
CPE 426 Final Exam Solution Spring 2020

Page 1 of 8

The University of Alabama in Huntsville
ECE Department

CPE 426 01
Final Exam Solution

Sprig 2020

1. (6 points) Draw the transistor-level diagram of a three input CMOS NAND gate.

2. (5 points) If the NRE costs for FPGA and CBIC circuits are $50,000 and $800,000, respectively, and

the cost of individual parts for FPGA and CBIC circuits are $52 and $11, respectively, what is the
break-even manufacturing volume for these two types of circuits?

800000 + 52x = 50000 + 11x
41x = 750000
x = 182293

3. (1 point) A _testbench_ provides stimuli and captures responses.

4 (1 point) A _constraint_ is a set of relational expressions that must be true for the chosen value

of the variables.

5. (1 point) _Assertions_ are pieces of declarative code that check the relationships between

design signals, either once or over a period of time.

VCC

GND

x y z

x

y

z

f

CPE 426 Final Exam Solution Spring 2020

Page 2 of 8

6. (6 points) For the process given below, A, B, C, and D are all integers that have a value of 0 at
time = 10 ns. If E changes from ‘0’ to ‘1’ at time 20 ns, specify all resulting changes. Indicate the
time at which each change will occur, the signal/variable affected, and the value to which it will
change.

process

 variable F : integer := 1; variable A : integer := 0;

begin

 wait on E;

 A := 1;

 F := A + 5;

 B <= E + 3 after 4 ns;

 A := A + 5;

 C <= F + 2;

 D <= A + 5 after 12 ns;

end process;

Scheduling Rules Transport Inertial

New before existing Overwrite existing Overwrite existing

New after existing Append new If vnew = vexisting, append new

Elsif tnew-texisting > reject append new

Else overwrite existing

Time A B C D E F

10 ns 0 0 0 0 0 1

20 ns 1 0 0 0 1 1

20 ns 1 0 0 0 1 6 F := A + 5;

20 ns 6 0 0 0 1 6 A := A + 5;

20 ns +  6 0 8 0 1 6 C <= F + 2;

24 ns 6 4 8 0 1 6 B <= E + 3 after 4 ns;

32 ns 6 4 8 11 1 6 D <= A + 5 after 12 ns;

7. (1 point) _False_ (True/False) Gate delay is the dominant factor in determining the delay of a

path.

8. (1 point) _False_ (True/False) Design verification is a trivial task.

9. (1 point) _Standard cells_ are primitives that are all the same height and varying widths.

10. (1 point) A _configuration_ is used in VHDL to bind an architecture to an instantiation of an

entity.

CPE 426 Final Exam Solution Spring 2020

Page 3 of 8

11. (8 points) Create a System Verilog interface for a 4 bit counter that has an asynchronous clear
input that is active low. It also has active high LOAD, UP and DOWN inputs. When data is loaded
into the counter, counting proceeds from that loaded value. Include as part of the interface a
clocking block that uses a rising edge clocking scheme. Also include modports from a testbench
and from a DUT perspective.

4

Data

Clearb

Load
Clk

Up

Down

4

Count

interface counter_if(input bit clk);

 logic Clearb, Load, Up, Down; //asynch Clearb - do not include in

clocking

 bit [3:0] Data;

 bit [3:0] Count;

 clocking cb @(posedge clk);

 output Data, Up, Down, Load;

 input Count;

 endclocking

 modport testbench (clocking cb, output Clearb);

 modport DUT(input clk, Data, Up, Down, Clearb, Load, output

Count);

endinterface

12. (4 points) List the four types of paths that must be considered when determining the maximum

frequency of a circuit.
Primary inputs to primary outputs

Primary inputs to storage element inputs

Storage element outputs to storage element inputs

Storage element outputs to primary outputs

CPE 426 Final Exam Solution Spring 2020

Page 4 of 8

13. (15 points) a. (3 points) VHDL entity, b. (12 points) VHDL architecture Design a finite state
machine for control of lights used to start a race, which works as follows.
Inputs: Reset, Start, Clock Outputs: Red, Yellow, Green

• Only one light can be on at any time.

• The Reset signal forces the circuit into a state in which the red light is turned on.

• When the Start signal is activated, the red light stays on for at least one second, then the yellow
light is turned on.

• The yellow light stays turned on one second and then the green light is turned on.

• The green light stays on for at least three seconds and then the red light is turned on and the
circuit returns to its reset state.

