The University of Alabama in Huntsville ECE Department EE 202 – 02 Fall 2013 Test 2 October 29, 2013

	Name:				
1.	(1 point) A is a diagram made up of squares representing one minterm of the function that is to be minimized.				
2.	(1 point) When two numbers with n digits each are added and the sum is a number occupying $n + 1$ digits, we say that an occurred.				
3.	(1 point)(True/False) When minimizing a function, all don't care terms must be included.				
4.	(1 point) Ais a product term obtained by combining the maximum possible number of adjacent squares in the map.				
5.	(1 point) The implementation of Boolean functions with NAND gates requires that the functions be in form.				
6.	(10 points) Simplify the following function and implement it with two-level NOR gates: $F(x,y,z) = x'z' + y'z' + yz' + xy$				

7.	20 points) Design a circuit that has four inputs w, x, y, and z and four outputs A, B, C, and D. wxyz epresents a binary-coded decimal digit. AB represents the quotient and CD the remainder when wxyz is livided by 3 (AB and CD represent 2-bit unsigned binary numbers. Output ABCD = 1111 if an invalid value appears on the inputs. You do not have to draw a circuit diagram.					

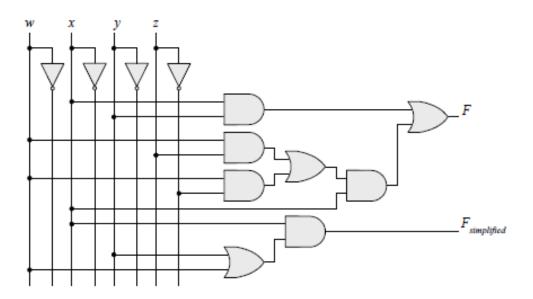
8.	(15 points) Find all the prime implicants for the following Boolean function, and determine which are
	essential:

$$F(w, x, y, z) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$$

9. (10 points) Simplify the following Boolean function, using four-variable maps:

$$F(w, x, y, z) = \Sigma(4, 12, 7, 2, 10)$$

d (w, x, y, z) =
$$\Sigma$$
(0, 6, 8)


10. (15 points) Draw the logic diagram of the digital circuit specified by the following Verilog description:

```
module Circuit B (F1, F2, A0, A1, B0, B1);
  input
          A0, A1, B0, B1;
  output
          F1, F2;
          w1, w2, w3, w4, w5, w6, w7;
  wire
  or
           (F1, w1, w2, w3);
  and (F2, w4, w5);
  and (w1, w6, B1);
          (w2, w6, w7, B0);
  and (w3, w7, B0, B1);
 not (w6, A1);
  not (w7, A0);
  xor (w4, A1, B1);
  xnor
          (w5, A0, B0);
endmodule
```

11	/10 ==:=+=\ \\/=:+= =		d	ainanit fan Fia	mushlama 12	وربوا ما المحاملة
LL.	(10 points) Write a	a veriiog gale-ievei	describtion of the	Circuit for F in	problem 12.	including delays.

12. (15 points) If the delays in the circuit below are as given in the table, find the propagation delays from the inputs to F and $F_{\text{simplified}}$.

Logic Element	Propagation Delay		
Inverter	30 ps		
AND/NAND	50 ps		
OR/NOR	60 ps		
XOR	80 ps		
Full Adder	150 ps		

