
A Framework For Trusted Instruction Execution
Via Basic Block Signature Verification

Milena Milenkovi�, Aleksandar Milenkovi�, Emil Jovanov

Electrical and Computer Engineering Dept.
The University of Alabama in Huntsville

{milenkm|milenka|jovanov}@ece.uah.edu

ABSTRACT
Most of today’s computers are connected to the Internet or at

least to a local network, exposing system vulnerabilities to the
potential attackers. One of the attackers’ goals is the execution of
the unauthorized code. In this paper we propose a framework that
will allow execution of the trusted code only and prevent malicious
code from executing. The proposed framework relies on the run-
time verification of basic block signatures. The basic block
signatures are generated during a trusted installation process, using
a signature function with secret coefficients and the address of the
basic block within a program. The result of the trusted installation
is the encrypted basic block signature table (BBST), which is
appended to the program binary. The potential of the proposed
framework is evaluated using traces of SPEC CPU2000
benchmarks. The results indicate that the proposed mechanism
does not have a large negative impact on performance.

Keywords
Computer security, trusted execution, intrusion detection

1. INTRODUCTION
With more computers connecting to the Internet each day,

computer system security has become a critical issue. This trend
will continue in the future, with even more computer platforms
connected to the Internet, including the growing number of
embedded systems, from home appliances to health monitoring
devices.

One of the major security problems is the execution of the
unauthorized and potentially malicious code. During the execution
of vulnerable programs the attacker is able to inject the code into
some memory structure, for example a buffer, and then to change
the code pointer, such as the return value on the stack [1]. One
attack example is the so-called stack smashing: an attacker exploits
a possibility for a buffer overflow in the program, by sending more
data than the buffer can hold. The consequence of this attack is that
a valid return address on the stack is overwritten with the

malicious code address that points to the unauthorized code, also
written on the stack. If the vulnerable program has root privileges,
the unauthorized code will have the same privileges. Various other
examples of attacks exist, such as the heap overflow and the format
string attack [2].

In this paper we propose a processor architecture that will
allow execution of the trusted instructions only and prevent
malicious code from executing. The proposed architecture relies on
the run-time verification of the signature of the last basic block in
an instruction stream. A basic block is a straight-line code
sequence with no branch instructions out except at the exit and no
branch instructions in except to the entry. An instruction stream or
dynamic basic block is a sequential run of instructions from the
target of a taken branch to the first taken branch in sequence. A
basic block signature is determined using a multiple input
signature register, with linear feedback coefficients dependent on
the processor secret key.

Our recent evaluation of SPEC2000 benchmarks indicates
that an application execution encompasses a relatively small
number of unique instruction streams [3], and correspondingly a
relatively small number of basic blocks. Hence, a table holding all
basic block signatures will occupy limited memory resources. Not
all basic block signatures have to be checked, just the last one in an
instruction stream. The reason is that a malicious stream cannot
end with the trusted basic block, so if the last basic block in a
stream is proved to be trusted, the whole stream can be trusted. The
code in the cache memory does not need to be verified, which
further reduces the number of verifications. In order to minimize
the execution overhead, the signature verification is performed in
parallel with the instruction execution. The most recently needed
signatures are stored in the cache-like structure – the Basic Block
Signature Table (BBST). Hence, a penalty occurs only if a
signature must be fetched from the memory. The potential of the
proposed framework is evaluated using traces of SPEC CPU2000
benchmarks [4], by assessing the number of the BBST misses per
one million instructions.

The rest of the paper is organized as follows. Section 2
describes the related work, and the third section gives details about
the proposed framework. Section 4 shows the framework potential,
and the last section concludes the paper.

2. RELATED WORK
The simplest solution of the problem of malicious code

execution would be to write the code that is not vulnerable to such
attacks. This is of course infeasible, although the static code
analysis can find a significant number of security flaws. For
example, Wagner et al. propose an automated detection of code
that might cause the buffer overflow [5], but the evaluation of that
approach shows a relatively large number of false alarms. Another

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ACM SE’04, April 2–3, 2004, Huntsville, Alabama, USA.
Copyright 2004 ACM 1-58113-870-9/04/04…$5.00.

