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Abstract— Unintentional child poisoning represents an 

increasingly important health issue in the United States and 

worldwide, partially due to increased use of drugs and food 

supplements. Biometric authentication is complex for pill 

bottles, but we propose a new method of user identification 

using touch capacitance during bottle-opening attempts. A 

smart pill bottle could generate an immediate warning to deter 

a child from opening the bottle and send an alert to 

parents/guardians. In this paper, we present principle of 

operation and implementation of a prototype “safe bottle”. We 

present the results of pilot testing with 5 adults and 3 children 

using support vector machine (SVM) and neural network (NN). 

From 232 bottle-opening events, our optimized NN generated 

no false detections of children as adults and four false 

detections of adults as children. Preliminary results indicate 

that smart pill bottles can be used to reliably detect children 

trying to open pill bottles and reduce risk of child-poisoning 

events.  

I. INTRODUCTION 

Unintentional child poisoning is a significant public 

health problem. Of the roughly 2.4 million exposures 

reported to US poison control centers annually [1], nearly 

50% are children under 6 years of age. Further, since not all 

exposures are reported to poison control centers, experts 

assume that these numbers – which total over 1.1 million 

exposures to children ages 0-5 years annually – are 

underestimates. Child-resistant caps have saved countless 

lives over the past half-century, but they are not foolproof. 

Federal regulations permit child-resistant caps to be used 

legally if they are opened by 20% of children ages 42-51 

months within 10 minutes (16 CFR 1700.20), far from a 

satisfactory safety margin. Moreover, child-resistant caps are 

frustrating to many consumers, including elderly and 

disabled individuals. 

There are two primary reasons for increasing child 

poisoning rates. First, medications are more available than 
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ever in our homes, including prescription drugs, over-the-

counter medicines, vitamins, herbs, and dietary supplements, 

thus increasing the chances a young person may swallow 

one of these products. Second, due to our fast-paced 

lifestyles, family members might forget to properly store 

medicine away from children's reach, or a parent or 

grandparent might forget a pill bottle is in a handbag or 

briefcase [2]. A recent Safe Kids report suggests that young 

children who discover medicine while adults weren’t 

looking caused 95% of unintentional medication overdose 

ER visits. 5% are due to dosing errors.  

New sensing technologies may detect a variety of 

hazardous events. Biometric authentication has attracted 

attention from many researchers recently and could ensure 

that the right person is accessing the right data. Currently, 

several methods of Biometric authentication are available on 

the market. The most popular form of biometric 

authentication is the image processing technique applied on 

a 2D image (Face, Fingerprint, Iris, Palm-print, etc.) to 

extract unique physiological features of the user [3]–[6]. 

Researchers propose techniques using palm features, such as 

palm-print [7], [8] and palm vein network [9], as well as  

pattern recognition techniques similar to the finger-print 

based authentication. Recently, Nascimento et al. [10] 

showed that palm geometry can be used as a good metric of 

biometric authentication. Zhang et al. [11] proposed another 

technique whereby 3D surface curvature maps were used for 

feature extraction. High accuracy on these proposed methods 

imply that hand geometry (shape) and surface curvature vary 

from person to person and influence contact area with an 

object. This difference in contact area should result in 

different capacitive value in the sensor. Cua et al. [12] 

showed that skin friction (coefficient) may vary among 

people (0.02-0.34), leading people to hold the same object at 

different pressures and with different styles. Similarly, Barel 

et al. [13] showed that pressure variation in the skin may 

cause variations in skin capacitance (up to 43%). Together, 

these two articles signify that palm capacitance can vary 

because of individual holding styles. 

We propose development of smart bottle technology to 

detect hazardous events and provide instant alarms and 

warnings to parents and guardians, wherever they are. Smart 

pill bottles are increasingly used for monitoring of drug 

compliance (e.g. AdhereTech smart pill bottle [14]). We 

plan to expand connectivity of the smart pill bottle with 

detection of critical events to prevent child poisoning. The 

same technology can be used to reduce child poisoning from 

other household products.  In this paper we present a new 
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concept for identification of class of users (child vs. adult), 

implementation of the prototype safe bottle, and pilot study 

data used to evaluate feasibility of the use of safe bottle for 

prevention of unintentional child poisoning.  

II. METHODS 

Present generations of microcontrollers support direct 
measurement of capacitance on several pins. 
Microcontrollers, such as NXP MKL26Z64VFT4 used in 
Teensy LC platform [15], support capacitive measurements 
from up to 11 pins with default accuracy of 0.02 pF and 
measurement time in the order of 1 ms. The microcontroller 
features low power consumption, small 48QFN package, and 
low price.  

