
  

 
 

Abstract—This paper presents development of the 
smartwatch application for automation of the standard 30 
Second Chair Stand Test (30SCST). 30SCST is primarily used 
to test leg strength and endurance, but also speed and mobility 
and assess risk of falls. We use inertial signals on smartwatch to 
detect and count stands during the test. The application notifies 
the user to start and stop the test using vibration on the 
smartwatch. Synchronization of notifications and signal 
acquisition allows assessment of user’s response time during the 
test. Our application monitors baseline heart rate before the test, 
heart rate increase during the test, and heart rate recovery after 
the test that might allow assessment of cardiovascular fitness of 
the user. The application is developed using Wear OS and tested 
on two smartwatch platforms: Fossil G4 and Polar M600. Pilot 
test included 12 subjects, six male and six female (mean age 39.1, 
S.D. 19 years). Overall accuracy of detection of the number of 
standups is 98.8%. Smartwatch application can be used for 
automated testing in clinical setups as well as for self-monitoring 
at home.  

I. INTRODUCTION 

Exponential increase of new sensors and systems 
supporting wearable monitoring and Internet of Things (IoT) 
provides new opportunities to improve health monitoring and 
quality of living as a part of mHealth systems [1]. Remote 
monitoring allows chronic disease management and support 
for older adults living alone in their homes. Recent surveys 
indicate that more than 90% of older adults want to stay in 
their own homes as long as possible [2]. Remote monitoring 
facilitates support for informal caregivers [3] or remote health 
care services [4]. Technological developments support 
independence, autonomy, and connections with informal 
caregivers and social network, also known as Aging in Place 
(AiP) [2], [3]. Remote monitoring technology for chronic 
disease management and AiP is becoming a reality for many, 
regardless of income and mobility level. 

Integration of ambient intelligence and wearable 
monitoring allows unobtrusive, continuous monitoring of 
activity of daily living in assisted ambient living environment 
[5]. Wearable sensors include wristband fitness trackers or 
smartwatches, smart pill bottles and other compliance 
devices, and ambient sensors, such as pressure sensors and 
passive infrared motion sensors embedded in walls, ceilings, 
beds, and floors [6]. The combination of wearable inertial 
sensors and/or ambient sensors can support monitoring of 
user’s posture, activity, and gait that can be used to detect falls 
or evaluate fall risk. 
 
 

Standard mobility tests, such as Stopping Elderly 
Accidents, Deaths, and Injuries (STEADI) Tool Kit 
recommended by the United States Centers for Disease 
Control and Prevention (CDC) [7], are typically administered 
only in physician’s offices and performed by manual counting 
or stopwatch time measurement. STEADI toolkit includes the 
Timed-up-Go (TUG), the 30-second Chair Stand (30SCS) 
test, and the Four-stage Balance (FSB) test. These 
assessments use simple measures of time to complete a chair-
stand, walk for 10 feet, turn, return 10 feet, and sit down in 
the chair (TUG), the number of stands from a chair in 30 
seconds (30SCST), and the number of seconds a person can 
hold a position in four different standing positions (FSB). A 
provider making these measurements needs only a stopwatch, 
chair, and space to safely conduct the assessment. Even 
though the tests are simple to administer, the measurements 
miss subtle changes that might be important. For example, if 
an older adult completed 12 chair stands in 30 seconds with 
the standard tests at two different times, a decrease in time for 
those 12 chair stands from 29.8 seconds to 27 seconds would 
be unnoticed. However, the speed of the chair stands would 
have increased almost 10%. This change could be assessed 
using technology with automated data capture and analysis. 
We created a mobile tool suite to automate tests from the 
STEADI tool kit using a smartphone [8] that has been used as 
a part of our mHealth system for more than five years [9].  

In this paper, we present preliminary results from 
implementation of 30SCST test on a smartwatch. A 
smartwatch has several advantages as an implementation 
platform: a) a smartwatch is always on the user or close to the 
user, unlike a smartphone, b) a smartwatch can monitor heart 
rate in response to exercise, and c) notifications on a 
smartwatch are more effective than on a smartphone. 
Therefore, smartwatches are increasingly used for remote 
health monitoring, although significant research and larger 
scale studies are necessary to determine their acceptability 
and effectiveness in specific applications [10]. However, 
inertial sensors on the smartwatch during 30SCST are not 
aligned with body planes in our previously developed 
smartphone application [8], which requires application 
specific signal processing algorithms as described in this 
paper.  

Heart rate monitoring on existing smartwatches is robust 
enough for some applications, and even allows short term 
analysis of heart rate variability [11]. The latest versions of 
the smartwatch, such as Apple Watch 4, also include ECG 
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amplifier that allows collection of both ECG and PPG; 
therefore, values of pulse rate, heart rate, pulse transmit time 
(PTT), and assessment of blood pressure could be accurately 
derived.  

