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ABSTRACT 
Most of today’s computers are connected to the Internet or at 

least to a local network, exposing system vulnerabilities to the 
potential attackers. One of the attackers’  goals is the execution of 
the unauthorized code. In this paper we propose a framework that 
will allow execution of the trusted code only and prevent malicious 
code from executing. The proposed framework relies on the run-
time verification of basic block signatures. The basic block 
signatures are generated during a trusted installation process, using 
a signature function with secret coefficients and the address of the 
basic block within a program. The result of the trusted installation 
is the encrypted basic block signature table (BBST), which is 
appended to the program binary. The potential of the proposed 
framework is evaluated using traces of SPEC CPU2000 
benchmarks. The results indicate that the proposed mechanism 
does not have a large negative impact on performance. 
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1.   INTRODUCTION 
With more computers connecting to the Internet each day, 

computer system security has become a critical issue. This trend 
will continue in the future, with even more computer platforms 
connected to the Internet, including the growing number of 
embedded systems, from home appliances to health monitoring 
devices.  

One of the major security problems is the execution of the 
unauthorized and potentially malicious code. During the execution 
of vulnerable programs the attacker is able to inject the code into 
some memory structure, for example a buffer, and then to change 
the code pointer, such as the return value on the stack [1]. One 
attack example is the so-called stack smashing: an attacker exploits 
a possibility for a buffer overflow in the program, by sending more 
data than the buffer can hold. The consequence of this attack is that 
a valid return address on the stack is overwritten with the 

malicious code address that points to the unauthorized code, also 
written on the stack. If the vulnerable program has root privileges, 
the unauthorized code will have the same privileges. Various other 
examples of attacks exist, such as the heap overflow and the format 
string attack [2]. 

In this paper we propose a processor architecture that will 
allow execution of the trusted instructions only and prevent 
malicious code from executing. The proposed architecture relies on 
the run-time verification of the signature of the last basic block in 
an instruction stream. A basic block is a straight-line code 
sequence with no branch instructions out except at the exit and no 
branch instructions in except to the entry. An instruction stream or 
dynamic basic block is a sequential run of instructions from the 
target of a taken branch to the first taken branch in sequence. A 
basic block signature is determined using a multiple input 
signature register, with linear feedback coefficients dependent on 
the processor secret key.  

Our recent evaluation of SPEC2000 benchmarks indicates 
that an application execution encompasses a relatively small 
number of unique instruction streams [3], and correspondingly a 
relatively small number of basic blocks. Hence, a table holding all 
basic block signatures will occupy limited memory resources. Not 
all basic block signatures have to be checked, just the last one in an 
instruction stream. The reason is that a malicious stream cannot 
end with the trusted basic block, so if the last basic block in a 
stream is proved to be trusted, the whole stream can be trusted. The 
code in the cache memory does not need to be verified, which 
further reduces the number of verifications. In order to minimize 
the execution overhead, the signature verification is performed in 
parallel with the instruction execution. The most recently needed 
signatures are stored in the cache-like structure – the Basic Block 
Signature Table (BBST). Hence, a penalty occurs only if a 
signature must be fetched from the memory. The potential of the 
proposed framework is evaluated using traces of SPEC CPU2000 
benchmarks [4], by assessing the number of the BBST misses per 
one million instructions.  

The rest of the paper is organized as follows. Section 2 
describes the related work, and the third section gives details about 
the proposed framework. Section 4 shows the framework potential, 
and the last section concludes the paper. 

2.   RELATED WORK 
The simplest solution of the problem of malicious code 

execution would be to write the code that is not vulnerable to such 
attacks. This is of course infeasible, although the static code 
analysis can find a significant number of security flaws.  For 
example, Wagner et al. propose an automated detection of code 
that might cause the buffer overflow [5], but the evaluation of that 
approach shows a relatively large number of false alarms. Another 
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approach is to detect and/or prevent the execution of malicious 
code dynamically, in the run-time. 