A. Safe Bottle Implementation 

We implemented the prototype safe bottle with 15 
capacitive segments around a standard pill bottle as shown in 
Fig. 1. Capacitive segments consist of copper tape strips 
insulated with clear plastic tape. To facilitate high speed 
sampling we used two microcontroller boards: Teensy 3.2 
[16] is used to measure capacitance from 6 channels and 
Teensy 3.6 microcontroller [17] is used to measure 
capacitance from 9 channels and save data to an on-board 
micro SD card. Capacitance was sampled at 50Hz throughout 
the experiment. Teensy 3.6 serves as the master controller 
that initiates measurements in each cycle. The prototype is 
battery powered, with battery and both controllers hidden 
inside the bottle. All segments are isolated from the user with 
clear tape.  

 

Figure 1.  Prototype safe bottle 

B. Experiment 

The pilot experiment was organized to evaluate feasibility 
of the use of capacitance to detect two classes of users: 
children (in our pilot experiment, up to 10 years old), and 
adults (over 20 years old). We observed that older children 
can have larger hands than some adults, and therefore 
excluded ages 10-20. The experimental protocol was 
approved by the IRB at the University of Alabama at 
Birmingham (approval number IRB-300000806). We asked 
five adults and three children (see Table I) to open and shut 
the bottle 30 times, simulating taking a pill out of the bottle. 
Capacitance of all segments were constantly recorded with 
sampling frequency of 50 Hz. Subjects were not instructed 
how to hold or open the bottle in order to capture their natural 

patterns of bottle use. We collected a total of 232 events 
during the experiment.  

C. Signal Processing 

All signals are processed off line using Matlab 2017b. A 
typical example of the change of capacitance during bottle 
opening is shown in Fig. 2. Default capacitance (Cdef ) before 
touch for the segment in Fig. 2 is 24 pF, and it increases to 
over 50 pF (relative change of 26 pF) during touching and 
opening of the bottle.  

TABLE I.  RELATIVE CHANGE OF THE MOST IMPORTANT DERIVED 

PARAMETERS MEAN(STDEV); TOTAL RELATIVE CAPACITANCE CHANGE 

(TRCC), NORMALIZED TRCC (TRCCN), AND MID-SENSE POSITION (MSPOS) 

Subject Age Sex tRCC tRCCN mspos 

A1 26 M 12.98 (3.43) 6.05 (1.11) 4.78 (0.55) 

A2 57 M 17.71 (2.02) 7.91 (0.67) 5.64 (0.24) 

A3 26 M 26.18 (4.12) 7.11 (2.05) 5.85 (0.37) 

A4 24 F 15.01 (2.67) 6.62 (1.46) 5.16 (0.37) 

A5 22 M 18.29 (4.29) 6.73 (1.78) 5.39 (0.43) 

C1 5 M 5.56 (2.10) 4.94 (0.87) 3.78 (0.49) 

C2 10 F 4.00 (0.93) 3.97 (0.77) 3.10 (0.46) 

C3 7 F 4.25 (1.40) 4.52 (0.82) 3.53 (0.47) 

      

Adults 31(14.6)  18.13(5.68) 6.90 (1.60) 5.37 (0.55) 

Children 7.3(2.5)  4.51(1.62) 4.45 (0.89) 3.46 (0.54) 

 

 
Figure 2.  Typical change of capacitance of a segment during opening of 

the bottle 

Each channel is first filtered using a 3 point median filter. 
The relative change of capacitance CRi of the segment i (Ci) 
with default capacitance Cdef is calculated as 

  𝐶𝑅𝑖 =
𝐶𝑖− 𝐶𝑑𝑒𝑓 

𝐶𝑑𝑒𝑓
 (1) 

Total capacitance Ct is calculated as: 

𝐶𝑡 = ∑ 𝐶𝑅𝑖

15

1
 

   (2) 
The region of interest (ROI) for each touch event is 

selected as the 500 ms period from the start of touch, detected 
as a change of Ct that exceeds a predefined threshold. In our 
preliminary study, we used a threshold that is 20% higher 
than default total capacitance.  

For each touch event, we save the average value of the 
relative change of capacitance for each segment (15 values) 
and calculate the following parameters: 

 Total relative change of capacitance (tRCC) represents 
the sum of all relative changes  CRi, i=1..15 
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 Maximum change of capacitance:  
CRmax = max(CRi), i=1..15  

 Normalized change of capacitance:  
CRNi = CRi)/ CRmax, i=1..15 

 Normalized total relative change of capacitance: 
tRCCN  

 Mid segment position mspos is calculated as a center 
of gravity of the sorted set of relative capacitances 
{ CR

sort
i , i=1..15 } 

𝑚𝑠𝑝𝑜𝑠 =  
∑ 𝐶𝑅𝑖

𝑠𝑜𝑟𝑡 ∗ 𝑖𝑖

∑ 𝐶𝑅𝑖𝑖

 

Touch capacitance depends on skin properties (e.g. wet 
hands will have significant higher capacitance than dry hands 
for the same user). Therefore, we use normalized change 
(tRCCN) to get a value that depends on touch area, not skin 
condition. 

