The University of Alabama in Huntsville ECE Department EE 202 – 02 Test 3 Solution Fall 2013

- (1 point) Storage elements that operate with signal levels (rather than signal transitions) are referred to as _latches_.
- 2. (1 point) A <u>characteristic table</u> defines the logical properties of a flip-flop by describing its operation in tabular form.
- 3. (1 point) Some flip-flops have _asynchronous_ inputs that are used to force the flip-flop to a particular state independent of the clock.
- 5. (1 point) In Verilog, behavior declared by the keyword **initial** is called <u>single pass</u> behavior.

Current State	Input	Next State	Output	
00	00	00	0	
00	11	00	0	
00	10	00	0	
00	01	10	0	
10	11	11	0	
11	10	11	1	
11	01	11	1	
11	00	01	1	
01	10	00	1	
00	10	00	0	
00	00	00	0	
00	01	10	0	
10	01	10	0	
10	11	11	0	
11	11	11	1	
11	00	01	1	
01	00	01	1	

J	К	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

 $J_A = B$

D	Q(t+1)
0	0
1	1

Т	Q(t+1)
0	Q(t)
1	Q'(t)

7. (20 points) Design a 3-bit counter which counts in the sequence 000, 010, 100, 110, 000 using clocked JK flip-flops. You do not have to draw the circuit diagram. What will happen if the counter is started in state 101?

Q	Q(t+1)	J	Κ
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

Next State	JA	KA	JB	KB	JC	KC
010	0	d	1	d	0	d
100	1	d	d	1	0	d
110	d	0	1	d	0	d
000	d	1	d	1	0	d
	Next State 010 100 110 000	Next State JA 010 0 100 1 110 d 000 d	Next State JA KA 010 0 d 100 1 d 110 d 0 000 d 1	Next State JA KA JB 010 0 d 1 100 1 d d 110 d 0 1 000 d 1 d	Next State JA KA JB KB 010 0 d 1 d 100 1 d d 1 110 d 0 1 d 000 d 1 d 1	Next State JA KA JB KB JC 010 0 d 1 d 0 100 1 d d 1 0 110 d 0 1 d 0 000 d 1 d 1 0

From state 101, $J_A = 0$, $K_A = 0$, $J_B = 1$, $K_B = 1$, $J_C = 0$, $K_C = 0$, A stays the same at 1, B toggles to 1 and C stays the same at 1, so the next state from 101 is 111

8. (10 points) Reduce the number of states in the following state table, and tabulate the reduced state table:

Dragant State	Next	State	Present		
Flesent State	$\mathbf{x} = 0$	x = 1	Output (Z)		
а	e	e	1		
b	с	e	1		
с	i	h	0		
d	h	а	1		
e	i	f	0		
f	e	g	0		
g	h	b	1		
h	с	d	0		
i	f	b	1		

None of the states have the same next states and outputs, this table is already in its reduced form.

9. (15 points) Construct a 5-to-32 line decoder using as many 2-to-4 line decoders with enable and any additional logic that you might need. Use block diagrams for the components.

10. (10 points) Construct a 32×1 multiplexer using as many 8×1 multiplexers and any additional logic that you might need. Use block diagrams for the components.

11. (25 points) Design a Mealy sequential circuit that has an output of 1 whenever its input string has the sequence 0101 and otherwise has an output of 0. These sequences can overlap. Use T flip-flops. You do not have to draw the circuit diagram.

Present State	х	Next State	TA	ΤВ	Z
00	0	01	0	1	0
00	1	00	0	0	0
01	0	01	0	0	0
01	1	10	1	1	0
10	0	11	0	1	0
10	1	00	1	0	0
11	0	01	1	0	0
11	1	10	0	1	1

TA = AB'x + A'Bx + ABx'

TB = Bx + B'x'

z = ABx