Sit to stand transition as a form of exercise can be used 
to determine aerobic threshold in young, healthy individuals 
[12]. However, the proposed method is applicable only to 
young and healthy subjects with no joint problems. We 
believe the 30SCST can be used to assess the state of fitness 
of the user, using heart rate increase during the test and heart 
rate recovery after the test. The time-constant of postexercise 
heart rate recovery obtained by fitting heart rate decay curve 
by a first-order exponential fitting has been used to assess 
cardiac autonomic recovery after endurance exercise [13].  

Our ultimate goal is to support automation of mobility 
tests on smartwatches and facilitate self-monitoring and 
personalized guidance. We believe that this approach would 
stimulate proactive approach and focus and wellness, and 
provide early indication of reduced mobility, deterioration of 
overall health, and behavioral changes.  

The automated collection of data and storage in an 
integrated system would create massive data collections that 
can be used for Big Data modeling to better understand the 
mechanisms of changes of mobility of older adults. Wearable 
technology, such as smartwatches, presents a viable method 
for automating functional assessment tests that can collect and 
transmit precise data to a cloud-based system for data 
processing and analysis.  

In this paper, we discuss system implementation, theory 
of operation, and signal processing. Preliminary results from 
the pilot test are also presented. 

II. METHODS 

A. Smartwatch-based 30SCS Test 
The 30SCS test measures the number of complete standups 

a person can perform during a 30 s interval [14]. An alternative 

test is “five repetition sit-to-stand test (FRSTST)” commonly 
used for subject that can not complete a 30 s test. The test 
assesses strength and endurance of lower extremities, but it can 
also measure speed, balance, and mobility [15]. Age, body 
weight, and stature also influence FRSTST performance and 
should be considered [16].  

The test is conducted using a straight back chair without 
arm rests, and a stopwatch. The patient is sitting in the middle 
of the chair with feet flat on the floor, hands placed on opposite 
shoulders and crossed at the wrists, as shown in Fig. 1.  

 
 

 
Figure 1.  Smartwatch-based 30SCS test  

On the command “Start” the patient rises to a full standing 
position and then sits back down holding arms against his/her 
chest. If the total number of chair stands is below average, the 
subject is at risk of falls [14]. For example, “below average” 
performance for age group 85-89 is “less than eight” chair 
stands for both genders. The standard test provides only the 
number of completed stands, while automated tests provide a 
number of additional parameters [8].  

 
Figure 2.  Change of dynamic acceleration and heart rate during 30SCS test 



  

We implemented a smartwatch application for Android 
Wear OS operating system. We tested the application on two 
smartwatch platforms: Fossil Gen 4 and Polar M600. The 
smartwatch application collects inertial signals (3 axis of 
acceleration and 3 gyroscope signals) sampled at Fs=100 Hz, 
and heart rate provided as events in Wear OS. Dynamic 
acceleration is calculated as AC component of 3D vector 
magnitude of all components of the acceleration.  

In our initial application we calculate average 3D 
acceleration during quiet periods (1g or 9.81 m/s2) as Arest, and 
subtract it from the 3D acceleration during test using equation 
(1), although high pass filter can be used for complete 
elimination of the DC offset in Ad.  

 𝐴" = √𝑋& + 𝑌& + 𝑍& − 𝐴+,-. 	0𝑚 𝑠&3 4  (1) 

Change of Ad and HR during 30SCS test is presented in 
Fig. 2. The upper plot represents Ad only during the test (10-40 
s), while the lower plot also depicts heart rate before the test 
(baseline heart rate) and after the test (heart rate recovery). 

In order to determine reliability of heart rate monitoring on 
smartwatch during exercise, we ran a pilot test with 
synchronized monitoring of heart rate using Polar smartwatch 
and a 3-lead ECG using Nexfin/BMEYE noninvasive 
cardiovascular monitor. Nexfin provides precise time stamps 
of each heart beat and RR intervals that are used to calculate 
equivalent heart rate on each heart beat.  

Heart rate from smartwatch was available once per second 
with resolution of 1 beat per minute (BPM). Fig. 3 represents 
heart rate from the smartwatch and ECG monitor during 
exercise and recovery. Each circle represents heart rate at the 
moment when it was provided by the smartwatch. Missed 
readings can be identified as longer periods without 
measurements. It can be seen that the smartwatch averages 
measurements over a time window; therefore, heart rate from 
the smartwatch accurately represents average heart rate of the 
user during moderate changes of the heart rate, and delayed 
heart rate average during rapid change of the exercise (e.g. 
sudden change of heart rate at the beginning of the exercise). 
Therefore, smartwatch provides accurate measurement of the 
heart rate during baseline monitoring and recovery, and 
precise change of heart rate during exercise. Smartwatch 
provides slower rate of heart rate change during rapid change 
of the heart rate; for example, heart rate changed at the 
beginning of the exercise from 75 BPM to 95 BPM in 1.42 
seconds at t=60 s in Fig. 3. Smartwatch measurements 
responded with lower rate of change, but accurately 
represented heart rate during exercise starting from t=70 s, 
limited only by the resolution of the smartwatch 
measurements.  

