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Abstract— Slow breathing techniques and breathing 

entrainment represent promising approaches to stress reduction, 
autonomous nervous system improvement and improved cognitive 
function. The most frequently used techniques use predefined 
breathing rates and the resonant characteristic of heart rate 
variability at ~0.1Hz, the frequency of the blood control loop. We 
present a new method of evaluation of the personal resonant 
breathing frequency for the maximum heart rate variability and 
implementation of a real-time breathing entrainment system that 
automatically adjusts to the current optimal breathing frequency 
of the user. We demonstrate the existence of the personal optimal 
breathing rate, and demonstrate the change of the optimal 
breathing rate during the session. In our pilot experiment, we 
found that the magnitude of the respiratory sinus arrhythmia 
(RSAM) represents a promising parameter for optimization of the 
breathing entrainment rate, and demonstrated increase of RSAM 
power by continuous tracking of the optimal personal breathing 
rate from 100 ms^2 to more than 500 ms^2. 

Keywords—Breathing, Respiratory Sinus Arrhythmia, Heart 
Rate Variability, Entrainment, Real time 

I. INTRODUCTION 
Slow-paced breathing techniques can be highly effective for 

stress reduction, and effective adjunct treatment for a large range 
of psychological and medical conditions [1]. Deep breathing has 
significant physiological effects, such as activation of the 
parasympathetic nervous system, decrease of stress hormones, 
and improved blood flow. Physiological parameters, such as 
heart rate, breathing rate, and heart rate variability, are 
frequently presented to the user as biofeedback to optimize the 
effect of physiological changes. Heart Rate Variability (HRV) 
represents the variation of time between successive heart beats, 
commonly referred as interbeat intervals (IBI) in 
photoplethysmogram (PPG) or RR intervals in 
electrocardiogram (ECG). However, optimum methods of 
assessment of the effectiveness of breathing techniques and 
selection of optimal parameters for biofeedback treatments are 
still an open research issue. Breathing techniques can be highly 
effective for stress reduction, capitalizing on the connection 
between the mind and body.  

Different parameters of HRV have been shown to be an 
effective metric for assessing the health of the cardiovascular 
system, the autonomic nervous system (ANS), and the 
parasympathetic nervous system (PNS) [2], [3]. During 
inhalation, the diaphragm moves down, causing a decrease in 
inter-thoracic pressure, decreasing blood return to the heart and 
increase in heart rate. Exhalation increases the inter-thoracic 
pressure and slows down the heart rate. The changes in heart rate 
are modulated by the PNS and activity of the vagus nerve 
represented as a vagal tone [3]. 

Changes of heart rate caused by breathing are called 
Respiratory Sinus Arrhythmia (RSA), and illustrated in Fig. 1 as 
changes in heart rate, blood pressure, and sympathetic activity 
as a function of lung volume. Heart Rate Variability (HRV) is a 
marker of impaired cardiovascular regulation of the Autonomic 
Nervous System (ANS) [4]. HRV has also been shown to 
effectively correlate with the emotional state of a person [5]. 
Thus it can be used as a quantitative measurement on how an 
action or event has on someone’s emotional state. 

This paper presents a method of real-time evaluation of the 
optimal breathing rate for maximum heart rate variability of the 
user. We present the algorithm, methods, and preliminary results 
of the pilot study.  

II. BREATHING ENTRAINMENT 
Slow breathing techniques, such as yogic pranayama 

techniques demonstrate significant change of function of the 
autonomous nervous system and increase of heart rate 
variability [6]–[8]. E. Vaschillo analyzed resonant properties of 
HRV around LF oscillations (~0.1Hz) generated by baroreflex 
activity [9]. Vaschillo’s two closed-loop model explains how 
HRV biofeedback procedures like slow paced breathing and 
rhythmic skeletal muscle tension can stimulate the baroreflex 
and amplify RSA [10]. Vaschillo describes the vascular tone and 
heart rate baroreflexes as closed loops and propose that 
stimulating one closed loop activates its counterpart [10], [11]. 
Lehrer et al. proposed resonant breathing technique at the 
breathing rate around naturally occurring resonance [4]. This 
resonant breathing rate is subject dependent and ranges between 
4.5 and 6.5 BPM [4]. Song et al. investigated the nature of 
optimal breathing rates for high HRV, and found a resonant 



curve with HRV decreasing when the breathing rate is either too 
low or too high [12]. The study investigated HRV in women of 
different age. According to Song, the subjects also had 
approximately the same Heart Rate for each of the tested 
breathing rates.  

