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Abstract— Wireless sensors networks represent the 

architecture of choice for distributed monitoring due to the 

ease of deployment and configuration. We developed a 

distributed sleep monitoring system which combines wireless 

inertial sensors SP-10C by Sensoplex controlled by a custom 

smartphone application as an extension of the 

polysomnographic (PSG) monitor SOMNOscreen plus from 

Somnomedics. While existing activity monitors are wired to the 

SOMNOscreen, our system allows the use of wireless inertial 

sensors to improve user’s comfort during sleep. The system is 

intended for monitoring of periodic leg movements (PLM) and 

user’s activity during sleep. Wireless sensors are placed on 

ankle and toes of the foot in a customized sock. An Android app 

communicates with wireless sensors over Bluetooth Smart 

(BTS) link and streams 3D accelerometer values, 4D unit 

quaternion values and timestamps. In this paper we present a 

novel method of synchronization of data streams from PSG and 

inertial sensors, and original method of detection of PLM 

events. The system was tested using five experiments of 

simulated PLM, and achieved 96.51% of PLM detection 

accuracy. 

I. INTRODUCTION 

Sleep disorders such as insomnia adversely affect people’s 
sleep and finally the overall quality of life. Causes of 
secondary insomnia include anxiety, depression, stress, 
excessive caffeine or alcohol and poor sleep schedules. 
Primary insomnia has no recognized other reason. Studies 
show that more than 40 million Americans suffer from some 
form of chronic sleep disorder [1]. Insomniacs have problems 
falling asleep, maintaining good sleep or excessive sleepiness 
in the daytime. Insomnia can be a primary sleep disorder 
characterized by disturbances in the duration, quality and/or 
the timing of sleep [2]. In the new era of sleep monitoring, 
wearable sensors, advanced sensing and wireless technology 
can be used to significantly improve the diagnosis of 
insomnia in a systematic manner with a well established 
framework. 

In recent years, several sleep monitoring systems have 
been developed [2], that are highly automated, and portable 
for use at home. However the entire setup integrates a 
number of devices, sensors, and wires that has been proven to 
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significantly disturb sleep of users, particularly during the 
first night of monitoring [3]. Moreover, wired sensors and 
electrodes are also inconvenient and uncomfortable, which 
may affect the subject’s health and mood [4]. Hence 
introducing wireless sensor technology in insomnia 
monitoring would be a great advancement in this field. The 
wireless sensors network (WSN) or body sensor network 
(BSN) represent an architecture of choice for distributed 
monitoring due to the ease of deployment and configuration 
[5]. It is the most emerging and fast growing research area. 
Due to its broad range of applications in the distributed health 
monitoring systems, it has drawn great attention of  
researchers in recent years. 

The assessment of insomnia requires the exclusion of other 
sleep disorders and as such involves the detection of Periodic 
Leg Movements (PLM), a sleep disorder where patients 
produce repetitive movements of the lower limb, including 
movements in the toe, ankle and entire lower leg [6]. PLMs 
create significant disturbances during sleep and can also lead 
to arousals and hence insomnia [7]. According to the current 
World Association of Sleep Medicine (WASM) standard, the 
Electromayographic (EMG) activation of the anterior tibialis 
muscle can characterize PLM events [8]. The International 
Classification of Sleep Disorder (ICSD) counts a leg 
movement of duration 0.5-5 seconds as a PLM. It generally 
occurs in the series of four or more movements during any 
sleep stage (wake excluded) at intervals of 5-90 seconds [9]. 
When occurring periodically, they are called PLM. The PLM 
index is defined as the number of PLM events per hour of the 
total sleep time is the measure of frequency of PLM [10]. 
Currently PLMs are detected using EMG of one or two legs 
with standard electrodes. 

The main problem in PLM monitoring using EMG 
electrodes with a PSG system is the inconvenience the wired 
system causes.  Accurate detection of PLM events requires 
placement of the EMG electrodes 5 cm apart on the middle of 
the tibialis muscle, which requires long wires from legs to the 
monitor usually worn on the chest. In some recent work  
accelerometers have been used to quantify PLMs [11].  
Bhagat et al. used an accelerometry based mobile health 
device to monitor activities during sleep [12]. Terril et al. 
used tri-axial accelerometry system for the detection of PLM 
and made a comparison analysis with results from the EMG 
signal [6]. The main issue of accelerometer based systems is 
reliable detection of leg movements that satisfy the PLM 
standard from the random body motion in all the different 
positions during sleep.  

We developed a body sensor network of inertial sensors 
synchronized with a commercial PSG system for sleep 
monitoring to detect and quantify PLMs and improve 
comfort levels while the patient is asleep. In this paper we 
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present the system organization and the results of the analysis 
of the whole night monitoring, which include an analysis of 
the wireless channel reliability and synchronization of the 
sensor streams. 

II. METHODS 

A. System Architecture 

The proposed system architecture of our sleep monitoring 

system is presented in Fig. 1. The system consists of a PSG 

system, two inertial sensor modules (SP-10C), and a 

smartphone. The PSG system has several standard sleep 

study sensors wired with a central device called 

Somnoscreen (SSC). This PSG system records data 

overnight stores in a flashcard or transmits wirelessly to a 

workstation. The EMG signal and other signals are recorded 

using a PSG monitor. 

