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ABSTRACT

With more computing platforms connected to
the Internet each day, computer system security has
become a critical issue. One of the major security
problems is execution of malicious injected code. In
this paper we propose new processor extensions
that allow execution of trusted instructions only.
The proposed extensions verify instruction block
signatures in run-time. Signatures are generated
during a trusted installation process, using a
multiple input signature register (MISR), and stored
in an encrypted form. The coefficients of the MISR
and the key used for signature encryption are based
on a hidden processor key. Signature verification is
done in the background, concurrently with program
execution, thus reducing negative impact on
performance. The preliminary results indicate that
the proposed processor extensions will prevent
execution of any unauthorized code at a relatively
small increase in system complexity and execution
time.

1. INTRODUCTION

Most of today’s computers are connected to
the Internet or at least to a local network, exposing
system vulnerabilities to potential attackers.
Consequently, computer security is becoming a
critical issue, and current trends in hardware and
software will bring it even more into focus.
Following Moore’s law, in the next five years we
can expect high-end processors with one billion
transistors, and proliferation of Internet-enabled,
low-end embedded systems, ranging from home
appliances, cars, and sensor networks to personal
health monitoring devices. Increased complexity of
high-end systems and the large-scale deployment
and diversity of low-end systems make it difficult to
uncover system vulnerabilities. In addition,
exhaustive testing is virtually impossible as
software grows in size and complexity and time-to-
market decreases.

One of the major security problems is
execution of unauthorized and potentially malicious
code. During execution of vulnerable programs an
attacker is able to inject the code into a memory
structure, for example a buffer, and then to change
the code pointer, such as the return value on the
stack [1]. One such example is the so-called “stack
smashing”: an attacker exploits a possibility for a
buffer overflow in the program by sending more
data than the buffer can hold, overwriting the valid
return address on the stack with the malicious code
address and writing the malicious code also on the
stack. When this code is executed, it will have the
same privileges as the attacked program. Various
other examples of attacks exist, such as heap
overflow and format string attacks [2].

The ever-increasing available area on a chip so
far has predominantly been used for faster
execution. With more complex software having
potentially a larger number of defects, increased
number of attacks, and proliferation of networked
computing platforms, we believe that dedicated
processor resources should be used to provide more
secure execution. Hardware-supported techniques
have potential to provide secure program execution
with lower overhead in performance, cost, and
power consumption than techniques relying solely
on software.

In this paper we propose processor extensions
that allow execution of trusted instructions only, by
verifying instruction block signatures in run-time.
An instruction block signature is determined during
secure program installation, using a multiple input
signature register (MISR) with linear feedback
coefficients dependent on a secret processor key.
Only instruction blocks that caused cache misses
need to be verified, since an instruction cache is a
read-only structure.

We consider three implementations of this
mechanism: SIGT, SIGE, and SIGC. In the SIGT
and SIGE, an atomic code unit protected by its
signature is a basic block. In the SIGT signatures
are stored in a signature table in a separate code
segment [3], and in the SIGE signatures are
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embedded in the code, so that each basic block
contains its signature. The SIGT implementation
requires more hardware resources, such as the
cache-like structure for storage of the most recently
needed signatures (IBST), while the SIGE requires
an additional opcode or reserved instruction bit for
signatures and increases the number of cache
misses. Both SIGE and SIGT require compiler
support to determine the list of basic blocks.

The SIGC is a more efficient variation of the
SIGE: instruction block signatures are also
embedded in the code, but the size of an instruction
block corresponds to a cache block size, not to a
basic block. All signatures are stored at
predetermined addresses, so there is no need for
additional opcode or for compiler support.
Although both SIGE and SIGC techniques store
instruction block signatures in main memory and
verify them at each instruction cache miss, in the
SIGC signatures are not stored in the cache, since
they are not needed after successful verification.

The potential of proposed techniques is
evaluated using SPEC CPU2000 benchmarks. Most
results indicate a minor increase in the execution
time, at a relatively modest hardware cost. For the
SIGT, very few applications have more than 1000
IBST misses per one million instructions, for as low
as 64 IBST entries. A convenient hash function can
minimize the number of memory accesses on an
IBST miss. For a reasonable instruction cache size
of 32K, the number of misses is relatively low, so
the increased code size in the SIGE does not
significantly increase the absolute number of cache
misses for most considered applications. The
increase in the number of cache misses can be
completely avoided with the SIGC, with very small
increase in IPC, up to 0.075.