Shaffer and Meehan also evaluated an individual’s RSA 
Response to varying breathing intervals to find what breathing 
interval maximizes the power of the breathing frequency band. 
Although they were able to find the ideal breathing frequency 
for a person at a given time, they are uncertain how long that 
breathing rate will remain optimal for the given subject [10]. 

There are several devices and applications on the market 
intended for heart rate variability training. One of the most 
commonly used methods is the Breathe application on the Apple 
watch. This application provides preset routines for breathing 
entrainment utilizing visual pattern on the watch and watch 
vibration. The breathing rate can be set between 4 and 10 BPM. 
Additionally, the Apple Watch has been shown to provide a very 
good HRV assessment [13]. Custom devices, such as Inner 
Balance Coherence Plus from HeartMath, provide a real-time 
coherence score of heart rate variability [14]. 

Slow breathing techniques, such as yogic pranayama 
techniques demonstrate significant change of function of the 
autonomous nervous system and increase of heart rate 
variability [6]–[8]. The authors hypothesize that this type of 
biofeedback exercises the baroreflexes, and renders them more 
efficient.  

It has also been shown that there is a large self-reported 
reduction of stress in those that have undergone HRV 
biofeedback training [15]. It is theorized that a personalized 
Heart Rate biofeedback training program should be able to 
amplify the effects of a generic biofeedback training program, 
and according to Shaffer and Meehan, more research needs to 
be done on the effect of such a program versus a universally 
prescribed breathing rate for entrainment [10]. 

We hypothesize that resonant breathing at 6 BPM is very 
hard for most users, and faster increase of HRV can be achieved 
by finding a personal optimum slow breathing rate. We believe 
that breathing at a personal optimum breathing rate assessed 
using parameters of heart rate variability can increase the effect 
of deep breathing techniques and psycho/physiological benefits. 
In this paper we present the evaluation of parameters of HRV 
suitable for the real time biofeedback and implementation of the 
real-time biofeedback system. 

The goal of the authors is to perform a similar type of 
analysis  as Shaffer and Meehan to find the ideal breathing rate 
of a person, but to extend this work to perform this analysis in 
real time and provide a visual indication of the ideal breathing 
rate in real time. Such that a user can continuously stay breathing 
at the ideal rate while using the device. 

We implemented a system for real-time breathing 
entrainment and physiological assessment, as shown in Figure 
1. The system consists of: 

• System controller, implemented on a Raspberry Pi 4b single 
board computer, 

• Physiological Monitor, is a low power microcontroller used 
for data acquisition and signal processing of the PPG and 
ECG signal. In this study we used a custom PPG board with 
MAX86150 PPG sensor for ease of sensor attachment.  

• LED light entrainment controller, is a Teensy 3.2 controller 
connected to an Adafruit Jewel LED. The controller receives 
commands from the main controller with the breathing rate 
and generates light pattern to entrain breathing of the user.  

 
Figure 1. Organization of the breathing entrainment and physiological 
assessment system.  

A typical setup is presented in Figure 2. The subject uses a 
clip with the PPG sensor connected to their finger. The monitor 
displays both the raw signals and calculated HRV parameters in 
real-time. The light controller with LEDs is sitting on the desk 
in front of the subject, such that they can get a clear view during 
breathing entrainment. 

A. Signal Processing 
Physiological monitor collects raw PPG using I2C 

communication with the PPG sensor. The controller filters the 
signal, eliminates baseline, and finds moments of individual 
heart beats using Pan&Tompkins algorithm [16], and inter beat 
intervals. In preparation for spectral analysis, IBI outliers were 
removed. The upper and lower bounds of acceptance was 1.3 
and 0.7 times the last IBI respectively [16]. Signal processing on 
physiological monitor is implemented in C.  