The research by Kirovski et al. is the most related one to our 
work [6]. They propose the Secure Program Execution Framework 
for intrusion prevention. The main idea is that the executable of a 
program can have different representations that produce the correct 
program behavior. Possible transformations include instruction 
scheduling, basic block reordering, branch type selection, register 
permutation, etc. The smallest unit of transformation is the 
instruction block – instructions that can fit into one cache line or 
prefetch buffer. During installation each instruction block is 
transformed in the following way. First, the domain of selected 
constraints is ordered. For example, in the case of instruction 
scheduling, a unique number is assigned to each instruction 
according to some policy. Then transformation-invariant (TI) hash 
is calculated, since some information is not dependent on the code 
transformation: control-data flow graphs, instruction types, values 
of constants, etc. The obtained hash value is then encrypted using 
AES or DES encryption algorithm, and the secret CPU ID as the 
key. The encrypted hash value defines the transformation of the 
instruction block. The similar process is used during program 
execution. The verifier component calculates the TI hash for every 
instruction block that is fetched after an instruction cache miss. It 
then encrypts the hashed value and verifies whether the obtained 
transformation is equal to the actual code. If there is no match, an 
abort signal is sent to the processor. Verifications introduce a 
significant overhead: for example, 33 cycles for domain ordering 
and TI-hash, 16 cycles for encryption, and 1 cycle for verification. 
That overhead can be reduced if the TI-cache is used. The 
approach is validated using ARM processor simulator and 
Mediabench set of benchmarks. With TI-cache, the performance is 
reduced 7.5%-17.1%. If the basic block reordering transformation 
is used, the code size increases on average 7.5%. This solution 
successfully prevents intrusion, but at the cost of relatively 
significant execution slowdown.  

A very interesting approach is to tag all data coming from 
“ the outside world” , e.g. I/O channels, as spurious, and to prevent 
execution of any control transfer instruction if the target address 
depends on spurious data [2]. This approach may generate some 
false positives, since the target address may be input-dependant, 
for example in switch constructs. In general case, input data can 
propagate to a target address through a series of calculations, so 
this approach requires a relatively complex data dependency 
analysis. 

Several researchers suggest intrusion detection by monitoring 
the system calls of a program [7][8][9][10]. If the system call 
sequence for a particular program deviates from the normal 
behavior, an intrusion is suggested. The normal program behavior 
is obtained either by profiling or by encoding the specification of 
expected behavior, using a special high-level specification 
language.  If profiling is used, false positives may be generated 
when a rarely used region of the code is executed. Specification-
based approach, on the other hand, is as error prone as the coding 
process itself. Finally, although a malicious code is very likely to 
encompass a system call, such as system() command, an attacker 
may potentially devise an attack with the same call sequence as the 
vulnerable program, or inflict some damage even without system 
calls. Another profiling approach [11] suggests using the values of 
performance monitoring registers to verify whether the program 
deviates from its expected behavior. 

Various compilers, compiler and library patches target one or 
more possible vulnerabilities in the code, but so far none of them is 
able to cover all possible security bugs that enable malicious code 
execution [1]. Most of them concentrate on the detection and/or 
prevention of the change of the function return address on the 
stack. For example, the StackGuard compiler places the dummy 
value between the return address and the rest of the stack. A buffer 
overflow attack that overwrites the return address must also 
overwrite the dummy value.  

Xu et al. propose an architectural support against the buffer 
overflow attack [12]. Two ideas are evaluated: to separate data and 
address stack, or to use a secure redundant copy of return 
addresses.  

Our approach is somewhat similar to mechanisms used to 
tamper-proof the software [13], but with the different goal and 
different granularity. The tamper proofing protects against 
unauthorized changes in the code, and it usually works on the level 
of files or modules, while our framework works at the level of 
instruction streams and basic blocks, and protects against 
execution of the unauthorized code. 

3.    PROPOSED FRAMEWORK FOR 
TRUSTED INSTRUCTION EXECUTION 

A security mechanism for trusted instruction execution should 
successfully prevent the execution of any unauthorized code, but 
the security features should not significantly increase the program 
execution time and the overall system complexity. In this paper we 
propose a framework that satisfies these requirements.  