• The input clock has a period of 1 sec.

entity RACE is

 port (CLK, S, RESET : in std_logic;

 R, Y, G : out std_logic);

end RACE;

architecture SYNTH of RACE is

 type STATE_TYPE is (Reset_State, Stay_Red, Yellow, First_Green,

 Second_Green, Third_Green);

 signal CURRENT_STATE, NEXT_STATE : STATE_TYPE;

begin

 process(CLK, RESET)

 begin

 if (RESET = '1') then

 CURRENT_STATE <= Reset_State;

 elsif (CLK'event and CLK = '1') then

 CURRENT_STATE <= NEXT_STATE;

 end if;

 end process;

 process(S, CURRENT_STATE)

 begin

 case CURRENT_STATE is

 when Reset_State => if (S = '1') then

 NEXT_STATE <= Stay_Red;

 else

 NEXT_STATE <= Reset_State;

 end if;

 when Stay_Red => NEXT_STATE <= Yellow;

 when Yellow => NEXT_STATE <= First_Green;

 when First_Green => NEXT_STATE <= Second_Green;

 when Second_Green => NEXT_STATE <= Third_Green;

 when Third_Green => NEXT_STATE <= Reset_State;

 end case;

 end process;

 process (CURRENT_STATE)

 begin

 R <= '0'; Y <= '0'; G <= '0';

 case CURRENT_STATE is

 when Reset_State | Stay_Red => R <= '1';

 when Yellow => Y <= '1';

 when First_Green to Third_Green => G <= '1';

 end case;

 end process;

end SYNTH;

CPE 426 Final Exam Solution Spring 2020

Page 5 of 8

14. (15 points) Create a VHDL architecture for a 3-to-8 decoder with an active-low enable input which
uses a case statement to represent the functionality of the decoder. Create a VHDL entity and its
accompanying architecture that represents a 4-to-16 decoder by using two instances of the

en_dec_328 entity. a. (6 points) 3-to-8 decoder architecture, b. (3 points) 4-to-8 decoder entity,
c. (6 points) 4-to-8 decoder architecture

entity en_dec_328 is

 port (a : in std_logic_vector (2 downto 0);

 en : std_logic;

 d : out std_logic_vector (7 downto 0));

end entity en_dec_328

architecture problem14 of en_dec_328 is

begin

 process (en, a)

 begin

 if (en = '1') then

 d <= "00000000";

 elsif (en = '0') then

 case (a) is

 when "000" => d <= "00000001";

 when "001" => d <= "00000010";

 when "010" => d <= "00000100";

 when "011" => d <= "00001000";

 when "100" => d <= "00010000";

 when "101" => d <= "00100000";

 when "110" => d <= "01000000";

 when "111" => d <= "10000000";

 when others => d <= "00000000";

 end case;

 end if;

 end process;

end architecture problem14;

entity en_dec_4216 is

 port(a : in std_logic_vector (3 downto 0);

 en : in std_logic;

 d : out std_logic_vector (15 downto 0));

end entity en_dec_4216;

architecture problem14b_c of en_dec_4216 is

 signal a_not : std_logic;

begin

 a_not <= '1' when a(3)='0' else

 '0' when a(3)='1';

 U0 : entity work.en_dec_328 port map (a => a (2 downto 0),

 en => a(3),

 d => d(7 downto 0));

 U1 : entity work.en_dec_328 port map (a => a (2 downto 0),

 en => a_not,

 d => d(15 downto 8));

end architecture problem14b_c;

CPE 426 Final Exam Solution Spring 2020

Page 6 of 8

15. (1 point) _False_ (True/False) Multiple assignments to a signal within a process can cause that

signal to have multiple drivers.

16. (1 point). _True_(True/False) If you give a SystemVerilog simulator the same seed and the same

testbench, it always produces the same results.

17. (1 point) _True_ (True/False) Assertions in System Verilog use negative logic.

18. (10 points An ARM Advanced High-performance Bus (AHB) has the following signals.

Signal Width Direction Description

HCLK 1 Output Clock

HADDR 21 Output Address

HWRITE 1 Output Write flag: 1=write, 0=read

HTRANS 2 Output Transaction type: 2’b00=IDLE, 2’b10=NONSEQ

HWDATA 8 Output Write data

HRDATA 8 Input Read data

Create a class to encapsulate the AHB transactions. In this class constrain:

a. The address (HADDR) to be in the lower 5 addresses and upper 5 addresses each with
probability 40% and the other addresses with probability 20%.

b. HTRANS to NONSEQ (HTRANS = 2’b10) and IDLE (HTRANS = 2’b00)..

c. All other AHB signals are randomized but unconstrained.

package mine

 class AHB;

 rand bit HCLK;

 rand bit [20:0] HADDR;

 rand bit HWRITE;

 rand bit [1:0] HTRANS;

 rand bit [7:0] HWDATA;

 rand bit [7:0] HRDATA;

 constraint c

 {

 HADDR dist {[21'b000000000000000000000:21'b000000000000000000100]

 :/40, //lower 5 addresses

 [21'b111111111111111111011:21'b111111111111111111111]

 :/40, //upper 5 addresses

 [21'b000000000000000000101 :21'b111111111111111111010]

 :/20 // all other addresses

 };

 HTRANS inside {2'b00, 2'b10};

 }

 endclass : AHB

endpackage : mine

CPE 426 Final Exam Solution Spring 2020

Page 7 of 8

19. (15 points) An arbiter is a circuit that allows at most one subsystem at a time to use a shared
resource. A four-way arbiter is shown below. Each subsystem sets its request signal to 1 when it
wants to use the resource. When the arbiter sets the grant signal to 1, the subsystem uses the
resource. The subsystem sets its request back to 0 when it has finished, and waits for grant to be
0 before starting a subsequent request. While a subsystem is granted use of the resource, other
requests must wait, rather than pre-empting the active subsystem. Subsystems are granted
requests in order, starting with 0, then 1, 2, 3 and back to 0. A subsystem is skipped if it has no
pending request.