The primary controller employs Python for signal processing 
and HRV analysis of IBIs. HRV parameters are calculated in a 
64 second window of IBIs. Average value of all intervals is used 
as a mean value of IBI in the window, and subtracted from all 
IBIs in the window to remove the baseline. The IBIs are then 
interpolated at 4 Hz using a cubic spline method. The spectrum 
for HRV is calculated by performing a Fast Fourier Transform 
(FFT) on 256 interpolated IBIs contained within a 64-second 
time frame, with the application of a Hanning window. The 
effect of breathing on IBIs (RSAM), was assessed using Fourier 
analysis of IBIs at the breathing frequency fb in the middle of the 
processing window. However, since the breathing frequency is 
not constant, and changes even in the 64 second window, we use 
Fourier analysis of the previous breathing frequency (fb-1) as 
well as the next breathing frequency (fb+1).  



This approach compensates for spectrum leakage and 
variations in breathing rate. RSAM is calculated as a sum of 
magnitudes from all three spectral components. This 
methodology aims to enhance the accuracy of our results by 
addressing the influence of varying breathing rates and potential 
spectrum leakage issues. 

We use root mean sum of squared differences (RMSSD) as 
a classical measure of HRV [2], calculated as shown in (1).  

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑2𝑁𝑁(𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁−𝐼𝐼𝐼𝐼𝐼𝐼𝑁𝑁−1)
𝑁𝑁−1

 (1) 

We assess short-term and long-term variability of HRV by 
calculating RMSSD for two window lengths of 20 and 60 
seconds. A longer window represents a more stable measure of 

RMSSD, while shorter window represents more recent changes 
of heart rate variability, as shown in Figure 3. All data, raw and 
processed, are saved to a CSV file for later review. 

B. Breathing rate and phase control 
To entrain breathing, the controller generates a pattern of 

lights of different color and intensity to cue different breath 
phases: inhalation, full lung hold, exhalation, and empty lung 

 
Figure 4. Changes of HRV measured using RMSSD using two window 
sizes. 

 
Figure 3. HRV during SCAN operation; breathing rate changes from 15 BPM 
to 6 BPM and back to 15 BPM. 

 
Figure 2. Real-time breathing entrainment setup 



hold. The light intensity gradually increases when breathing in, 
and gradually decreases when breathing out. 

C. Real-time biofeedback algorithm 
We implemented two modes of breathing entrainment 

operation: 

• Scan uses predefined variation of the breathing rate to 
assess personal response to a range of the breathing 
rates, 

• Search applies variable breathing rate in search of the 
maximum HRV of the user. The system collects 
physiological baseline information for 60 seconds, uses 
natural breathing rate during preliminary assessment as 
initial breathing entrainment rate, and proceeds with 
slowing down until maximum HRV has been detected. 
After that, the system will continue to accelerate and 
slow-down breathing rate around personally optimal 
breathing rate according to the measures of HRV. 

The main controller updates system state and target 
breathing entrainment rate every second. The stream of IBI and 
time stamps is received from the physiological controller, 
processed every second to find next value of the breathing rate 
that is sent to the light controller as a command with the target 
breathing interval. The light controller then generates the light 
pattern according to the received breathing interval.  

