
Projects

Secret Messages

Make your own encryption program, to send and receive secret

messages.

Python

Step 1 Introduction:

In this project, you’ll learn how to make your own encryption program, to send and receive

secret messages with a friend. This project ties in with the “Earth to Principia” activity on

page 16 of the Space Diary.

Additional information for club leaders

If you need to print this project, please use the Printer friendly version (https://project
s.raspberrypi.org/en/projects/secret-messages/print).

Club leader notes

Introduction:

In this project, children will learn how to make an encryption program, to send and

receive secret messages with a friend. This project introduces iteration (looping) over a

text string.

Online Resources

This project uses Python 3. We recommend using trinket (https://trinket.io/) to
write Python online. This project contains the following Trinkets:

New (blank) Python Trinket – jumpto.cc/python-new (http://jumpto.cc/python
-new)

https://projects.raspberrypi.org/en/projects/secret-messages/print
https://trinket.io/
http://jumpto.cc/python-new


There is also a trinket containing the �nished project:

‘Secret Messages’ Finished – trinket.io/python/402256078c (https://trinket.i
o/python/402256078c)

‘Friendship Calculator’ Finished – trinket.io/python/2e852cd687 (https://trink
et.io/python/2e852cd687)

O�ine Resources

This project can be completed o�ine (https://www.codeclubprojects.org/en-GB/r
esources/python-working-o�ine/) if preferred.

You can �nd the completed project in the ‘Volunteer Resources’ section, which

contains:

messages-�nished/messages.py

messages-�nished/friends.py

(All of the resources above are also downloadable as project and volunteer .zip �les.)

Learning Objectives

Iteration (looping) over a string variable;

The find() method;

The modulus operator (%).

This project covers elements from the following strands of the Raspberry Pi Digital
Making Curriculum (http://rpf.io/curriculum):

Combine programming constructs to solve a problem. (https://www.raspberry
pi.org/curriculum/programming/builder)

Challenges

Use a Caesar cipher - encrypy and decrypt letters and words manually;

Variable keys - allowing the user to input a chosen key;

Encrypting and decrypting messages - encrypting and decrypting whole messages;

Friendship calculator - applying text iteration to a new problem.

Frequently Asked Questions

When searching using find() or if char in alphabet:, note that searches

are case-sensitive. Children can use:

message = input("Please enter a message to encrypt: ").lower()

to make the input lower case before searching.

Project materials

https://trinket.io/python/402256078c
https://trinket.io/python/2e852cd687
https://www.codeclubprojects.org/en-GB/resources/python-working-offline/
http://rpf.io/curriculum
https://www.raspberrypi.org/curriculum/programming/builder


Project resources

.zip �le containing all project resources (https://projects-static.raspberrypi.or
g/projects/secret-messages/6d74c6a4d82a6f5550e8de16e0b1852311ebbd3
1/en/resources/secret-messages-project-resources.zip)
Online blank Python Trinket (http://jumpto.cc/python-new)
O�ine blank Python �le (https://projects-static.raspberrypi.org/projects/secr
et-messages/6d74c6a4d82a6f5550e8de16e0b1852311ebbd31/en/resources/
new-new.py)

Club leader resources

.zip �le containing all completed project resources (https://projects-static.ras
pberrypi.org/projects/secret-messages/6d74c6a4d82a6f5550e8de16e0b185
2311ebbd31/en/resources/secret-messages-volunteer-resources.zip)
Online completed Trinket project (https://trinket.io/python/402256078c)
secret-messages-�nished/messages.py (https://projects-static.raspberrypi.o
rg/projects/secret-messages/6d74c6a4d82a6f5550e8de16e0b1852311ebbd
31/en/resources/secret-messages-�nished-messages.py)
Online completed ‘Friendship calculator’ challenge (https://trinket.io/python/
2e852cd687)
o�ine complete ‘Friendship calculator’ challenge (https://projects-static.rasp
berrypi.org/projects/secret-messages/6d74c6a4d82a6f5550e8de16e0b1852
311ebbd31/en/resources/friendship-calculator-�nished-friends.py)

Step 2 The Caesar cipher

A cipher is a type of secret code, where you swap the letters around so that no-one can

read your message.

You’ll be using one of the oldest and most famous ciphers, the Caesar cipher, which is

named after Julius Caesar.

Before we start coding, let’s try using the Caesar cipher to hide a word.

Hiding a word is called encryption.

Let’s start by encrypting the letter ‘a’. To do this, we can draw the alphabet in a circle,

like this:

https://projects-static.raspberrypi.org/projects/secret-messages/6d74c6a4d82a6f5550e8de16e0b1852311ebbd31/en/resources/secret-messages-project-resources.zip
http://jumpto.cc/python-new
https://projects-static.raspberrypi.org/projects/secret-messages/6d74c6a4d82a6f5550e8de16e0b1852311ebbd31/en/resources/new-new.py
https://projects-static.raspberrypi.org/projects/secret-messages/6d74c6a4d82a6f5550e8de16e0b1852311ebbd31/en/resources/secret-messages-volunteer-resources.zip
https://trinket.io/python/402256078c
https://projects-static.raspberrypi.org/projects/secret-messages/6d74c6a4d82a6f5550e8de16e0b1852311ebbd31/en/resources/secret-messages-finished-messages.py
https://trinket.io/python/2e852cd687
https://projects-static.raspberrypi.org/projects/secret-messages/6d74c6a4d82a6f5550e8de16e0b1852311ebbd31/en/resources/friendship-calculator-finished-friends.py


To make a secret encrypted letter from a normal one, you need to have a secret key.

