The University of Alabama in Huntsville ECE Department CPE 628 01 Test 2 Solution Fall 2008

1. (10 points) For the circuit shown, compute all the vectors that can detect h s-a-1 using the Boolean difference.

2. (5 points) List five different timing control schemes for BIST.

___one-hot single-capture, staggered single-capture, one-hot skewed-load, launch aligned skewed-load, capture aligned skewed-load, staggered skewed-load, one-hot double-capture, staggered double-capture, launch aligned double-capture, capture aligned double-capture, staggered double-capture ____

(10 points) Consider the following LFSR. Generate the sequence starting with 00001. Is this a maximal LFSR? What is its length?

The length is 15 which is not maximal.

- 4. (15 points) For the circuit given,
 - a. Compute the static logic implications of c = 0.
 - b. Compute the static logic implications of c = 1.
 - c. Compute the set of faults that are untestable when c = 0.
 - d. Compute the set of faults that are untestable when c = 1.
 - e. Compute the set of untestable faults based on the stem analysis of c.

a. c = 0 implies $c_1 = 0$, $c_2 = 0$, $c_3 = 0$, e = 1, i = 0

- b. c = 1 implies $c_1 = 1$, $c_2 = 1$, $c_3 = 1$, f = 0, g = 0, h = 1, i = 0
- c. Unexcitable: c/0, c₁/0, c₂/0, c₃/0, e/1, i/0 Unobservable: a/0, a/1, b/0, b/1, c₂/0, c₂/1, c₃/0, c₃/1, d/0, d/1, f/0, f/1, g/0, g/1, h/0, h/1 Untestable: a/0, a/1, b/0, b/1, c/0, c₁/0, c₂/0, c₂/1, c₃/0, c₃/1, d/0, d/1, e/1, f/0, f/1, g/0, g/1, h/0, h/1, i/0
- d. Unexcitable: c/1, c₁/1, c₂/1, c₃/1, f/0, g/0, h/1, i/0
 Unobservable: a/0, a/1, b/0, b/1, c₁/0, c₁/1, d/0, d/1, e/0, e/1
 Untestable: a/0, a/1, b/0, b/1, c/1, c₁/0, c₁/1, c₂/1, c₃/1, d/0, d/1 e/0, e/1, f/0, g/0, h/1, i/0
- e. Untestable = Untestable (c = 0) \cap Untestable (c = 1) = a/0, a/1, b/0, b/1, c₁/0, c₂/1, c₃/1, d/0, d/1, e/1, f/0, g/0, h/1, i/0
- 5. (1 point) _Compaction_ is a method for dramatically reducing the number of bits in the original circuit response during testing in which some information is lost.
- 6. (15 points) Using the circuit shown, use PODEM to compute a vector that can detect the fault q sa-1.

Objective	Backtrace	Assignment	Implications	Decision			
-		-	-	Tree			
(q, 0)	(h, 1), (i, 1), (b, 1), (c, 1)	b = 1	m = 1, h = 1, j = 1	b = 1			
(q, 0)	(i, 1), (c, 1)	c = 1	e = 1, i = 1, q = D', p = D', r =	b = 1, c = 1			
			D', t = 1				
(0,1), pick	(a, 1)	a = 1	g = 1, o = 1, n = 0, u = 1, v = D	b = 1, c = 1,			
from D-				a = 1			
frontier							
(w, 1)	(d, 0)	$\mathbf{d} = 0$	f = 0, k = 0, s = 1, x = 0, z = 1, w	b = 1, c = 1,			
			= 1, no possible path	a = 1, d = 0			
(f, 1), pick	(d, 1)	d = 1	F = 1, w = D, k = 1, s = 0, x = 1,	b = 1, c = 1,			
other			z = D'	a = 1, d = 1			
option							
from D-							
frontier							
Fault Detected, test vector is $(a, b, c, d) = 1111$							

- 7. (1 point) The Logic BIST system most used in industry is named _STUMPS_.
- 8. (1 point) An _intra-domain_ fault originates at one clock domain and terminates at the same clock domain.
- 9. (15 points) Compute the signature of the SISR using $f(x) = 1 + x + x^4$ given for the fault-free sequence M = {110110010101011}. Then, compute the signature for the faulty sequence M' = {111100001100101}. Explain why M' is detected or not detected.

 $R0 = M \oplus R3$, $R1 = R0 \oplus R3$, R2 = R1, R3 = R2

Μ	R0	R1	R2	R3
	0	0	0	0
1	1	0	0	0
1	1	1	0	0
0	0	1	1	0
1	1	0	1	1
0	1	0	0	1
1	0	0	0	0
0	0	0	0	0
1	1	0	0	0
0	0	1	0	0
0	0	0	1	0
1	1	0	0	1
1	0	0	0	0
0	0	0	0	0
1	1	0	0	0
1	1	1	0	0

М	R0	R 1	R2	R3
	0	0	0	0
1	1	0	0	0
0	0	1	0	0
1	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	1	1	1	1
1	0	0	1	1
0	1	1	0	1
0	1	0	1	0
0	0	1	0	1
0	1	1	1	0
1	1	1	1	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0

Since R' is not equal to R, the faulty sequence is detected.

- 10. (1 point) For aligned skewed-load testing a clock _suppression_ circuit is used to enable or disable selected shift or capture pulses.
- 11. (1 point) One type of delay fault test is known as a _robust_ delay test.

12. (10 points) For the circuit shown, use the D algorithm to compute a test vector for the fault i s-a-1.

a	b	с	d	e	f	h	i	j	k	g	D-frontier	J-frontier
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		
					0	Х	D'					
Х	Х	Х	Х	Х	0	Х	D'	Х	Х	Х	G3	f
		0					D'		D'			
Х	Х	0	Х	Х	0	Х	D'	Х	D'	Х	G4	f
								1	D'	D		
Х	Х	0	Х	Х	0	Х	D'	1	D'	D		f, j
	0			0	0							
Х	0	0	Х	0	0	Х	D'	1	D'	D		j
			0	0				1				
Х	0	0	0	0	0	Х	D'	1	D'	D		d
0			0			0						
0	0	0	0	0	0	0	D'	1	D'	D		

13. (15 points) For the circuit shown, insert two test points so the minimum detection probability for any fault in the circuit is greater than or equal to 1/16 and draw the resulting circuit. Assume control points are randomly activated.