The breathing control algorithm plays a pivotal role in our 
system, striving to find optimum breathing rate for a user in real-
time during the session. The program starts by natural breathing 
rate of the user, detected during the first 60 seconds of the 
experiment. Starting from the natural breathing rate of the user, 
the program than starts breathing entrainment for the remaining 
time of the session by using light to guide inhalation and 
exhalation of the user. The program deliberately slows the 
breathing rate and monitors heart rate variability as long as 
RSAM is increasing. When RSAM starts to decrease, we use it 
as an indication that the breathing rate is too slow for a user at 
the given moment, and that the user is struggling to breathe at 
such a low rate. Therefore, we start to increase the breathing rate. 
The central mechanism of the algorithm lies in its dynamic 
adjustment of the breathing rate based on real-time 
physiological feedback. The algorithm utilizes a feedback loop 
that assesses changes in RSAM as a critical indicator of 
parasympathetic activity. If the system observes an increase in 
RSA during the slowing phase, it interprets this as a signal to 
further slow down the breathing rate by incrementing the 
breathing period. Conversely, if RSA decreases during the 
slowing phase, the algorithm transitions to the accelerating 
phase, initiating an increase in the breathing rate. 

Crucially, the synchronization between the user's breathing 
pattern and the recommended rate involves an active role for the 
user. The user is prompted to adjust their breathing phase in real-
time to align with the dynamically changing LED indicator 
output. As the breathing period is adjusted based on 
physiological feedback, these updates are translated into 
corresponding changes in the light controller subsystem, 
providing a tangible and perceptible feedback mechanism for 
users.  

The implemented real-time biofeedback method is 
represented by the following pseudocode: 

// Breathing control algorithm 
while (t<60) { // Collect Baseline state for 60 seconds 
 if (ibiAvailable()) {  
  // serial message with IBI info available? 
  update_IBI_and_timestamps(); 
  } // end if IBI available 
 } // end baseline 
 
// set initial value of the breathing rate 
calculate_breathing_rate(); 
slowing=true; // start by slowing the breathing rate 
while (t < 660) { // default session is 10 minute long 
 if (ibiAvailable()) {  // check for new messages 
  update_IBI_and_timestamps(); 
  } 
 if (t > Tupdate){  // execute once a second 
  process_HRV();  // calculate RMSSD in previous window  
  process_RSA();  // calculate RSA in previous window 
  if(slowing) { 
   if (RsaIncreasing(RSA)) { // is RSA increasing? 
    BreathingPeriod += DT;  // keep increasing period 
    } else {  
     // RSA decreases, change the direction 
     slowing = false;  // start increasing the rate 
    } // end RSA decreasing while slowing rate 
   } // end slowing 
  else {  
   // breathing rate is accelerating 
   if (RsaIncreasing(RSA)) {  // is RSA still increasing? 
    BreathingPeriod -= DT;  // keep decreasing period  
   }  
   else { 
    // RSA decreased, start slowing down the breathing  
    slowing = true;  
    }  // end RSA decreasing while accelerating rate 
   }   // end breathing rate update 
  // update breathing period of the light controller 
  updateLedSubsystem();  
  Tupdate +=1;  // schedule next processing in one sec 
 } // end update 
} // end while session 
 

We performed initial evaluation of the optimal breathing 
period using a SCAN mode. This operation collects the baseline 

 
Figure 5. Change of RSA during search for optimal breathing rate.  



data for 60 seconds, then proceeds to change the breathing 
interval from 15 BPM to 6 BPM in 5 minutes, and back to 15 
BPM over 5 minutes. Change of HRV measured using RMSSD 
during SCAN is shown in Figure 4. Arrows represent direction 
of the change of the breathing rate during the SCAN, that starts 
from 15 BPM on the right of the lower plot. Please note local 
maximums of RMSSD indicate optimum personal breathing rate 
of the user for the maximum heart rate variability. During the 
slowing phase of the scan local maximum is generated at 
9.4 BPM. It is also important to note that after slowing the 
breathing rate to 6 BPM, and acceleration of the breathing rate, 
we have a new optimal breathing rate that is lower than previous 
optimal rate, now at 8.7 BPM. We believe that the change of 
local maximum was generated by the change of physiological 
state caused by the scan.  

III. RESULTS 
We implemented a real-time biofeedback session with the 

search for the local maximum of HRV caused by the current 
optimal breathing rate. Change of RSA during Search was 
illustrated in Figure 5.  

