## The University of Alabama in Huntsville ECE Department EE 202 – 02 Test 2 Solution Spring 2014

- 1. (1 point) ) A <u>full adder</u> is a combinational circuit that forms the arithmetic sum of three bits.
- 2. (1 point) Unspecified minterms of a function are called <u>don't care</u> conditions.
- 3. (1 point). <u>False</u> (True/False) Latches exhibit edge sensitive behavior.
- 4. (1 point) A <u>characteristic table</u> defines the logical properties of a flip-flop by describing its operation in tabular form.
- 5. (1 point) A <u>state table</u> specifies the next state as a function of the present state and inputs.
- 6. (15 points) Starting from state 00 in the state diagram shown, determine the state transitions and output sequence that will be generated when an input sequence of 00100110011110001 occurs.



| Current State | Input | Next State | Output |
|---------------|-------|------------|--------|
| 00            | 0     | 00         | 0      |
| 00            | 0     | 00         | 0      |
| 00            | 1     | 01         | 0      |
| 01            | 0     | 00         | 1      |
| 00            | 0     | 00         | 0      |
| 00            | 1     | 01         | 0      |
| 01            | 1     | 11         | 0      |
| 11            | 0     | 00         | 1      |
| 00            | 0     | 00         | 0      |
| 00            | 1     | 01         | 0      |
| 01            | 1     | 11         | 0      |
| 11            | 1     | 10         | 0      |
| 10            | 1     | 10         | 0      |
| 10            | 0     | 00         | 1      |
| 00            | 0     | 00         | 0      |
| 00            | 0     | 00         | 0      |
| 00            | 1     | 01         | 0      |

| J | К | Q(t+1) |
|---|---|--------|
| 0 | 0 | Q(t)   |
| 0 | 1 | 0      |
| 1 | 0 | 1      |
| 1 | 1 | Q'(t)  |

| D | Q(t+1) |
|---|--------|
| 0 | 0      |
| 1 | 1      |

| Т | Q(t+1) |
|---|--------|
| 0 | Q(t)   |
| 1 | Q'(t)  |

- EE 202
- 7. (20 points) Design a 3-bit counter which counts in the sequence 000, 101, 010, 111, 100, 001, 110, 011, 000 using clocked JK flip-flops. You do not have to draw the circuit diagram.

| Q(t) | Q(t+1) | J | К |
|------|--------|---|---|
| 0    | 0      | 0 | d |
| 0    | 1      | 1 | d |
| 1    | 0      | d | 1 |
| 1    | 1      | d | 0 |

| Р | reser | nt |   | Next  |   |    |    |    |    |    |    |
|---|-------|----|---|-------|---|----|----|----|----|----|----|
|   | State |    |   | State |   |    |    |    |    |    |    |
| Α | В     | С  | А | В     | С | JA | KA | JB | KB | JC | КС |
| 0 | 0     | 0  | 1 | 0     | 1 | 1  | d  | 0  | d  | 1  | d  |
| 1 | 0     | 1  | 0 | 1     | 0 | d  | 1  | 1  | d  | d  | 1  |
| 0 | 1     | 0  | 1 | 1     | 1 | 1  | d  | d  | 0  | 1  | d  |
| 1 | 1     | 1  | 1 | 0     | 0 | d  | 0  | d  | 1  | d  | 1  |
| 1 | 0     | 0  | 0 | 0     | 1 | d  | 1  | 0  | d  | 1  | d  |
| 0 | 0     | 1  | 1 | 1     | 0 | 1  | d  | 1  | d  | d  | 1  |
| 1 | 1     | 0  | 0 | 1     | 1 | d  | 1  | d  | 0  | 1  | d  |
| 0 | 1     | 1  | 0 | 0     | 0 | 0  | d  | d  | 1  | d  | 1  |

$$JA = B' + C'$$
 $JB = C$ 
 $JC = 1$ 
 $KA = C' + B'$ 
 $KB = C$ 
 $KC = 1$ 











| KC |   | E | 3 |   |
|----|---|---|---|---|
|    | d | 1 | 1 | d |
| А  | d | 1 | 1 | d |
|    |   | ( | С |   |