The atomic code unit protected by its signature is a basic 
block. One possibility would be to verify the signature of each 
executed basic block, but at the cost of an increased overhead. 
Assuming that the memory containing program instructions is 
write-protected, the number of verifications can be safely reduced 
if only the last basic block in an instruction stream is verified, i.e., 
the whole instruction stream can be trusted if its last basic block is 
verified. The number of necessary signature verifications can be 
further reduced. We can assume that the code in the cache memory 
can always be trusted, so the checks for signature match should be 
done only if there is an instruction cache miss during the execution 
of the last basic block in the instruction stream. The critical 
information on the hard disk, such as signatures, must be protected 
by encryption. 

Figure 1 illustrates the proposed architecture for trusted 
program execution. The proposed framework introduces relatively 
modest changes in the processor organization and a new format of 
program executables. The processor is modified to include two 
hardware resources, the BBST (Basic Block Signature Table) and 
the BBSVU (Basic Block Signature Verification Unit). The BBST 
is a cache-like structure that keeps relevant information about the 
most recently needed basic block signatures, and the BBSTVU 
verifies the signatures when needed. The signature information for 
all basic blocks is stored in the BBST_M, prepared by the compiler 
and appended to the executable. The following paragraphs give a 
more detailed description of each phase of the proposed security 
mechanism: compilation and program installation, program 
loading in the memory, and program execution. 
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Figure 1. Architecture for  trusted computing. 
Legend: MMU – Memory Management Unit,  
IF – Instruction Fetch Unit, FPUs – Floating Point Unit(s), 
Control – Control Unit, L1D – Level 1 Data Cache,  
L1I  – Level1 Instruction Cache, BBST – Basic Block Signature 
Table, BBST_M – Basic Block Signature Table in Memory, 
BBSVU – Basic Block Signature Ver ification Unit. 

Compilation and Program Installation. The program 
compilation process is modified to generate the basic block 
signature table (BBST_M). Figure 3 shows the structure of the 
table. It includes the following fields: BB.SA (Basic Block Starting 
Address Offset) and BB.S (Basic Block Signature). The BB.SA is 
the address offset of the first instruction in the basic block, from 
the beginning of the code. The basic block signature is a function 
of the instruction words in the basic block. While different 
functions can be used for signature, we propose the use of the 
multiple input signature register (MISR). The MISR is frequently 
used in the VLSI testing, since it compresses an array of data under 
test into one signature, which is than compared to the signature of 
a known correctly functioning component.  The MISR is 
essentially a shift register with linear feedback and external inputs. 
An example is shown in Figure 2. The signature of a basic block is 
calculated with the instruction words as consecutive inputs to the 
MISR. The MISR linear feedback coefficient are based on the 
encryption key, which is unique to each processor and hidden in 
hardware. The same key is used to generate the key for the 
signature table encryption. The encryption key can be accessed 
only during the trusted program installation, or during loading of 
the program in the memory. 
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Figure 2 An implementation of a 4-bit M ISR. 

The library code deserves a special note. If a static library is 
used, only the necessary functions are linked with the rest of the 
application into one executable file. Basic block signatures are 
calculated for that file, so the signature table includes signatures of 
basic blocks in the used library functions. Unlike a static library, a 
dynamically linked library (DLL) is always completely loaded in 
the memory, either at load time, or in runtime. In the proposed 

framework each DLL has its own signature table, so all code can 
be safely verified. The first address of the DLL code in the 
memory must be kept by the system, so that address offset can be 
properly calculated.  

At the end of compilation and program installation phase the 
BBST_M is encrypted using hidden processor key and some 
symmetric secure encryption algorithm such as AES (Advanced 
Encryption Standard). We do not need to encrypt the code itself, 
since any changes in the code will result in the signature mismatch. 

BB.SA BB.S

 

Figure 3 Basic Block Signature Table fields. 
Legend: BB.SA – Basic Block Star ting Address Offset 
BB.S – Basic Block Signature. 

Program Loading. Program loading assumes decryption of 
the BBST_M and its loading into the main memory. A memory 
region with BBST_M can be accessed only by the BBSVU, and it 
is also write-protected. A subset of the BBST_M can be loaded 
into the processor’s basic block signature table, and that subset can 
be chosen in various ways: by spatial locality, by applying 
profiling information, or randomly. Another option is not to 
preload the BBST, but to fill it dynamically, just like a regular 
cache structure. When a stream is executed and the BBSVU does 
not have the corresponding entry for the last basic block in the 
stream, a BBST miss is issued, and the corresponding info is 
brought to BBST from the BBST_M. 