191

approach is to detect and/or prevent the execution of malicious
code dynamically, in the run-time.

The research by Kirovski et al. is the most related one to our
work [6]. They propose the Secure Program Execution Framework
for intrusion prevention. The main idea is that the executable of a
program can have different representations that produce the correct
program behavior. Possible transformations include instruction
scheduling, basic block reordering, branch type selection, register
permutation, etc. The smallest unit of transformation is the
instruction block – instructions that can fit into one cache line or
prefetch buffer. During installation each instruction block is
transformed in the following way. First, the domain of selected
constraints is ordered. For example, in the case of instruction
scheduling, a unique number is assigned to each instruction
according to some policy. Then transformation-invariant (TI) hash
is calculated, since some information is not dependent on the code
transformation: control-data flow graphs, instruction types, values
of constants, etc. The obtained hash value is then encrypted using
AES or DES encryption algorithm, and the secret CPU ID as the
key. The encrypted hash value defines the transformation of the
instruction block. The similar process is used during program
execution. The verifier component calculates the TI hash for every
instruction block that is fetched after an instruction cache miss. It
then encrypts the hashed value and verifies whether the obtained
transformation is equal to the actual code. If there is no match, an
abort signal is sent to the processor. Verifications introduce a
significant overhead: for example, 33 cycles for domain ordering
and TI-hash, 16 cycles for encryption, and 1 cycle for verification.
That overhead can be reduced if the TI-cache is used. The
approach is validated using ARM processor simulator and
Mediabench set of benchmarks. With TI-cache, the performance is
reduced 7.5%-17.1%. If the basic block reordering transformation
is used, the code size increases on average 7.5%. This solution
successfully prevents intrusion, but at the cost of relatively
significant execution slowdown.

A very interesting approach is to tag all data coming from
“ the outside world” , e.g. I/O channels, as spurious, and to prevent
execution of any control transfer instruction if the target address
depends on spurious data [2]. This approach may generate some
false positives, since the target address may be input-dependant,
for example in switch constructs. In general case, input data can
propagate to a target address through a series of calculations, so
this approach requires a relatively complex data dependency
analysis.

Several researchers suggest intrusion detection by monitoring
the system calls of a program [7][8][9][10]. If the system call
sequence for a particular program deviates from the normal
behavior, an intrusion is suggested. The normal program behavior
is obtained either by profiling or by encoding the specification of
expected behavior, using a special high-level specification
language. If profiling is used, false positives may be generated
when a rarely used region of the code is executed. Specification-
based approach, on the other hand, is as error prone as the coding
process itself. Finally, although a malicious code is very likely to
encompass a system call, such as system() command, an attacker
may potentially devise an attack with the same call sequence as the
vulnerable program, or inflict some damage even without system
calls. Another profiling approach [11] suggests using the values of
performance monitoring registers to verify whether the program
deviates from its expected behavior.

Various compilers, compiler and library patches target one or
more possible vulnerabilities in the code, but so far none of them is
able to cover all possible security bugs that enable malicious code
execution [1]. Most of them concentrate on the detection and/or
prevention of the change of the function return address on the
stack. For example, the StackGuard compiler places the dummy
value between the return address and the rest of the stack. A buffer
overflow attack that overwrites the return address must also
overwrite the dummy value.

Xu et al. propose an architectural support against the buffer
overflow attack [12]. Two ideas are evaluated: to separate data and
address stack, or to use a secure redundant copy of return
addresses.

Our approach is somewhat similar to mechanisms used to
tamper-proof the software [13], but with the different goal and
different granularity. The tamper proofing protects against
unauthorized changes in the code, and it usually works on the level
of files or modules, while our framework works at the level of
instruction streams and basic blocks, and protects against
execution of the unauthorized code.

3. PROPOSED FRAMEWORK FOR
TRUSTED INSTRUCTION EXECUTION

A security mechanism for trusted instruction execution should
successfully prevent the execution of any unauthorized code, but
the security features should not significantly increase the program
execution time and the overall system complexity. In this paper we
propose a framework that satisfies these requirements.