During the Search, respiratory sinus arrhythmia measured as 
RSAM constantly increased. This increase indicates the 
effectiveness of real-time optimization of the breathing interval 
according to the changes of RSAM. Change of the RMSSD in 
the 60 second window during the same session is presented in 
Figure 6. The pattern of change of RSA and RMSSD are 
different; however, both parameters demonstrate increased 
physiological response during the Search for the optimal 
breathing rate. RSAM is much more stable and represents 
response to the change of the breathing rate much more 
accurately; therefore, we selected RSAM as the main 
biofeedback parameter.  

The peak RSA magnitude during the entrainment session 
increased dramatically, the maximum value of RSAM at the end 
of the session was approximately 5 times higher than at the 
beginning of the session. The change of RMSSD during the 
session was significantly smaller, only 40% increase of the 
maximum RMSSD (~35ms) compared with the RMSSD at the 
beginning of the session (~25ms).  

The scan mode revealed the change of the optimal breathing 
rate, even in a short time necessary for the Scan operation. This 
issue was raised by Shaffer and Meehan, as concern of the 
validity of the optimality of results in prolonged time periods 
[10]. As shown in Figure 4, the breathing rate which maximizes 
HRV can change in as little time as the 5 minutes it took to 
finalize slowing of the breath and start of increased breath rate. 
Our system allowed us to quantify the change and monitor 
optimum breathing rate during the session and between the 
sessions. We believe that the Scan itself represents an “exercise” 
that changes local physiological optimal breathing rates, but that 
hypothesis requires further research and testing.  

 

IV. CONCLUSION 
Breathing entrainment represents a promising approach to 

stress reduction, ANS function improvement, enhanced 
emotional regulation, and improved cognitive function. Most 
researchers use predefined breathing rates, or physiologically 
important rates, such as 6 BPM (0.1 Hz), generated by the 
physiological blood pressure regulation control loop. In this 
paper we presented a method of the real-time adjustment of the 
optimal breathing rate based on the magnitude of respiratory 
sinus arrhythmia at the frequency of breathing entrainment. This 
approach resolves the concerns about the length of time for 
which the calculated breathing rate remains optimal.  

We demonstrated the effectiveness of the use of RSAM for 
the control of the breathing rate. Although we implemented the 
system in the Laboratory environment with real time 
visualization of all parameters, the system can work 
autonomously with the main controller and light controller only, 
which makes it suitable for portable relaxation applications for 
everyday use. In our pilot experiment, the RSAM was increased 
more than five times during the breathing entrainment session 
lasting only ten minutes.  

In light of the findings, it is essential to acknowledge the 
limitations stemming from the relatively small sample size, 
comprising only two subjects. While the insights gained from 
this study provide valuable initial observations, future work will 
include evaluation of the proposed algorithm in larger study with 
diverse subject population in order to further validate our 
approach. We will also evaluate other parameters extracted from 
PPG and ECG for possible optimization of the breathing 
entrainment algorithm.  

 
Figure 6. Change of RMSSD during search for optimal breathing rate.  

 



REFERENCES 
[1] S. Laborde et al., “Psychophysiological effects of slow-paced breathing 

at six cycles per minute with or without heart rate variability 
biofeedback,” Psychophysiology, vol. 59, no. 1, p. e13952, 2022, doi: 
10.1111/psyp.13952. 

[2] M. Malik, “Heart Rate Variability, Standards of Measurement, 
Physiological Interpretation, and Clinical Use,” Eur. Heart J., vol. 17, pp. 
354–381, 1996. 

[3] N. Singh, K. J. Moneghetti, J. W. Christle, D. Hadley, D. Plews, and V. 
Froelicher, “Heart Rate Variability: An Old Metric with New Meaning in 
the Era of using mHealth Technologies for Health and Exercise Training 
Guidance. Part One: Physiology and Methods,” Arrhythmia 
Electrophysiol. Rev., vol. 7, no. 3, pp. 193–198, Aug. 2018, doi: 
10.15420/aer.2018.27.2. 

