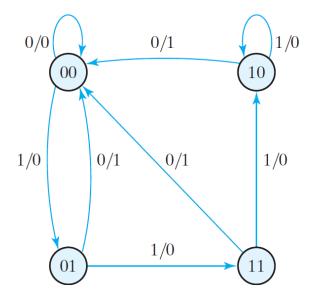
The University of Alabama in Huntsville


ECE Department EE 202 – 02

Test 2

April 8, 2014

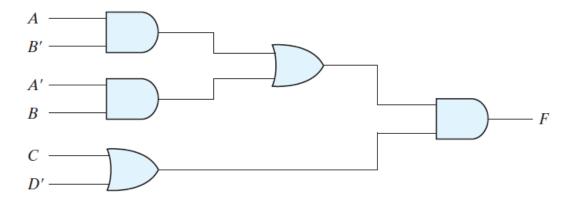
	Name:				
1.	(1 point)) A is a combinational circuit that forms the arithmetic sum of three bits.				
2.	(1 point) Unspecified minterms of a function are called conditions.				
3.	(1 point) (True/False) Latches exhibit edge sensitive behavior.				
4.	(1 point) A defines the logical properties of a flip-				
	flop by describing its operation in tabular form.				
5.	(1 point) A specifies the next state as a function of the				
	present state and inputs.				

6. (15 points) Starting from state 00 in the state diagram shown, determine the state transitions and output sequence that will be generated when an input sequence of 00100110011110001 occurs.

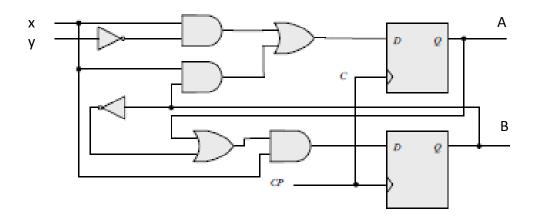
Input	Next State	Output

J	Κ	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

D	Q(t+1)
0	0
1	1


Т	Q(t+1)
0	Q(t)
1	Q'(t)

7. (20 points) Design a 3-bit counter which counts in the sequence 000, 101, 010, 111, 100, 001, 110, 011, 000 using clocked JK flip-flops. You do not have to draw the circuit diagram.


8. (10 points) Reduce the number of states in the following state table, and tabulate the reduced state table:

	Next State		Out	put
Present				
State	x = 0	x = 1	x = 0	x = 1
a	f	b	0	0
b	d	С	0	0
С	f	е	0	0
d	g	а	1	0
e	d	С	0	1
f	f	b	1	1
g	g	h	0	1
h	g	а	1	0

9. (15 points) Convert the following circuit into a circuit that contains only NAND gates.

10. (15 points) For the figure given, derive the state table.

х	У	Α	В	A(t+1)	B(t+1)
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

11. (20 points) Design a Mealy sequential circuit that has an output of 1 whenever its input string has the sequence 1010 and otherwise has an output of 0. These sequences can overlap. Use T flip-flops. You do not have to draw the circuit diagram.

Input: 001010101010001101010
Output: 000001010101000000101