The atomic code unit protected by its signature is a basic
block. One possibility would be to verify the signature of each
executed basic block, but at the cost of an increased overhead.
Assuming that the memory containing program instructions is
write-protected, the number of verifications can be safely reduced
if only the last basic block in an instruction stream is verified, i.e.,
the whole instruction stream can be trusted if its last basic block is
verified. The number of necessary signature verifications can be
further reduced. We can assume that the code in the cache memory
can always be trusted, so the checks for signature match should be
done only if there is an instruction cache miss during the execution
of the last basic block in the instruction stream. The critical
information on the hard disk, such as signatures, must be protected
by encryption.

Figure 1 illustrates the proposed architecture for trusted
program execution. The proposed framework introduces relatively
modest changes in the processor organization and a new format of
program executables. The processor is modified to include two
hardware resources, the BBST (Basic Block Signature Table) and
the BBSVU (Basic Block Signature Verification Unit). The BBST
is a cache-like structure that keeps relevant information about the
most recently needed basic block signatures, and the BBSTVU
verifies the signatures when needed. The signature information for
all basic blocks is stored in the BBST_M, prepared by the compiler
and appended to the executable. The following paragraphs give a
more detailed description of each phase of the proposed security
mechanism: compilation and program installation, program
loading in the memory, and program execution.

192

����

���

���� � 	

�
�
�
�

��	 � ��

�������

������

����

� �
�

��
��
���� 	

Figure 1. Architecture for trusted computing.
Legend: MMU – Memory Management Unit,
IF – Instruction Fetch Unit, FPUs – Floating Point Unit(s),
Control – Control Unit, L1D – Level 1 Data Cache,
L1I – Level1 Instruction Cache, BBST – Basic Block Signature
Table, BBST_M – Basic Block Signature Table in Memory,
BBSVU – Basic Block Signature Ver ification Unit.

Compilation and Program Installation. The program
compilation process is modified to generate the basic block
signature table (BBST_M). Figure 3 shows the structure of the
table. It includes the following fields: BB.SA (Basic Block Starting
Address Offset) and BB.S (Basic Block Signature). The BB.SA is
the address offset of the first instruction in the basic block, from
the beginning of the code. The basic block signature is a function
of the instruction words in the basic block. While different
functions can be used for signature, we propose the use of the
multiple input signature register (MISR). The MISR is frequently
used in the VLSI testing, since it compresses an array of data under
test into one signature, which is than compared to the signature of
a known correctly functioning component. The MISR is
essentially a shift register with linear feedback and external inputs.
An example is shown in Figure 2. The signature of a basic block is
calculated with the instruction words as consecutive inputs to the
MISR. The MISR linear feedback coefficient are based on the
encryption key, which is unique to each processor and hidden in
hardware. The same key is used to generate the key for the
signature table encryption. The encryption key can be accessed
only during the trusted program installation, or during loading of
the program in the memory.

D

clk

Q

Q

D

clk

Q

Q

D

clk

Q

Q

D

clk

Q

Q

I1 I2
I3 I4

CLK

Figure 2 An implementation of a 4-bit M ISR.

The library code deserves a special note. If a static library is
used, only the necessary functions are linked with the rest of the
application into one executable file. Basic block signatures are
calculated for that file, so the signature table includes signatures of
basic blocks in the used library functions. Unlike a static library, a
dynamically linked library (DLL) is always completely loaded in
the memory, either at load time, or in runtime. In the proposed

framework each DLL has its own signature table, so all code can
be safely verified. The first address of the DLL code in the
memory must be kept by the system, so that address offset can be
properly calculated.

At the end of compilation and program installation phase the
BBST_M is encrypted using hidden processor key and some
symmetric secure encryption algorithm such as AES (Advanced
Encryption Standard). We do not need to encrypt the code itself,
since any changes in the code will result in the signature mismatch.

BB.SA BB.S

Figure 3 Basic Block Signature Table fields.
Legend: BB.SA – Basic Block Star ting Address Offset
BB.S – Basic Block Signature.