As long as an application and its signature table stay in the 
memory, there is no need for decryption process, so the decryption 
increases load time only. If an application has a very large 
signature table and/or code, or must be frequently swapped, the 
decryption must be performed for each load in memory. Very large 
signature tables can be only partially loaded, and then a special 
partial BBST flag must be set. If this flag is set, a miss in the 
memory triggers the loading of the corresponding BBST part. 

Program Execution - Program-Flow Monitoring by the 
BBSVU. During trusted program execution, an additional set of 
registers keeps the track of the program flow and information 
relevant for basic blocks: PPC (Previous Program Counter) and 
CBB.SA (Current Basic Block Starting Address) (Figure 4). The 
decoding logic detects the instructions that can change the control 
flow, such as jumps, branches, returns, etc. Every such instruction 
marks the end of a basic block, so the next instruction is the 
beginning of a new basic block. If a control signal coming from the 
instruction decoder is set, indicating that a control flow instruction 
is currently being executed, than an internal flag (CntF) indicates 
that the difference between the address of the program start and 
next instruction PC will initialize CBB.SA. A signature capture 
block is responsible to calculate CBB.S (Current Basic Block 
Signature), starting from the first instruction in the block. Since the 
original signature is calculated using a MISR with coefficients 
determined by the processor key, the combinational logic for 
CBB.S provides the same coefficients. The CntF is also used to 
reset the MISR. 
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Figure 4 Program flow monitor ing. Legend: PC – Program Counter , PPC – Previous Program Counter , IR – Instruction Register , 
SA – Program Star ting Address, CntF – Control signal from the decoder, indicating the end of a basic block, CBB.SA/LBB.SA – 
Current/Last Basic Block Star ting Address, CBB.S/LBB.S – Curren/Last Basic Block Signature Register , BBSVU  - Basic Block 
Signature Ver ification Unit, BBST – Basic Block Signature Table, ICacheMiss – Instruction Cache M iss dur ing basic block 
execution. 

As explained before, we need to check only the signature of 
the last basic block in an instruction stream, and only when that 
basic block caused an instruction cache miss. The end of the 
current instruction stream is detected by comparison of the PC and 
PPC registers. If there was also a corresponding cache miss, 
current values of the CBB registers are transferred to the 
corresponding LBB registers in the BBSVU. The CBB registers 
then continue to capture the relevant information of the currently 
executed basic block, while concurrently the BBSVU is verifying 
the signature of the last basic block in the previous stream. The 
signature table lookup results in a miss or hit. In the case of a 
signature hit the program stream executed has no malicious code. 
A signature miss is caused by the execution of an instruction 
stream with no signature for the last basic block in the signature 
table. It could be an infrequently executed basic block, or a 
malicious code. If the last basic block of the previous instruction 
stream has an entry in the basic block table residing in the memory 
and there is a signature match, than the instruction stream is not 
malicious and the execution continues as usual. Otherwise, it 
means that a malicious instruction stream has been executed, so the 
BBSV traps the operating system. The operating system than halts 
the program execution, and audits the intrusion event. 

At the moment when a possible intrusion has been detected 
the program can be well in the middle of execution of the 
following instruction stream. In order to reduce the overhead due 
to the signature checking, we do not stop the processor after each 
instruction stream and the checking process goes completely in the 
background. We assume that this delay on average will be a few 
instructions and that no serious harm can be made during that 
period of time, but a threshold of the number of streams waiting to 
be verified must be set. For example, we can allow only one stream 
to proceed with the execution during the verification of the 
signature for the last basic block in the previously executed stream. 
If we allow more than one stream to proceed unverified, we need a 
buffer for the last basic block signatures. Another, more secure 
option, is to buffer any write to the memory until the verification 
ends, so no untrusted stores can be executed. 

When a very short instruction stream executes in parallel with 
the signature table lookup, the processor will be stalled until the 
signature processor completes the lookup. This situation can be 
avoided if we assume a pipelined buffer between the signature co-
processor and program-flow and capture block. This 

implementation will slightly increase the complexity of control 
unit and requires extra area. 