 
Figure 1. System architecture of the proposed solution 

The two SP-10C inertial sensors are placed on the ankle 

and toe of a fitted sock to keep them stationary relative to 

the patient during the overnight recording as presented in 

Fig. 2. The Sensoplex SP-10C inertial sensors are compact 

and low power smart sensor modules that combine a 3-axis 

gyroscope, 3-axis accelerometer, and 3-axis magnetometer 

with BTS. Sensors use 120 mAh Li-ion-polymer batteries, 

which can last up to 11-12 hours making them suitable for 

sleep studies [13]. 

Our custom Smartphone application supports multiple  

SP-10C sensors communicating simultaneously via BTS. As 

the sensors act as a Generic Attribute Profile (GATT) server, 

we configured our Android app to act as a GATT client. The 

GATT profile is a general specification for sending and 

receiving data over a BTS link [14]. All current low energy 

application profiles are based on GATT, which is available 

on Android starting from version 4.3 (API Level 18) [15]. 

B. Synchronization of Sensors 

Distributed wireless sensor systems have to compensate 

for the drift of local on chip oscillators and error sources 

during intermittent communication which creates serious 

obstacles for time synchronization, particularly for long term 

monitoring [16]. Clock drift can occur in distributed systems 

due to environmental changes, such as pressure, 

temperature, and battery voltage [17]. The requirement to 

configure Smartphone application as a GATT client instead 

of a server complicates synchronization between the inertial 

sensors; the lack of a global clock resulted in 

unsynchronized data streams from individual sensors [18]. 

Since our PSG system uses autonomous operation with 

data records stored in local flash memory, we synchronize 

the inertial sensors externally by utilizing an auxiliary 

(AUX) input of the PSG system. We use a custom interface 

with optical isolation and generate a burst of 5 audio pulses 

every minute on Smartphone, at the beginning of each sleep 

study. These audio pulses are recorded in the PSG as analog 

auxiliary signals and used as time markers for precise time 

synchronization. Accurate time synchronization of both 

inertial sensors is crucial for accurate PLM detection with 

our algorithm. To achieve this, our custom app saves the 

timestamp values from both sensors and the smartphone 

every minute. 

 
Figure 2. Placement of two wireless inertial sensors in the sock 

Individual data streams are aligned using Dynamic Time 

Warping (DTW). DTW is a well known technique of 

optimal time alignment between signals where sequences are 

warped in non-linear fashion to match with each other [19]. 

In our preliminary experiments, the time difference between 

the Smartphone and PSG was in the range of 1 to 1.5 

seconds for 8-9 hours of recording. However, the drifting in 

the inertial sensor clock with respect to the Smartphone was 

significantly more hence DTW was applied to overcome this 

drifting and synchronize all three independent data streams. 

The inertial sensor data was fully synchronized with the PSG 

data after the application of DTW algorithm. 

C. PLM detection 

We recorded 3D accelerometer data for translational 

movement and unit quaternion for rotational movement, 

along with timestamps from inertial sensors. As BTS is not 

designed for high frequency data streaming applications, we 

tested our Android application with different sampling rates 

to find the reliable operating sampling frequency. 

To identify the PLMs, we calculated the 3D vector 

magnitude of the accelerometer, which was then filtered 

using an 8-pole Butterworth high pass filter with cutoff 

frequency 0.05Hz to remove the DC offset and then again 

filtered with moving average filter to quantify movements. 

As PLMs result in a large rotation of toe sensor value with a 

small rotation in the ankle sensor value [6], real PLM events 

can be discerned from the other regular random events. To 

distinguish between regular motion (Fig. 3a and 3b) and 

PLMs (Fig. 4a and 4b), we calculated maximum 

displacement, maximum velocity, maximum absolute 

rotation angle using quaternion values [20] and duration of 

movement for both toe and ankle. By applying binary 



classification using the support vector machine (SVM) 

technique, we trained our model with mean and standard 

deviation values of all calculated parameters to identify 

PLMs from the gross body motion. Our PLM detection 

algorithm detects only those movements as real PLM which 

satisfy the time duration and recurring interval criteria as per 

the PLM standard. 

D. Experimental Validation 

We designed a custom experiment to simulate PLM 
movements; experiments with five subjects were performed 
using this protocol. In each experiment, the subject 
completed a series of simulated PLM-like movements for 
different body positions and other sleep related events. First, 
the subject laid down on the back with the legs straight and 
created 6 PLM- like movements keeping approximately 5 
seconds between each. The subject then turned right with the 
legs straight and after a minute repeated the 6 PLM-like 
movements. Finally the subject turned left with the legs kept 
straight and again repeated the PLM movements. Subjects 
were asked to perform several random movements during the 
experiment such as bending the knees and legs. The data 
collected was then used to test our time synchronization and 
PLM signal processing algorithm. The PLM detection 
algorithm was also tested for real patient data from whole 
night (8 hours 20 minutes) monitoring using complete 
system. Real PLM events were captured using PSG system 
based on the value of EMG signal. 