Program Loading. Program loading assumes decryption of
the BBST_M and its loading into the main memory. A memory
region with BBST_M can be accessed only by the BBSVU, and it
is also write-protected. A subset of the BBST_M can be loaded
into the processor’s basic block signature table, and that subset can
be chosen in various ways: by spatial locality, by applying
profiling information, or randomly. Another option is not to
preload the BBST, but to fill it dynamically, just like a regular
cache structure. When a stream is executed and the BBSVU does
not have the corresponding entry for the last basic block in the
stream, a BBST miss is issued, and the corresponding info is
brought to BBST from the BBST_M.

As long as an application and its signature table stay in the
memory, there is no need for decryption process, so the decryption
increases load time only. If an application has a very large
signature table and/or code, or must be frequently swapped, the
decryption must be performed for each load in memory. Very large
signature tables can be only partially loaded, and then a special
partial BBST flag must be set. If this flag is set, a miss in the
memory triggers the loading of the corresponding BBST part.

Program Execution - Program-Flow Monitoring by the
BBSVU. During trusted program execution, an additional set of
registers keeps the track of the program flow and information
relevant for basic blocks: PPC (Previous Program Counter) and
CBB.SA (Current Basic Block Starting Address) (Figure 4). The
decoding logic detects the instructions that can change the control
flow, such as jumps, branches, returns, etc. Every such instruction
marks the end of a basic block, so the next instruction is the
beginning of a new basic block. If a control signal coming from the
instruction decoder is set, indicating that a control flow instruction
is currently being executed, than an internal flag (CntF) indicates
that the difference between the address of the program start and
next instruction PC will initialize CBB.SA. A signature capture
block is responsible to calculate CBB.S (Current Basic Block
Signature), starting from the first instruction in the block. Since the
original signature is calculated using a MISR with coefficients
determined by the processor key, the combinational logic for
CBB.S provides the same coefficients. The CntF is also used to
reset the MISR.

193

New Stream

PPCPPC PCPC

PC-PPC = 4? CBB.SACBB.SA

Combinational
Logic

IRIRSASA

-
CntFCntF CntFCntF

BBSVU

BBSTLBB.SLBB.S

LBB.SALBB.SA

CBB.SCBB.S

ICacheMiss

Figure 4 Program flow monitor ing. Legend: PC – Program Counter , PPC – Previous Program Counter , IR – Instruction Register ,
SA – Program Star ting Address, CntF – Control signal from the decoder, indicating the end of a basic block, CBB.SA/LBB.SA –
Current/Last Basic Block Star ting Address, CBB.S/LBB.S – Curren/Last Basic Block Signature Register , BBSVU - Basic Block
Signature Ver ification Unit, BBST – Basic Block Signature Table, ICacheMiss – Instruction Cache M iss dur ing basic block
execution.

As explained before, we need to check only the signature of
the last basic block in an instruction stream, and only when that
basic block caused an instruction cache miss. The end of the
current instruction stream is detected by comparison of the PC and
PPC registers. If there was also a corresponding cache miss,
current values of the CBB registers are transferred to the
corresponding LBB registers in the BBSVU. The CBB registers
then continue to capture the relevant information of the currently
executed basic block, while concurrently the BBSVU is verifying
the signature of the last basic block in the previous stream. The
signature table lookup results in a miss or hit. In the case of a
signature hit the program stream executed has no malicious code.
A signature miss is caused by the execution of an instruction
stream with no signature for the last basic block in the signature
table. It could be an infrequently executed basic block, or a
malicious code. If the last basic block of the previous instruction
stream has an entry in the basic block table residing in the memory
and there is a signature match, than the instruction stream is not
malicious and the execution continues as usual. Otherwise, it
means that a malicious instruction stream has been executed, so the
BBSV traps the operating system. The operating system than halts
the program execution, and audits the intrusion event.

