
| HWRITE | 1     | Output    | t Write flag: 1=write, 0=read              |  |
| HTRANS | 2     | Output    | Transaction type: 2'b00=IDLE, 2'b10=NONSEQ |  |
| HWDATA | 8     | Output    | Write data                                 |  |
| HRDATA | 8     | Input     | Read data                                  |  |

Create a class to encapsulate the AHB transactions. In this class constrain:

- a. The address (HADDR) to be in the lower 5 addresses and upper 5 addresses each with probability 40% and the other addresses with probability 20%.
- b. HTRANS to NONSEQ (HTRANS = 2'b10) and IDLE (HTRANS = 2'b00)...
- c. All other AHB signals are randomized but unconstrained.

19. (15 points) An arbiter is a circuit that allows at most one subsystem at a time to use a shared resource. A four-way arbiter is shown below. Each subsystem sets its request signal to 1 when it wants to use the resource. When the arbiter sets the grant signal to 1, the subsystem uses the resource. The subsystem sets its request back to 0 when it has finished, and waits for grant to be 0 before starting a subsequent request. While a subsystem is granted use of the resource, other requests must wait, rather than pre-empting the active subsystem. Subsystems are granted requests in order, starting with 0, then 1, 2, 3 and back to 0. A subsystem is skipped if it has no pending request.



As part of creating a SystemVerilog testbench for this device, an interface and a packet for randomization has been created. The requests are being driven by the request device modeled in VHDL below. Each req\_dev has an associated test program. The test program is responsible for issuing a signal to the req\_dev to reset it and providing a time parameter. After reset, the requesting device raises its request line high and keeps it high for the amount of time provided by the test program. Since req\_dev works on the positive edge of the clock, the test program will provide inputs to it on the negative edge of the clock. Complete the test0 program so that it repeats the following process 100 times.

- 1) waits a random number of clock cycles to set the reset for reqdev to 1.
- 2) then provides a random number of cycles that regdev will hold a request high.
- 3) sets the reset to 0 after one clock cycle
- 4) waits one more cycle
- 5) waits for req dev to lower request to 0
- 6) waits one more clock cycle

```
interface arbiter if (input bit clk);
 logic [3:0] REQUEST, GRANT, GEN REQ;
 logic RESET;
  int REQ TIME3, REQ_TIME2, REQ_TIME1, REQ_TIME0;
endinterface
module top;
 bit clk;
 always #5ns clk = \simclk;
 arbiter if arbiterif(clk);
 arbiter u1 (.CLK (clk), .REQ (arbiterif.REQUEST),
              .GRANT (arbiterif.GRANT), RESET (arbiterif.RESET));
 req_dev u2 (.GEN_REQ (arbiterif.GEN_REQ[3]), .REQ_TIME (arbiterif.REQ_TIME3),
              .REQUEST (arbiterif.REQUEST[3]), .GRANT (arbiterif.GRANT[3]),
              .RESET (arbiterif.RESET),.CLK (clk));
 req dev u3 (.GEN REQ (arbiterif.GEN REQ[2]), .REQ TIME (arbiterif.REQ TIME2),
              .REQUEST (arbiterif.REQUEST[2]), .GRANT (arbiterif.GRANT[2]),
              .RESET (arbiterif.RESET), .CLK (clk));
 req_dev u4 (.GEN_REQ (arbiterif.GEN_REQ[1]), .REQ_TIME (arbiterif.REQ_TIME1),
              .REQUEST (arbiterif.REQUEST[1]), .GRANT (arbiterif.GRANT[1]),
              .RESET (arbiterif.RESET),.CLK (clk));
  req dev u5 (.GEN REQ (arbiterif.GEN REQ[0]), .REQ TIME (arbiterif.REQ TIME0),
```

```
.REQUEST (arbiterif.REQUEST[0]), .GRANT (arbiterif.GRANT[0]),
              .RESET (arbiterif.RESET), .CLK (clk));
  test3 t1(arbiterif);
  test2 t2(arbiterif);
  test1 t3(arbiterif);
  test0 t4(arbiterif);
  testr t5(arbiterif);
endmodule : top
package mine;
  class Packet_g;
    // The ran\overline{d}om variables
    rand int generate t, request t;
    // Limit the values
    constraint c1 {generate_t < 300; generate_t > 100;
                  request_t < 101; request_t > 0;}
  endclass : Packet_g
endpackage : mine
entity REQ DEV is
  port(GEN_REQ : in std_logic;
       REQ_TIME : in integer range 0 to 100;
       REQUEST : out std_logic;
       GRANT : in std_logic;
RESET, CLK : in std_logic);
end REQ DEV;
import mine::*;
module test0(arbiter_if arbif);
```

endmodule : test0

20. (6 points) Given the following constraints, what are the solution probabilities?

```
Class MemTrans;
  Rand bit x;
  Rand bit [1:0] y;
  Constraint c_xy
  {
      y inside {[x:3]};
      solve x before y;
  }
Endclass
```

| Solution | x | У | Probability |
|----------|---|---|-------------|
| Α        | 0 | 0 |             |
| В        | 0 | 1 |             |
| С        | 0 | 2 |             |
| D        | 0 | 3 |             |
| E        | 1 | 0 |             |
| F        | 1 | 1 |             |
| G        | 1 | 2 |             |
| Н        | 1 | 3 |             |