8. (10 points) Reduce the number of states in the following state table, and tabulate the reduced state table:

|         | Next  | State | Out   | put   |
|---------|-------|-------|-------|-------|
| Present |       |       |       |       |
| State   | x = 0 | x = 1 | x = 0 | x = 1 |
| а       | f     | b     | 0     | 0     |
| b       | d     | С     | 0     | 0     |
| С       | f     | е     | 0     | 0     |
| d       | g     | а     | 1     | 0     |
| e       | d     | С     | 0     | 1     |
| f       | f     | b     | 1     | 1     |
| g       | g     | h     | 0     | 1     |
| h       | g     | а     | 1     | 0     |

d = h

|         | Next  | State | Out   | put   |
|---------|-------|-------|-------|-------|
| Present |       |       |       |       |
| State   | x = 0 | x = 1 | x = 0 | x = 1 |
| а       | f     | b     | 0     | 0     |
| b       | d     | С     | 0     | 0     |
| С       | f     | е     | 0     | 0     |
| d       | g     | а     | 1     | 0     |
| е       | d     | С     | 0     | 1     |
| f       | f     | b     | 1     | 1     |
| g       | g     | d     | 0     | 1     |

9. (15 points) Convert the following circuit into a circuit that contains only NAND gates.









| х | У | А | В | A(t+1) | B(t+1) |
|---|---|---|---|--------|--------|
| 0 | 0 | 0 | 0 | 0      | 0      |
| 0 | 0 | 0 | 1 | 0      | 0      |
| 0 | 0 | 1 | 0 | 0      | 0      |
| 0 | 0 | 1 | 1 | 0      | 0      |
| 0 | 1 | 0 | 0 | 0      | 0      |
| 0 | 1 | 0 | 1 | 0      | 0      |
| 0 | 1 | 1 | 0 | 0      | 0      |
| 0 | 1 | 1 | 1 | 0      | 0      |
| 1 | 0 | 0 | 0 | 1      | 1      |
| 1 | 0 | 0 | 1 | 1      | 0      |
| 1 | 0 | 1 | 0 | 1      | 1      |
| 1 | 0 | 1 | 1 | 1      | 1      |
| 1 | 1 | 0 | 0 | 0      | 1      |
| 1 | 1 | 0 | 1 | 1      | 0      |
| 1 | 1 | 1 | 0 | 0      | 1      |
| 1 | 1 | 1 | 1 | 1      | 1      |

11. (20 points) Design a Mealy sequential circuit that has an output of 1 whenever its input string has the sequence 1010 and otherwise has an output of 0. These sequences can overlap. Use T flip-flops. You do not have to draw the circuit diagram.





| PS        | х | NS        | У |
|-----------|---|-----------|---|
| <b>SO</b> | 0 | <b>SO</b> | 0 |
| <b>SO</b> | 1 | <b>S1</b> | 0 |
| <b>S1</b> | 0 | <b>S2</b> | 0 |
| <b>S1</b> | 1 | <b>S1</b> | 0 |
| <b>S2</b> | 0 | <b>SO</b> | 0 |
| <b>S2</b> | 1 | <b>S3</b> | 0 |
| <b>S3</b> | 0 | <b>S2</b> | 1 |
| <b>S3</b> | 1 | <b>S1</b> | 0 |

| PS | X | NS | У | ТА | ТВ |
|----|---|----|---|----|----|
| 00 | 0 | 00 | 0 | 0  | 0  |
| 00 | 1 | 01 | 0 | 0  | 1  |
| 01 | 0 | 10 | 0 | 1  | 1  |
| 01 | 1 | 01 | 0 | 0  | 0  |
| 10 | 0 | 00 | 0 | 1  | 0  |
| 10 | 1 | 11 | 0 | 0  | 1  |
| 11 | 0 | 10 | 1 | 0  | 1  |
| 11 | 1 | 01 | 0 | 1  | 0  |





TA = AB'x' + ABX + A'Bx'





TB = <mark>B'x</mark> + **Bx'** 

y = **ABx'**