At the moment when a possible intrusion has been detected
the program can be well in the middle of execution of the
following instruction stream. In order to reduce the overhead due
to the signature checking, we do not stop the processor after each
instruction stream and the checking process goes completely in the
background. We assume that this delay on average will be a few
instructions and that no serious harm can be made during that
period of time, but a threshold of the number of streams waiting to
be verified must be set. For example, we can allow only one stream
to proceed with the execution during the verification of the
signature for the last basic block in the previously executed stream.
If we allow more than one stream to proceed unverified, we need a
buffer for the last basic block signatures. Another, more secure
option, is to buffer any write to the memory until the verification
ends, so no untrusted stores can be executed.

When a very short instruction stream executes in parallel with
the signature table lookup, the processor will be stalled until the
signature processor completes the lookup. This situation can be
avoided if we assume a pipelined buffer between the signature co-
processor and program-flow and capture block. This

implementation will slightly increase the complexity of control
unit and requires extra area.

Another question is when the basic block signature should be
captured, i.e., in which pipeline stage. For in-order execution, the
capture block may work in parallel with the execution unit, but for
out-of-order execution, the signature must be calculated for a
prefetched (in-order) basic block. The system must keep track of
correspondence between branches and in-order basic blocks, and
check signature of the in-order basic block that includes a currently
executing branch, so some additional registers are needed. Whole
procedure has to be moved to early pipeline stages, e.g. after a
decode stage.

4. THE FRAMEWORK POTENTIAL
In this section we will first discuss the strength of the

proposed approach, and then show its potential for prevention of
execution of the unauthorized code.

We use a 32-bit basic block signature, i.e., a 32-bit MISR. It
means that there are 232 possible combinations for the linear
feedback coefficients. The attacker may have knowledge only
about the program code, and not about the signatures, so it is not
possible to discover the MISR function by cryptanalysis. For
example, the brute force attack in a buffer overflow attack would
require to overflow the buffer up to 232 times to find a basic block
with a signature that is accepted by the system. With a possibility
of buffer overflow each second of the program execution, an
attacker would need more than a hundred years for a successful
attack. Nevertheless, if more security is needed, we may use longer
signatures and the corresponding MISR.

The potential of the proposed framework is evaluated using
SPEC CPU2000 traces for Alpha architecture [3]. Each application
is traced in two segments for reference data input: the first two
billion instructions (F2B), and the two billion instructions after
skipping 50 billion (M2B), thus making sure that the results do not
overemphasize the program initialization. We use 10 integer
(CINT) and 12 floating-point (CFP) applications. The simulated
BBST has 4 ways, one signature line, and 128 or 256 sets. The
instruction cache size is fixed, with 64B line, 4 ways, and 128 sets.
Both structures have LRU replacement policy. The BBST is filled
dynamically.

194

Table 1 and Table 2 show the number of unique basic blocks
and unique instruction streams in each traced segment. The
application 176.gcc has the maximum number of unique basic
blocks, 29133 in the M2B segment, and 200.sixtrack has the
minimum number, 144 in the M2B segment. On average, CFP
benchmarks have less instruction streams and basic blocks than
CINT, so we may expect less misses in the BBST for CFP
benchmarks.