[4] P. M. Lehrer, E. Vaschillo, and B. Vaschillo, “Resonant Frequency 
Biofeedback Training to Increase Cardiac Variability: Rationale and 
Manual for Training,” Appl. Psychophysiol. Biofeedback, vol. 25, no. 3, 
pp. 177–191, Sep. 2000, doi: 10.1023/A:1009554825745. 

[5] M. T. Valderas, J. Bolea, P. Laguna, M. Vallverdú, and R. Bailón, 
“Human emotion recognition using heart rate variability analysis with 
spectral bands based on respiration,” in 2015 37th Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society 
(EMBC), Aug. 2015, pp. 6134–6137. doi: 10.1109/EMBC.2015.7319792. 

[6] A. Tyagi and M. Cohen, “Yoga and heart rate variability: A 
comprehensive review of the literature,” Int. J. Yoga, vol. 9, no. 2, pp. 97–
113, 2016, doi: 10.4103/0973-6131.183712. 

[7] E. Jovanov, “On Spectral Analysis of Heart Rate Variability during Very 
Slow Yogic Breathing,” in 2005 IEEE Engineering in Medicine and 
Biology 27th Annual Conference, Shanghai, China, pp. 2467–2470. doi: 
10.1109/IEMBS.2005.1616968. 

[8] E. Jovanov, “Real-time monitoring of spontaneous resonance in heart rate 
variability,” in 2008 30th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society, Vancouver, BC, Aug. 
2008, pp. 2789–2792. doi: 10.1109/IEMBS.2008.4649781. 

[9] M. E. Bates et al., “The Process of Heart Rate Variability, Resonance at 
0.1 hz, and the Three Baroreflex Loops: A Tribute to Evgeny Vaschillo,” 
Appl. Psychophysiol. Biofeedback, vol. 47, no. 4, pp. 327–340, Dec. 2022, 
doi: 10.1007/s10484-022-09544-4. 

[10] F. Shaffer and Z. M. Meehan, “A Practical Guide to Resonance Frequency 
Assessment for Heart Rate Variability Biofeedback,” Front. Neurosci., 
vol. 14, 2020, Accessed: Dec. 02, 2023. [Online]. Available: 
https://www.frontiersin.org/articles/10.3389/fnins.2020.570400 

[11] E. Vaschillo, P. Lehrer, N. Rishe, and M. Konstantinov, “Heart Rate 
Variability Biofeedback as a Method for Assessing Baroreflex Function: 
A Preliminary Study of Resonance in the Cardiovascular System,” Appl. 
Psychophysiol. Biofeedback, vol. 27, no. 1, pp. 1–27, Mar. 2002, doi: 
10.1023/A:1014587304314. 

[12] H.-S. Song and P. M. Lehrer, “The Effects of Specific Respiratory Rates 
on Heart Rate and Heart Rate Variability,” Appl. Psychophysiol. 
Biofeedback, vol. 28, no. 1, pp. 13–23, Mar. 2003, doi: 
10.1023/A:1022312815649. 

[13] D. Hernando, S. Roca, J. Sancho, Á. Alesanco, and R. Bailón, “Validation 
of the Apple Watch for Heart Rate Variability Measurements during 
Relax and Mental Stress in Healthy Subjects,” Sensors, vol. 18, no. 8, Art. 
no. 8, Aug. 2018, doi: 10.3390/s18082619. 

[14] “Inner Balance Coherence Plus.” Accessed: Oct. 10, 2023. [Online]. 
Available: https://www.heartmath.com/coherenceplus/ 

[15] V. C. Goessl, J. E. Curtiss, and S. G. Hofmann, “The effect of heart rate 
variability biofeedback training on stress and anxiety: a meta-analysis,” 
Psychol. Med., vol. 47, no. 15, pp. 2578–2586, Nov. 2017, doi: 
10.1017/S0033291717001003. 

[16] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm,” 
IEEE Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 230–236, Mar. 1985, 
doi: 10.1109/TBME.1985.325532. 


	I. Introduction
	II. Breathing Entrainment
	A. Signal Processing
	B. Breathing rate and phase control
	C. Real-time biofeedback algorithm

	III. Results
	IV. Conclusion
	References