Reset

Clock

Rqst0 Grant0

Grant1

Grant2

Grant3

Rqst1

Rqst2

Rqst3

As part of creating a SystemVerilog testbench for this device, an interface and a packet for
randomization has been created. The requests are being driven by the request device modeled
in VHDL below. Each req_dev has an associated test program. The test program is responsible
for issuing a signal to the req_dev to reset it and providing a time parameter. After reset, the
requesting device raises its request line high and keeps it high for the amount of time provided
by the test program. Since req_dev works on the positive edge of the clock, the test program
will provide inputs to it on the negative edge of the clock. Complete the test0 program so that it
repeats the following process 100 times.
1) waits a random number of clock cycles to set the reset for reqdev to 1.
2) then provides a random number of cycles that reqdev will hold a request high.
3) sets the reset to 0 after one clock cycle
4) waits one more cycle
5) waits for req_dev to lower request to 0
6) waits one more clock cycle

interface arbiter_if(input bit clk);

 logic [3:0] REQUEST, GRANT, GEN_REQ;

 logic RESET;

 int REQ_TIME3, REQ_TIME2, REQ_TIME1, REQ_TIME0;

endinterface

module top;

 bit clk;

 always #5ns clk = ~clk;

 arbiter_if arbiterif(clk);

 arbiter u1 (.CLK (clk), .REQ (arbiterif.REQUEST),

 .GRANT (arbiterif.GRANT), RESET (arbiterif.RESET));

 req_dev u2 (.GEN_REQ (arbiterif.GEN_REQ[3]), .REQ_TIME (arbiterif.REQ_TIME3),

 .REQUEST (arbiterif.REQUEST[3]), .GRANT (arbiterif.GRANT[3]),

 .RESET (arbiterif.RESET),.CLK (clk));

 req_dev u3 (.GEN_REQ (arbiterif.GEN_REQ[2]), .REQ_TIME (arbiterif.REQ_TIME2),

 .REQUEST (arbiterif.REQUEST[2]), .GRANT (arbiterif.GRANT[2]),

 .RESET (arbiterif.RESET), .CLK (clk));

 req_dev u4 (.GEN_REQ (arbiterif.GEN_REQ[1]), .REQ_TIME (arbiterif.REQ_TIME1),

 .REQUEST (arbiterif.REQUEST[1]), .GRANT (arbiterif.GRANT[1]),

 .RESET (arbiterif.RESET),.CLK (clk));

 req_dev u5 (.GEN_REQ (arbiterif.GEN_REQ[0]), .REQ_TIME (arbiterif.REQ_TIME0),

CPE 426 Final Exam Solution Spring 2020

Page 8 of 8

 .REQUEST (arbiterif.REQUEST[0]), .GRANT (arbiterif.GRANT[0]),

 .RESET (arbiterif.RESET), .CLK (clk));

 test3 t1(arbiterif);

 test2 t2(arbiterif);

 test1 t3(arbiterif);

 test0 t4(arbiterif);

 testr t5(arbiterif);

endmodule : top

package mine;

 class Packet_g;

 // The random variables

 rand int generate_t, request_t;

 // Limit the values

 constraint c1 {generate_t < 300; generate_t > 100;

 request_t < 101; request_t > 0;}

 endclass : Packet_g

endpackage : mine

entity REQ_DEV is

 port(GEN_REQ : in std_logic;

 REQ_TIME : in integer range 0 to 100;

 REQUEST : out std_logic;

 GRANT : in std_logic;

 RESET, CLK : in std_logic);

end REQ_DEV;

import mine::*;

module test0(arbiter_if arbif);

 Packet_g p;

 initial begin

 p = new();

 repeat(100)

 begin

 p.randomize();

 repeat(p.generate_t) @(negedge arbif.clk);

 //wait random nunber of cycles to set reset to 1 (1)

 arbif.RESET <= 1'b1; //set reset to 1 (1)

 arbif.REQ_TIME1 <= p.request_t; // set random number of cycles to hold high (2)

 @(negedge arbif.clk); //wait one clock cycle (3)

 arbif.RESET <= 1'b0; //set the reset to 0 (3)

 @(negedge arbif.clk); //wait one more clock cycle (4)

 @(negedge arbif.REQUEST[1]); //wait for re_dev to lower request to 0 (5)

 @(negedge arbif.clk); //wait one more clock cycle (6)

 end

 end

endmodule : test0

20. (6 points) Given the following constraints, what are the solution probabilities?

Class MemTrans;

 Rand bit x;

 Rand bit [1:0] y;

 Constraint c_xy

 {

 y inside {[x:3]};

 solve x before y;

 }

Endclass

Solution x y Probability

A 0 0 1/8

B 0 1 1/8

C 0 2 1/8

D 0 3 1/8

E 1 0 0

F 1 1 1/6

G 1 2 1/6

H 1 3 1/6