Another question is when the basic block signature should be 
captured, i.e., in which pipeline stage. For in-order execution, the 
capture block may work in parallel with the execution unit, but for 
out-of-order execution, the signature must be calculated for a 
prefetched (in-order) basic block. The system must keep track of 
correspondence between branches and in-order basic blocks, and 
check signature of the in-order basic block that includes a currently 
executing branch, so some additional registers are needed. Whole 
procedure has to be moved to early pipeline stages, e.g. after a 
decode stage. 

4.   THE FRAMEWORK POTENTIAL  
In this section we will first discuss the strength of the 

proposed approach, and then show its potential for prevention of 
execution of the unauthorized code.  

We use a 32-bit basic block signature, i.e., a 32-bit MISR. It 
means that there are 232 possible combinations for the linear 
feedback coefficients. The attacker may have knowledge only 
about the program code, and not about the signatures, so it is not 
possible to discover the MISR function by cryptanalysis. For 
example, the brute force attack in a buffer overflow attack would 
require to overflow the buffer up to 232 times to find a basic block 
with a signature that is accepted by the system. With a possibility 
of buffer overflow each second of the program execution, an 
attacker would need more than a hundred years for a successful 
attack. Nevertheless, if more security is needed, we may use longer 
signatures and the corresponding MISR.  

The potential of the proposed framework is evaluated using 
SPEC CPU2000 traces for Alpha architecture [3]. Each application 
is traced in two segments for reference data input: the first two 
billion instructions (F2B), and the two billion instructions after 
skipping 50 billion (M2B), thus making sure that the results do not 
overemphasize the program initialization. We use 10 integer 
(CINT) and 12 floating-point (CFP) applications. The simulated 
BBST has 4 ways, one signature line, and 128 or 256 sets. The 
instruction cache size is fixed, with 64B line, 4 ways, and 128 sets. 
Both structures have LRU replacement policy. The BBST is filled 
dynamically.  
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Table 1 and Table 2 show the number of unique basic blocks 
and unique instruction streams in each traced segment. The 
application 176.gcc has the maximum number of unique basic 
blocks, 29133 in the M2B segment, and 200.sixtrack has the 
minimum number, 144 in the M2B segment. On average, CFP 
benchmarks have less instruction streams and basic blocks than 
CINT, so we may expect less misses in the BBST for CFP 
benchmarks. 

Table 1 Basic block statistics for  integer  benchmarks 

 No. of Instr . Streams No. of Basic Blocks 

CINT F2B M2B F2B M2B 

164.gzip 751 336 872 327 

176.gcc 25416 22222 29133 25777 

181.mcf 744 308 981 327 

186.crafty 4122 1892 4161 1692 

197.parser 4767 4200 4193 4145 

252.eon 3486 588 3885 675 

253.perlbmk 9034 6344 10425 7542 

254.gap 3218 476 3580 542 

255.vortex 5496 2644 8086 3823 

300.twolf 2399 1014 2842 1195 

Average 5943.3 4002.4 7476.222 5079.778 

Table 2 Basic block statistics for  floating-point benchmarks  

 No. of Instr . Streams No. of Basic Blocks 

CFP F2B M2B F2B M2B 

168.wupwise 1563 234 2132 312 

171.swim 1582 496 2268 793 

172.mgrid 1457 875 1909 1082 

177.mesa 1637 593 2177 763 

178.galgel 1818 81 2518 166 

179.art 435 341 549 502 

183.equake 517 260 668 395 

188.ammp 955 502 1100 566 

189.lucas 964 317 1318 458 

191.fma3d 2083 841 2447 1082 

200.sixtrack 3532 82 4325 144 

301.appsi 2439 389 2439 636 

Average 1581.8 417.6 1987.5 574.9 

Figure 5 and Figure 6 show the number of BBST misses per 1 
million executed instructions. We use this measure instead of the 
BBST miss rate, because it is a better quantitative indicator of the 
execution time overhead due to the trusted instruction execution. 
On a BBST miss, the BBST_M must be searched for the missing 
entry. If binary search is used, the number of memory accesses in 
the worst case log2(BBST_M size). The average number of 
memory accesses can be reduced if a convenient hash function and 
larger BBST_M are used.  