An example of the absolute change of capacitance for a 
child and an adult for each segment is shown in Fig. 3. Note 
that because of the circular pattern of capacitive segments 
with no markers on the bottle, each touch event will have 
different segments with maximum change.  

 
Figure 3.  An example of the absolute change of capacitance during 

opening of the bottle for adult and child 

A sorted set of normalized changes of capacitance is 
represented in Fig. 4. It can be seen that adults consistently 
have a larger contact area and therefore more segments with 
significant changes than children. Extracted parameter mspos 
represents a measure of the distribution of segments during 
touch events.  

 
Figure 4.  Sorted and normalized capacitance of all segments for adult and 

child; figure represents the same data set from Fig. 3 

For classification of events we used Support Vector 
Machine (SVM) and Neural Network (NN) as toolboxes in 
Matlab 2017b.  

For SVM training we randomly selected 2/3 of events for 
each user, and validation is performed using the remaining 
1/3 of events (typically 20 and 10 events respectively for 
each user). For NN, 70% of events were used for training, 
15% for validation and 15% for testing.  

III. RESULTS 

Preliminary results from our pilot study indicate 
significant changes of parameters between adults and 
children, as represented in Table I.   

The average value of tRCC for adults was 18.13±5.68 
(mean±standard deviation) and for children was 4.51±1.62; 
tRCCN for adults and children was 6.90±1.60 and 4.45±0.89, 
respectively. A single parameter classification has limited 
applicability due to the significant variability of results 
between experiments and overlap of between groups. Change 
of tRCC and tRCCN is represented in Fig. 5.  

 
Figure 5.  Change of tRCC and tRCCN for adults and children.  

To assess performance of the developed system, we 
define as a critical event when “children attempt to open the 
bottle” (true positive detection TP when child is detected as a 
child). Other events include “child detected as adult” (false 
negative FN), “adult detected as child” (false positive FP), 
and “adult detected as adult” (true negative TN). We specify 
detection rates as follows:  

 Sensitivity = TP/(TP+FN) 

 Accuracy = (TP+TN)/(TP+FP+FN+TN) 

The receiver operating characteristic (ROC) curve of the 
NN classifier with 18 parameters described in Section II.C is 
presented in Fig. 6.  

Our goal is to achieve maximum sensitivity – detection of 
critical events that can lead to unintentional child poisoning, 
which in our case is a child detected as an adult. In real-world 
applications, false detections of an adult as a child would 
only create false alarms for parents/guardians.  

The results of NN classification are presented in Table II. 
The best performance was achieved by using 3 extracted 
parameters and no raw data.  



  

 

Figure 6.  ROC curve of the best NN user classfier.  

TABLE II.  CLASSIFICATION OF USERS USING NEURAL NETWORK WITH 

VARIABLE NUMBER OF INPUT PARAMETERS (1/2/3/18) 

Parameters 
# 

inputs FN FP Accuracy 

tRCC 1 2 5 81.1% 

tRCC/tRCCN 2 0 3 91.9% 

tRCC/tRCCN/midpos 3 0 1 97.3% 

tRCC/tRCCN/midpos/Ci 18 1 2 91.9% 

 

Classification of events using SVM and NN produced 
similar results. NN implementation provides more flexibility, 
particularly for future real-time implementation on the bottle.  

Results of the SVM classifier are presented in Table III. 
The SVM classifier uses only three parameters: tRCC, 
tRCCN, and mspos. Presented results were obtained with 10 
runs and random selection of records for training and testing. 
The critical parameter for our application, false detection of a 
child as adult, is 2.08% for the SVM classifier with three 
extracted parameters. We used MATLAB auto optimizer to 
select the suitable kernel function and to optimize other 
hyperplane parameters.  

TABLE III.  CLASSIFICATION OF USERS USING BINARY SVM CLASSIFIER 

USING TRCC, TRCCN, AND MSPOS; AVERAGE FOR N=10 RUNS;  
TRAINING SET ADULT/CHILD 102/64; TEST SET ADULT/CHILD 49/30 

Adult Child 

False 
pos 

False 
neg 

Sensiti-
vity  

False 
pos [%] 

False 
pos 

False 
neg 

Sensit-
ivity  

False 
pos [%] 

1.0 0.9 98.16% 2.08% 0.9 1.0 96.67% 3.10% 

IV. CONCLUSION 

In this paper we presented a new approach to prevention 

of unintentional child poisoning. Our pilot study indicates 

that the approach is feasible and can be implemented in pill 

bottles and other everyday objects that could harm children. 

Smart pill bottle integrated into Internet of Things [18] can 

generate aural and visual warnings on bottles to deter 

children, and immediately notify parents/guardians about 

possibly critical events. 

Device intelligence will allow personalization of signal 

processing algorithms and setup according to user’s 

preferences.  
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