The University of Alabama in Huntsville ECE Department EE 202 – 01 Test 1 Solution Spring 2017

In order to get full credit, you *must* show your work! You may use additional sheets of paper for your work, please put your name on each additional sheet. You *may* use a calculator.

x + 0 = x	x · 1 = x
x + x' = 1	$\mathbf{x} \cdot \mathbf{x}' = 0$
$\mathbf{x} + \mathbf{x} = \mathbf{x}$	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$
x + 1 = 1	$\mathbf{x} \cdot 0 = 0$
(x')' = x	
$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$	xy = yx
x + (y + z) = (x + y) + z	x(yz) = (xy)z
x(y + z) = xy + xz	x + yz = (x + y)(x + z)
(x + y)' = x'y'	(xy)' = x' + y'
x + xy = x	x(x + y) = x

- 1. (1 point) The output of a two input AND gate is 1 if <u>both</u> of the inputs are 1.
- 2. (1 point).Definitions of logical operations may be listed in a compact form called a <u>K-map</u>.
- 3. (1 point) A <u>literal</u> is a single variable within a term, in complemented or uncomplemented form.
- 4. (1 point) A <u>register</u> is a group of binary cells.
- 5. (1 point). For n bits, there are 2^{n} distinct combinations of 0s and 1s.
- 6. (10 points) Convert (20453₇) to decimal:

 $2 \times 7^{4} + 0 \times 7^{3} + 4 \times 7^{2} + 5 \times 7^{1} + 3 \times 7^{0} = 2 \times 2401 + 0 \times 343 + 4 \times 49 + 5 \times 7 + 3 \times 1 = 4802 + 0 + 196 + 35 + 3 = 5036$

7. (15 points) Obtain the truth table of the following function and express it in sum-of-minterms and product-of-maxterms forms.

F = (w' + x'z)(xyz + y)	yz' + wx)
-------------------------	-----------

w	х	у	Z	(w' + x'z)	xyz + yz' +wx)	F
0	0	0	0	1	0	0
0	0	0	1	1	0	0
0	0	1	0	1	1	1
0	0	1	1	1	0	0
0	1	0	0	1	0	0
0	1	0	1	1	0	0
0	1	1	0	1	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	1	0	0	1	0
1	1	1	1	0	1	0

 $\mathsf{F} = \sum (2, 6, 7), \qquad \mathsf{F} = (0, 1, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15)$

8. (15 points) Convert decimal +106 and +72 to binary, using the 8-bit signed-2's-complement representation. Then perform the binary equivalent of (-106) + (-72). Convert the answer back to decimal and verify that it is correct or explain why it is not.

 $+106 = 0 \times -128 + 1 \times 64 + 1 \times 32 + 0 \times 16 + 1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1 = 0110 1010$ +72 = 0 × -128 + 1 × 64 + 0 × 32 + 0 × 16 + 1 × 8 + 0 × 4 + 0 × 2 + 0 × 1 = 0100 1000 -106 = 1 × -128 + 0 × 64 + 0 × 32 + 1 × 16 + 0 × 8 + 1 × 4 + 1 × 2 + 0 × 1 = 1001 0110 -72 = 1 × -128 + 0 × 64 + 1 × 32 + 1 × 16 + 1 × 8 + 0 × 4 + 0 × 2 + 0 × 1 = 1011 1000

-106 1001 0110 - 72 <u>1011 1000</u> 0100 1110

0100 1110 = 0×-128 + 1×64 + 0×32 + 0×16 + 1×8 + 1×4 + 1×2+ 0×1 = 0 + 64 + 0 + 0 + 8 + 4 + 2 = 78 🗷, It doesn't match because we have overflow, -128 is the most negative number and the result of -106 + -72 = -178

(5 points) Convert 01 1100 1110 0011 1100 0010 1010 1100 to hexadecimal
1CE3C2AC₁₆

- EE 202
- 10. (15 points) Find all the prime implicants for sum of products for the following Boolean function, *and* determine which are essential:

F (w, x, y, z) =Σ (1, 5, 6, 7, 8, 9, 10, 14, 15)

11. (15 points) Simplify the following Boolean function as a product of sums, using a four-variable map.

F (w, x, y, z) = $\Sigma(0, 2, 3, 5, 12, 13)$) d (w, x, y, z) = $\Sigma(4, 8, 10, 14)$

12. (10 points) Convert the following circuit into a circuit that contains only NAND gates.

13. (10 points) Formulate a weighted binary code for the decimal digits, using weights 1325

Number	1	3	2	5
0	0	0	0	0
1	1	0	0	0
2	0	0	1	0
3	0	1	0	0
4	1	1	0	0
5	0	0	0	1
6	1	0	0	1
7	0	0	1	1
8	0	1	0	1
9	1	1	0	1