Table 1 Basic block statistics for integer benchmarks

 No. of Instr . Streams No. of Basic Blocks

CINT F2B M2B F2B M2B

164.gzip 751 336 872 327

176.gcc 25416 22222 29133 25777

181.mcf 744 308 981 327

186.crafty 4122 1892 4161 1692

197.parser 4767 4200 4193 4145

252.eon 3486 588 3885 675

253.perlbmk 9034 6344 10425 7542

254.gap 3218 476 3580 542

255.vortex 5496 2644 8086 3823

300.twolf 2399 1014 2842 1195

Average 5943.3 4002.4 7476.222 5079.778

Table 2 Basic block statistics for floating-point benchmarks

 No. of Instr . Streams No. of Basic Blocks

CFP F2B M2B F2B M2B

168.wupwise 1563 234 2132 312

171.swim 1582 496 2268 793

172.mgrid 1457 875 1909 1082

177.mesa 1637 593 2177 763

178.galgel 1818 81 2518 166

179.art 435 341 549 502

183.equake 517 260 668 395

188.ammp 955 502 1100 566

189.lucas 964 317 1318 458

191.fma3d 2083 841 2447 1082

200.sixtrack 3532 82 4325 144

301.appsi 2439 389 2439 636

Average 1581.8 417.6 1987.5 574.9

Figure 5 and Figure 6 show the number of BBST misses per 1
million executed instructions. We use this measure instead of the
BBST miss rate, because it is a better quantitative indicator of the
execution time overhead due to the trusted instruction execution.
On a BBST miss, the BBST_M must be searched for the missing
entry. If binary search is used, the number of memory accesses in
the worst case log2(BBST_M size). The average number of
memory accesses can be reduced if a convenient hash function and
larger BBST_M are used.

As Table 1 and Table 2 suggest, the number of BBST misses
is less for the CFP benchmarks then for CINT, on average for more
than two orders of magnitude. The CFP applications have not only

less instruction streams, but also less instruction cache misses, and
therefore less accesses to the BBST (Table 3 and Table 4).

The maximum number of BBST misses per 1M instruction is
for the 128 sets, for 255.vortex, 176.gcc, and 253.perlbmk, in the
F2B segment: 2002, 1208, and 220, respectively. On average, the
number of BBST misses is smaller in the M2B segment than in the
F2B segment, probably due to the less cache misses in the M2B,
when most application enter the main program loop. Doubling the
number of entries of the BBST reduces the number of misses for
more than half for some applications, while application with small
number of misses are not sensitive to the change in BBST size.

CINT F2B

0.01

0.1

1

10

100

1000

10000

16
4.g

zip

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

mk

25
4.

ga
p

25
5.

vo
rte

x

30
0.

tw
olf

B
B

S
T

 m
is

se
s/

1M
 in

st
ru

ct
io

n
s

BBST sets = 128

BBST sets = 256

CINT M2B

0.01

0.1

1

10

100

1000

10000

16
4.

gz
ip

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

mk

25
4.

ga
p

25
5.v

or
te

x

30
0.t

wol
f

B
B

S
T

 m
is

se
s/

1M
 in

st
ru

ct
io

n
s

BBST sets = 128

BBST sets = 256

Figure 5 BBST misses per 1M instructions: CINT

Table 3 BBST Accesses, ICache M isses for SPEC2000 CINT

 ICache M iss BBST Access

 F2B M2B F2B M2B
164.gzip 473 163 244 93
176.gcc 11191997 4383436 6486412 2542273
181.mcf 567 152 317 68
186.crafty 5796954 3373577 3249582 1911733
197.parser 203198 221642 136042 122151
252.eon 642317 624857 616278 610379
253.perlbmk 23773413 2639643 13212329 1437475
254.gap 735728 10634 329756 6829
255.vortex 20855690 5187588 10888457 2712472
300.twolf 88703 844 86509 403

195

CFP F2B

0.01

0.1

1

10

100

16
8.

wup
wise

17
1.s

wim

17
2.

m
gr

id

17
7.

m
es

a

17
8.

ga
lge

l

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

18
9.l

uc
as

19
1.

fm
a3

d

20
0.

six
tra

ck

30
1.

ap
ps

iB
B

S
T

 m
is

se
s/

1M
 in

st
ru

ct
io

n
s

BBST sets = 128

BBST sets = 256

CFP M2B

0.01

0.1

1

10

100

16
8.

wup
wise

17
1.s

wim

17
2.

m
gr

id

17
7.

m
es

a

17
8.

ga
lge

l

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

18
9.l

uc
as

19
1.

fm
a3

d

20
0.

six
tra

ck

30
1.