III. RESULTS 

A. Time Synchronization 

The time difference between the individual sensor and 

Smartphone was almost linear and compensated by using 

dynamic time warping. Analysis of the five overnight 

recordings indicate that the relative time difference between 

the sensors during one minute synchronization period is in 

the range of 200–400ms; after DTW processing, the time 

difference between individual samples was reduced to 

5.12±2.99 ms. 

BTS communication was not reliable at higher 

frequencies. We tested the accuracy rates for sampling 

frequencies from 10Hz to 100Hz. Table 1 shows the 

different accuracy rates for different sampling frequencies in 

terms of bit error rate. The best accuracy is obtained with a 

sampling frequency of 50Hz which uninterruptedly supports 

long term (overnight) streaming over BTS without any 

problems. 

TABLE I.  RESULTS OF RELIABILITY ANALYSIS OVER BTS 

Frequencies <40Hz 50Hz 60Hz 70Hz 80Hz 90Hz 100Hz 

S#1 bit error [%] 0 0.019 0.35 1.78 1.03 1.60 3.46 

S#2 bit error [%] 0 0.042 0.47 1.36 2.58 1.85 6.47 

B. PLM Detection 

Table 2 presents the result of PLM detection algorithm 

using accelerometer and quaternion values from both the toe 

and ankle sensors. The sensitivity and specificity of the 

current version of our algorithm are 98.03% and 95.68% 

respectively. The accuracy of detection is 96.51%. For the 

real patient data, out of 149 PLM events marked by PSG, 

our algorithm was able to detect 136 of those events as true 

positive. Hence accuracy of detection for real time 

monitoring was 91.27%. 

TABLE II.  PLM DETECTION RESULTS 

 

Table 3 presents the variation of accuracy with the sampling 

frequency. At lower sampling frequency, the time resolution 

of the signal is not enough to quantify the movement 

accurately. Even though we have zero bit error at lower 

frequencies, accuracy is optimum at 50 Hz. 

TABLE III.  ACCURACY OF PLM DETECTION AS A FUNCTION OF THE 

SAMPLING FREQUENCY 

Frequency Sensitivity Specificity Accuracy 

50 Hz 98.03 95.68 96.51 

25 Hz 85.52 75.17 78.83 

12.5 Hz 69.73 62.94 65.34 

IV. DISCUSSION 

The primary objective was to show that it is possible to 
accurately quantify PLMs using two inertial sensors instead 
of the standard tibialis anterior EMG. Since we used multiple 
inertial sensors with a PSG system in this study, time 
synchronization became very important. Time warping was 
applied on the signal time values based on timestamps every 
minute to overcome the delay even in the range of 
milliseconds. Furthermore as we used a BTS link with a 
GATT profile to communicate with the two sensors, we had 
limitations in the allowable frequency of data streaming. As 
seen in Table 1, the best accuracy was at 50 Hz. We observed 
a significant loss of packets during wireless transmission and 
problem in long term streaming  at higher sampling  rate. 
This also depends on the packet size and the distance 
between the devices. Since sensor modules cannot be 
configured as slaves, due to the lack of global clock, the 
problem of synchronization arises. An adaptive DTW method 
was used to match the sequence in time where the previous 
minute unresolved delay was added to the next minute of 
operation. This result was verified by generating 
simultaneous motion of joint sensors, and applying 
synchronization algorithm to test synchronization. It can be 
clearly seen in Fig. 3 and 4 that only 3D accelerometer values 
would not be sufficient for the accurate quantification of 
PLMs. Even for false movement accelerometer values (Fig. 
3) can have magnitude greater than the real PLM event 
accelerometer magnitude whereas quaternion rotation angle 
and the nature of rotation provide clear understanding about 
the real PLM event. The PLM algorithm can be further 
optimized by introducing new PLM detection parameters and 
by using other evolutionary techniques for classification. 

V. CONCLUSION 

Proposed system facilitates sleep studies and clinical diag- 

Case 
num 

Number 
of PLM 
events 

Number 
of random 

events 

True 
positive 

(TP) 

True 
negative 

(TN) 

False 
positive 

(FP) 

False 
negative 

(FN) 

1 39 57 38 54 3 1 

2 33 59 33 58 1 0 

3 26 52 26 49 3 0 

4 26 51 24 49 2 2 

5 28 59 28 56 3 0 

Total 152 278 98.03% 95.68% 4.32% 1.97% 
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 Figure 3a. Random PLM-like motion (3D accelerometer) Figure 4a. PLM motion (3D accelerometer) 
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 Figure 3b. Random PLM-like motion (4D Quaternion angle)  Figure 4b. PLM motion (4D Quaternion angle)

-nosis of insomnia using a hybrid WBAN. The 

synchronization technique using pulse generation is proven 

to be very precise and accurate. PLMs can be monitored 

using two inertial sensors on the toe and on the ankle which 

is effective and more convenient to the users. This is proven 

to be an alternative way of scoring PLMs other than using 

EMG. Future work is to optimize the detection method to 

further increase the accuracy of the PLM detection. 
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