The University of Alabama in Huntsville ECE Department CPE 628 01 Fall 2008 Homework #5a Solution

Consider the following circuit.

- a. Generate all paths in the circuit. How many paths are there in this circuit? The paths are ↑afjz, ↓afjz, ↑bdfjz, ↓bdfjz, ↓beghjz, ↓beghjz, ↓begikz, ↓cghjz, ↓cghjz, ↓cgikz, ↓cgikz, 12 paths
- b. Which paths are functionally unsensitizable? \cghjz, \cghjz, \cghjz, \cghzkz
- c. For those sensitizable paths, which ones are robustly testable, and which ones are nonrobustly testable

↑afjz	a nc-c $d = SO$		
-	f nc-c h = S0	↑beghjz b,e c-nc c = X1	b,e c-nc $c = X1$
	j nc-c k = S1	g, h nc-c $f = S0$	g, h nc-c $f = S0$
	robustly testable	j nc-c k = S1	i nc-c k = S1
	5	neither robustly testa	ble nor non-robustly testable
↓afjz	a c-nc $d = X0$	2	5
• 5	f c-nc h = X0	\downarrow beghiz b,e nc-c c = S1	
	i c-nc k = X1	g, h c-nc f = X0	
	robustly testable	i c-nc k = X1	
	5	robustly testable	
↑bdfiz	b,d nc-c $a = S0$		
, say	f nc-c h = S0	\uparrow begikz b, e c-nc c = X1	
	i nc-c k = S1	k nc-c $i = S1$	
	robustly testable	neither robustly testa	ble nor non-robustly testable
↓bdfjz	b, d c-nc $a = X0$	\downarrow begikz b, e nc-c c = S1	
	f c-nc h = X0	k c-nc $j = X1$	
	i c-nc k = X1	robustly testable	
	robustly testable	5	

4.35 Consider the dictionary of excited and detected stuck-at faults of a test set shown in Table 4.18. Construct the smallest set of vectors that can detect as many transition faults as possible using only these seven stuck-at vectors.

Vectors	Excited Faults	Detected Faults
V ₁	a/0, b/0, c/0, d/0	e/1, f/1
V_2	c/0, f/0, g/0, h/0	e/1, f/1
V ₃	d/0, e/0, h/0, i/0	a/1, b/1, c/1, f/1, g/1
V_4	a/0, b/0, g/0, i/0	d/1, e/1, f/1
V_5	c/0, d/0, g/0	a/1, d/1, h/1, i/1
V_6	d/0, e/0, i/0	a/1, b/1, c/1, f/1, g/1
V ₇	b/0, g/0	e/1, i/1

y Faults Detected	Pattern Pair	Delay Faults Detect
e	V_4 - V_5	a slow-to-fall
w-to-fall		i slow-to-fall
w-to-fall	$V_5 - V_6$	c slow-to-fall
w-to-fall		g slow-to-fall
w-to-fall	V_6 - V_7	e slow-to-fall
w-to-fall		i slow-to-fall
	y Faults Detected e w-to-fall w-to-fall w-to-fall w-to-fall w-to-fall w-to-fall	y Faults DetectedPattern Paire V_4 - V_5 w-to-fall V_5 - V_6 w-to-fall V_6 - V_7 w-to-fall V_6 - V_7

Pattern Pair Delay Faults Detected

The faults that remain undetected after applying the seven pattern sequence include: b stf, h stf, a str, b str, c str, d str, e str, f str, g str, h str, i str , where stf is slow-to-fall and str is slow-to-rise

For these undetected faults, consider other vector pairs

Pattern Pair	Delay Faults Detected	Pattern Pair	Delay Faults Detected
V_1 - V_3	b slow-to-fall	V_4 - V_6	b slow-to-fall
$V_1 - V_4$	None	$V_4 - V_7$	None
$V_1 - V_5$	None		
$V_1 - V_6$	b slow-to-fall	V_5-V_1	None
$V_1 - V_7$	None	V ₅ - V ₂	None
		V5-V3	None
$V_2 - V_1$	None	V ₅ -V ₄	None
$V_2 - V_4$	None	V ₅ -V ₇	None
$V_2 - V_5$	h slow-to-fall	5 7	
$V_2 - V_6$	None	V_6-V_1	None
$V_2 - V_7$	None	V ₆ -V ₂	None
2.,		V6-V3	None
V_3-V_1	None	V ₆ -V ₄	None
$V_3 - V_2$	None	V ₆ -V ₅	None
$V_3 - V_5$	h slow-to-fall		
V2-V6	None	V_7-V_1	None
$V_3 - V_7$	None	\mathbf{V}_{7} - \mathbf{V}_{2}	None
. 5 . 7		\mathbf{V}_{7} - \mathbf{V}_{3}	b slow-to-fall
V ₄ -V ₁	None	V7-V4	None
$\mathbf{V}_4 \cdot \mathbf{V}_2$	None	\mathbf{V}_{7} - \mathbf{V}_{5}	None
$V_4 - V_3$	b slow-to-fall	$\mathbf{V}_7 \cdot \mathbf{V}_6$	b slow-to-fall

Two pattern pairs are needed to detect the additional two delay faults. So, use $\{V_1, V_2, V_3, V_4, V_5, V_6, V_7, V_1, V_3, V_5,\}$