ap
ps

iB
B

S
T

 m
is

se
s/

1M
 in

st
ru

ct
io

n
s

BBST sets = 128

BBST sets = 256

Figure 6 BBST misses per 1M instructions: CFP

Table 4 BBST Accesses, ICache M isses for SPEC2000 CFP

 ICache M iss BBST Access

 F2B M2B F2B M2B
168.wupwise 1494 263 806 125

171.swim 5517 5443 2512 2245

172.mgrid 7919 6167 3227 2369

177.mesa 25274 32143 14695 18897

178.galgel 1826 84 893 32

179.art 363 385 167 142

183.equake 2653050 336 1776447 111

188.ammp 995 900 623 314

189.lucas 1023 556 494 169

191.fma3d 8253849 2532 4704965 1061

200.sixtrack 1743932 663 949572 87

301.appsi 4434880 4089263 1483987 1281737

5. CONCLUSION
In this paper we propose a framework for trusted program

execution and evaluate its potential. The preliminary results
confirm the claim that our basic block signature verification
algorithm will not significantly increase the execution time.

We plan to assess the performance of even smaller BBST, and
to simulate the effect of the verification algorithm on execution
time on both in-order and out-of-order processors. We also plan to

evaluate whether profiling information can reduce the number of
BBST misses. The BBST can be preloaded with the most
frequently needed signatures, with signatures used at the beginning
of program execution, or randomly. Another direction of future
research is to evaluate an alternative implementation of the
proposed mechanism, where signatures are embedded in the code,
and reside in the instruction cache memory along the instructions.

6. REFERENCES
[1] J. Wilander, M. Kamkar. A Comparison of Publicly

Available Tools for Dynamic Buffer Overflow
Prevention. In Proceedings of the 10th Network and
Distributed System Security Symposium, San Diego, CA,
February 2003, pp. 149-162.

[2] G.E. Suh, J. Lee, and S. Devadas. Secure Program
Execution via Dynamic Information Flow Tracking.
Technical Report MIT-LCS-TR-912, Computer Science
and Artificial Intelligence Laboratory, MIT, 2003.

[3] A. Milenkovic and M. Milenkovic. Exploiting Streams in
Instruction and Data Address Trace Compression. In
Proceedings of IEEE 6th Annual Workshop on Workload
Characterization, Austin, TX, October 2003, pp. 99-107.

[4] SPEC 2000 Benchmark Suite, http://www.spec.org
[5] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A

First Step Towards Automated Detection of Buffer
Overrun Vulnerabilities. In Proceedings of Networking
and Distributed System Security Symposium 2000, San
Diego, CA, February 2000.

[6] D. Kirovski, M. Drinic, and M. Potkonjak. Enabling
Trusted Software Integrity. In Proceedings of ASPLOS,
San Jose, CA, 2002, pp. 108-120.

[7] C. Warrender, S. Forrest, and B. Pearlmutter. Detecting
Intrusions Using System Calls: Alternative Data Models.
In IEEE Symposium on Security and Privacy, Oakland,
CA, 1999, pp. 133-145.

[8] I. Sato, Y. Okazaki, and S. Goto. An Improved Intrusion
Detection Method Based on Process Profiling. IPSJ
Journal, Vol.43, No.11, pp. 3316-3326, November 2002.

[9] R. Sekar, T. Bowen and M. Segal. On Preventing
Intrusions by Process Behavior Monitoring. In Eighth
USENIX Security Symposium, Washington, DC, Aug
1999, pp. 29-40.

[10] S. A. Hofmeyr, S. Forrest and A. Somayaji. Intrusion
Detection using Sequences of System Calls. Journal of
Computer Security,s Vol. 6, 1998, pp. 151-180.

[11] D. L. Oppenheimer and M. R. Martonosi. Performance
Signatures: A Mechanism for Intrusion Detection. In
Proceedings of the 1997 IEEE Information Survivability
Workshop, San Diego, CA, 1997.

[12] J. Xu, Z. Kalbarczyk, S. Patel and R. K. Iyer.
Architecture Support for Defending Against Buffer
Overflow Attacks. In Proceedings of Workshop on
Evaluating and Architecting System Dependability
(EASY), San Jose, California, October 2002.

[13] C. Collberg and C. Thomborson. Watermarking,
Tamper-Proofing, and Obfuscation–Tools for Software
Protection. IEEE Transactions on software engineering,
Vol. 28, No. 8, pp. 735-746, August 2002.

196

