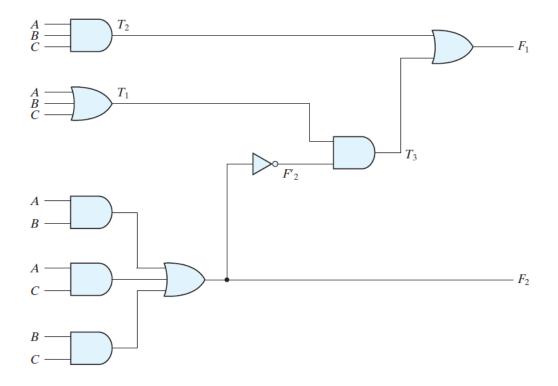
The University of Alabama in Huntsville ECE Department EE 202 – 02 December 5, 2013 Final Exam

J	Κ	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

D	Q(t+1)
0	0
1	1


Т	Q(t+1)
0	Q(t)
1	Q'(t)

1.	(1 point) A	is essentially a register that goes through a predetermined
	sequence of binary states.	
2.	(1 point) A	specifies the next state as a function of the
	present state and inputs.	
3.	(1 point) Moore and Mealy mo	dels of a sequential circuit are commonly referred to as a
4.	(1 point) List one keyword foun	d in a Verilog model
5.	(1 point)	are used in digital computers to simplify the
	subtraction operation and for le	ogical manipulation.
6.	(5 points Convert (6401325 ₇) to	decimal:

7.	(10 points) Convert decimal +273 and +451 to binary, using the signed-2's-complement representation and enough digits to accommodate the numbers. Then perform the binary equivalent of (+273) + (-451). Convert the answer back to decimal and verify that it is correct.
8.	(10 points) How many 2-to-4 line decoders with enable does it take to construct an 8-to-256 line decoder?

9.	(10 points) Design a circuit with inputs x , y , and z and outputs A , B , and C . When the binary input is 0 , 1 , 2 , or 3 , the binary output is one greater than the input. When the binary input is 4 , 5 , 6 , or 7 , the binary output is two less than the input.

10. (10 points) Write a Verilog gate-level description of the circuit shown.

11. (10 points) Reduce the number of states in the following state table, and tabulate the reduced state table:

Present	Next State		Output	
State	x = 0	x = 1	x = 0	x = 1
а	f	b	0	0
b	d	С	0	0
С	f	е	0	0
d	g	а	1	0
е	d	С	0	0
f	f	b	1	1
g	g	h	0	1
h	g	а	1	0

12.	(15 points) Design a 3-bit counter which counts in the sequence 000, 010, 011, 111, 110, 100 using clocked D flip-flops. You do not have to draw the circuit diagram. Is the counter self-correcting if it comes up in an unused state?		

13. (25 points) A Moore sequential circuit has one input and one output. When the input sequence 011 occurs, the output becomes 1 and remains 1 until the sequence 011 occurs again in which case the output returns to 0. The output then remains 0 until 011 occurs a third time, etc. For example, the input sequence

X = 01011010110100111

has the output

Z = 00001111100000011

- (a) (8 points) Draw the state diagram for this circuit.
- (b) (4 points) Draw the state table.
- (c) (5 points) Derive the excitation for implementing this circuit with T flip-flops.
- (d) (8 points) Derive the equations for the inputs of the T flip-flops.