Application protocol is executed as follows: 
1. Application starts when command “Start” is pressed 

on the smartwatch.  
2. After 50s smartwatch vibrates to notify user to cross 

hands on chest, as required for the standard test 
3. At 60s smartwatch vibration notifies user to start 

30SCS test 
4. After 30s smartwatch vibration notifies user to stop 

the test, sit and relax after exercise 
5. Application continues to collect data for three more 

minutes and record pattern of recovery of heart rate.  

 
Figure 3.  Heart rate during 30SCS test and recovery detected by  

the smartwatch and ECG.  

 
Figure 4.  Measurement of reaction time after vibration used as 

notification.  

Heart rate is recorded for the entire duration of the test (4.5 
minutes/270 seconds). The first 60s are used to determine heart 
rate baseline (HRB), or resting heart rate. Accelerometer 
signals are recorded only 10 s before the test and 10 s after the 
test; that is the reason why acceleration and heart rate have 
different time axes in Fig. 2. Actual test corresponds to time 
10-40s in upper plot (acceleration), and 60-90s in lower plot 
(heart rate). Test period is highlighted in red color.  

It is important to notice small oscillation at the beginning 
and the end of the test that represents smartwatch vibration 
used as notification. That signal allows us to clearly determine 
start and end of the test, but also determine reaction time of the 
user as time interval between the start of the vibration band the 
beginning of the motion. Details of the processing are 
explained in the next section. According to our protocol, we 
can measure two reaction times: motion of hands to the chest 
after first vibration, and start of standup after second vibration.  

B. Signal Processing 
The application records both accelerometer and gyroscope 

signals. However, quality of recorded accelerometer signal 
allowed us to use only dynamic acceleration to detect stand 
events, as can be seen in Fig. 2. Dynamic acceleration signal 
is first filtered using a low pass FIR filter (N=20, Fc=2Hz). 
Raw and filtered signals (shifted to compensate processing 
latency) are presented in Fig. 3. Reaction time can be measured 



  

from the beginning of the vibration in the raw signal to start of 
motion in the filtered signal.  

C. Experiment 
We tested the application using 12 subjects (6 male and 6 

female), ages from 20 to 75 years. Mean age of subjects was 
39.1 years (S.D. 19 years). All subjects were able to complete 
the test in 30s.  

III. RESULTS 

Summary of the Experimental results is presented in Table 
I. We used two watches (Fossil and Polar). Percentage of time 
when HR was detected correctly is presented as pHR. Average 
percentage of correct detection for Fossil was 39.2% and for 
Polar 64%, probably because of the better Polar optical sensor 
with six LEDs. Overall detection is sufficient to represent 
physiological response to exercise for all subjects, particularly 
subjects using Polar watch as shown in Fig. 3. 

Number of standups counted manually is presented as 
Nman and the result of the analysis is presented as Nsw. Our 
software missed one standup event for two subjects with total 
accuracy of 98.8%. Current version of the software did not 
implement CDC recommendation to consider completed stand 
“if the patient is over halfway to a standing position when 30 
seconds have elapsed” that will be implement in the next 
version using total distance in each stand calculated using 
inertial signals. 

TABLE I.  EXPERIMENTAL RESULTS 

Subject Watch pHR [%] Sex Age Nman Nsw 

S1 Fossil 38.5 F 50 10 10 
S2 Polar 61.9 F 21 10 10 
S3 Polar 62.4 F 20 12 11 
S4 Fossil 39.2 F 55 8 8 
S5 Fossil 30.4 M 58 12 12 
S6 Fossil 42.2 M 59 18 18 

S7 Fossil 33.8 F 75 8 8 
S8 Polar 63.9 M 28 17 16 
S9 Fossil 41.3 M 22 15 15 
S10 Polar 68.4 F 25 11 11 
S11 Fossil 48.9 M 28 18 18 
S12 Polar 63.6 M 28 22 22 

IV. DISCUSSION AND CONCLUSION 
Automation of mobility assessment procedures provides 

new biomarkers that can be used to better assess mobility of 
users. Preliminary results presented in this paper demonstrate 
possible use of smartwatch applications to assess user’s 
mobility using 30SCST test and possible use of heart rate 
measurements on the smartwatch to assess fitness level of the 
user.  

Our preliminary results indicate significant differences in 
accuracy of heart rate monitoring between smartwatches, 
caused by the differences in the quality of the PPG sensor. 
Typically, smartwatches designed for fitness applications 
feature more robust heart rate monitoring. Therefore, it is 
recommended to evaluate the performance of heart rate 
monitoring on specific smartwatches before clinical 
deployment.   

Future work includes development of more robust signal 
processing procedures suitable for slower motion of older 
adults and assessment of the fitness level based on the 
personalized change of heart rate during the test and intensity 
of the exercise.  
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