As Table 1 and Table 2 suggest, the number of BBST misses 
is less for the CFP benchmarks then for CINT, on average for more 
than two orders of magnitude. The CFP applications have not only 

less instruction streams, but also less instruction cache misses, and 
therefore less accesses to the BBST (Table 3 and Table 4). 

The maximum number of BBST misses per 1M instruction is 
for the 128 sets, for 255.vortex, 176.gcc, and 253.perlbmk, in the 
F2B segment: 2002, 1208, and 220, respectively. On average, the 
number of BBST misses is smaller in the M2B segment than in the 
F2B segment, probably due to the less cache misses in the M2B, 
when most application enter the main program loop. Doubling the 
number of entries of the BBST reduces the number of misses for 
more than half for some applications, while application with small 
number of misses are not sensitive to the change in BBST size. 

CINT F2B
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Figure 5 BBST misses per  1M instructions: CINT 

 

Table 3 BBST Accesses, ICache M isses for  SPEC2000 CINT  

 ICache M iss BBST Access 

 F2B M2B F2B M2B 
164.gzip 473 163 244 93 
176.gcc 11191997 4383436 6486412 2542273 
181.mcf 567 152 317 68 
186.crafty 5796954 3373577 3249582 1911733 
197.parser 203198 221642 136042 122151 
252.eon 642317 624857 616278 610379 
253.perlbmk 23773413 2639643 13212329 1437475 
254.gap 735728 10634 329756 6829 
255.vortex 20855690 5187588 10888457 2712472 
300.twolf 88703 844 86509 403 

195



CFP F2B

0.01

0.1

1

10

100

16
8.

wup
wise

17
1.s

wim

17
2.

m
gr

id

17
7.

m
es

a

17
8.

ga
lge

l

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

18
9.l

uc
as

19
1.

fm
a3

d

20
0.

six
tra

ck

30
1.

ap
ps

iB
B

S
T

 m
is

se
s/

1M
 in

st
ru

ct
io

n
s

BBST sets = 128

BBST sets = 256

 

CFP M2B

0.01

0.1

1

10

100

16
8.

wup
wise

17
1.s

wim

17
2.

m
gr

id

17
7.

m
es

a

17
8.

ga
lge

l

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

18
9.l

uc
as

19
1.

fm
a3

d

20
0.

six
tra

ck

30
1.

ap
ps

iB
B

S
T

 m
is

se
s/

1M
 in

st
ru

ct
io

n
s

BBST sets = 128

BBST sets = 256

 

Figure 6 BBST misses per  1M instructions: CFP 

 

Table 4 BBST Accesses, ICache M isses for  SPEC2000 CFP 

 ICache M iss BBST Access 

 F2B M2B F2B M2B 
168.wupwise 1494 263 806 125 

171.swim 5517 5443 2512 2245 

172.mgrid 7919 6167 3227 2369 

177.mesa 25274 32143 14695 18897 

178.galgel 1826 84 893 32 

179.art 363 385 167 142 

183.equake 2653050 336 1776447 111 

188.ammp 995 900 623 314 

189.lucas 1023 556 494 169 

191.fma3d 8253849 2532 4704965 1061 

200.sixtrack 1743932 663 949572 87 

301.appsi 4434880 4089263 1483987 1281737 

5.   CONCLUSION 
In this paper we propose a framework for trusted program 

execution and evaluate its potential. The preliminary results 
confirm the claim that our basic block signature verification 
algorithm will not significantly increase the execution time.  

We plan to assess the performance of even smaller BBST, and 
to simulate the effect of the verification algorithm on execution 
time on both in-order and out-of-order processors. We also plan to 

evaluate whether profiling information can reduce the number of 
BBST misses. The BBST can be preloaded with the most 
frequently needed signatures, with signatures used at the beginning 
of program execution, or randomly. Another direction of future 
research is to evaluate an alternative implementation of the 
proposed mechanism, where signatures are embedded in the code, 
and reside in the instruction cache memory along the instructions.  
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