Let’s use the number 3 as the key (but you can use any number you like).

To encrypt the letter ‘a’, you just move 3 letters clockwise, which will give you the

letter ‘d’:

You can use what you’ve learnt to encrypt an entire word. For example, ‘hello’

encrypted is ‘khoor’. Try it yourself.

h + 3 = k
e + 3 = h
l + 3 = o
l + 3 = o
o + 3 = r

Getting text back to normal is called decryption. To decrypt a word, just subtract the

key instead of adding it:

k - 3 = h
h - 3 = e
o - 3 = l
o - 3 = l
r - 3 = o

Step 3 Challenge: Use a Caesar cipher



Can you send a secret word to a friend? You’ll both need to agree on a secret key before

you start.

You could even send entire sentences to each other!

Step 4 Encrypting letters

Let’s write a Python program to encrypt a single character.

Open the blank Python template Trinket: jumpto.cc/python-new (http://jumpto.cc/
python-new).

Instead of drawing the alphabet in a circle, let’s write it out as an alphabet variable.

Each letter of the alphabet has a position, starting at position 0. So the letter ‘a’ is at

position 0 of the alphabet, and ‘c’ is at position 2.

You can get a letter from your alphabet variable by writing the position in square

brackets.

You can delete the print statements once you’ve tried this out.

Next, you’ll need to store the secret key in a variable.

Next, ask the user for a single letter (called a character) to encrypt.

Find the position of the character.

http://jumpto.cc/python-new


You can test the stored position by printing it. For example, that character ‘e’ is at

position 4 in the alphabet.

To encrypt the character, you should add the key to the position. This is then

stored in a newPosition variable.

Add code to print the new character position.

Test out your new code. As your key is 3, it should add 3 to the position and store it

in your newPosition variable.

For example, letter ‘e’ is at position 4. To encrypt, you add the key (3), giving 7.

What happens when you try and encrypt the letter ‘y’?

Notice how the newPosition is 27, and there aren’t 27 letters in the alphabet!



You can use a % to tell the new position to go back to position 0 once it gets to position

26.

Finally, you want to print the letter at the new position.

For example, adding the key to the letter ‘e’ gives 7, and the letter at position 7 of the

alphabet is ‘h’.

Try out your code. You can also remove some of your print statements, just printing the

new character at the end.

Step 5 Challenge: Variable keys

Modify your program, so that the user can enter their own key to use. You’ll need to get the

user’s input, and store it in the key variable.

Remember to use the int() function to convert the input to a whole number.

You can then use a negative key to decrypt messages!

Step 6 Encrypting entire messages

Instead of just encrypting and decrypting messages one character at a time, let’s change

the program to encrypt entire messages!

Firstly, check that your code looks like this:



Create a variable to store the new encrypted message.

Change your code to store the user’s message and not just one character.

Add a for loop to your code, and indent the rest of the code so that it is repeated for

each character in the message.

Test your code. You should see that each character in the message is encrypted and

printed one at a time.



Let’s add each encrypted character to your newMessage variable.

You can print the newMessage as it is being encrypted.

If you delete the spaces before the print statement, the encrypted message will only

be displayed once at the end. You can also delete the code for printing the character

positions.

Step 7 Extra characters

Some characters aren’t in the alphabet, which causes an error.

Test out your code with some characters that aren’t in the alphabet.

For example, you could use the message hi there!!.

Notice that the space and the ! characters are all encrypted as the letter ‘c’!

To �x this, you only want to translate a character if it’s in the alphabet. To do this, add

an if statement to your code, and indent the rest of your code.



Test your code with the same message. What happens this time?

Now, your code just skips any character if it’s not in the alphabet.

It would be better if your code didn’t encrypt anything not in the alphabet, but just

used the original character.

Add an else statement to your code, which just adds the original character to the

encrypted message.

Test your code. You should see that any character in the alphabet is encrypted, but any

other characters are left alone!

Step 8 Challenge: Encrypting and decrypting messages

Encrypt some messages, and give them to a friend along with the secret key. See if they

can decrypt them using their program!

You could also duplicate the project and create a separate program for decrypting

messages.

Step 9 Challenge: Friendship calculator

Write a program to show how compatible 2 people are, by calculating a friendship score.



The program could loop through each of the characters in the 2 names, and add points to

a score variable each time certain letters are found.

You should decide on rules for awarding points. For example, you could award points for

vowels, or characters that are found in the word “friend”:

You could also give the user a personalised message, based on their score:

Published by Raspberry Pi Foundation (https://www.raspberrypi.org) under a Creative Commons license (https://creativecommon
s.org/licenses/by-sa/4.0/). 

View project & license on GitHub (https://github.com/RaspberryPiLearning/secret-messages)

https://www.raspberrypi.org/
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/RaspberryPiLearning/secret-messages