We believe that the overhead of the
architectural extensions is a small price to pay for
added security. Instead of the vulnerability-specific
solutions, the proposed implementations offer
protection from a whole class of vulnerabilities that
allow execution of a malicious code. The proposed
extensions are cost-effective, do not require
significant processor changes and changes in legacy
source code. In addition, encrypted basic block
signatures protect the code from software
tampering, and enable fault detection in error-prone
environments such as Space.

This paper is organized as follows. Section 2
describes the related work, and Section 3 describes

the proposed techniques. Section 4 shows the
preliminary results, and the last section concludes
the paper.

2. RELATED WORK

One obvious but unattainable solution to the
problem of injected code execution would be to
write code that is not vulnerable to such attacks.
Instead, we rely on various defense techniques that
can be classified in two categories: those that are
software-based and those that require some
hardware support. The software techniques can be
further classified into static techniques, which
detect security defects in the code in compile time,
and dynamic techniques, which augment the
program to detect the execution of unauthorized
code in run time.

Static code analysis can find a significant
number of security flaws and suggest where
changes in the code should be made. However, the
problem of static analysis is generally undecidable
[4]. Completely automated tools for detection of
security-related flaws must choose between precise
but not scalable analysis and lightweight analysis
that may produce a lot of false positives and false
negatives. Wagner et al. proposed a tool for
automated detection of code that might cause the
buffer overflow [5]. The problem of buffer
overflow is formulated as an integer constraint
problem: a string buffer is modeled as a pair of
integers, one for the current buffer length and
another for the allocated size, so the tool needs to
verify whether the maximum length is not greater
than the allocated size. The authors admit they
sacrificed precision in order to have a scalable tool.
The need for precise automated analysis can be
alleviated if the programmer adds specially
formulated comments about constraints [6]. In a
recent study, Dor et al. propose a tool for detection
of all string manipulation errors, C String Static
Verifier [7]. This tool is able to find all such errors,
providing that the potentially vulnerable functions
are annotated with so-called contracts, including
pre-conditions, post-conditions, and potential side
effects. The authors also propose algorithms for
automated strengthening of post- and pre-
conditions, reducing the burden placed on the
programmer, but at the cost of increased
imprecision.
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Dynamic software techniques augment the
code with run-time attack detection. Most of these
techniques concentrate on one type of known
attack, especially stack smashing. For example, the
StackGuard compiler places a dummy value, the so-
called canary, between the return address and the
rest of the stack [8]. A buffer overflow attack that
overwrites the return address must also overwrite
the canary. Hence, an attack is detected if the value
of the canary has changed. Another approach is to
check the range of referenced buffers in the
function wrapper [9]. Run-time detection can be
applied only to the critical library functions, such as
string manipulation functions or malloc() [10], or to
the whole program, using modified C compilers [9,
11, 12] or “safe dialects” of the C language [13].
Binary code can be directly modified [11], but these
techniques may have some false negatives or
positives. Protection can also be implemented at the
level of the operating system [14], and there are
several open source Linux distributions with
security features, such as Hardened Gentoo,
Kaladix Linux, Openwall, and RedHat [15]. One
interesting approach is to obfuscate the addresses:
the virtual addresses of code and data are
randomized, making it difficult for an attacker to
succeed [16, 17]. Each byte of the program code
can be scrambled in load time using pseudorandom
numbers [18]. All these techniques have a
significant performance overhead. The overhead
can be reduced if static analysis is used to
determine which parts of the code should be
protected by dynamic detection [19].

Several researchers suggest intrusion detection
by monitoring the system calls of a program [20-
23]. If the system call sequence for a particular
program deviates from a normal behavior, an
intrusion is suggested. The normal program
behavior is obtained either by profiling, or by
encoding the specification of expected behavior
using a special high-level specification language. If
profiling is used, false positives may be generated
when a rarely used region of the code is executed.
A specification-based approach, on the other hand,
is as error prone as the coding process itself.
Finally, although a malicious code is very likely to
encompass a system call, such as the system()
command, an attacker may potentially devise an
attack with the same call sequence as the vulnerable
program, or inflict some damage even without
system calls. Another profiling approach [24]

suggests using the values of performance
monitoring registers to verify whether the program
deviates from its expected behavior.

Some of the performance overhead may be
reduced with hardware support. Xu et al. propose an
architectural support against the buffer overflow
attack: a return address is saved on both the Secure
Return Address Stack and on the “regular” stack
[25]. An attack is detected if the two addresses do
not match. Similar efforts expand this idea [26, 27].
The main drawback of these techniques is that they
provide protection from only one type of attack.
Techniques such as specific randomized instruction
sets for each process may prevent code injection in
general [28], but at the price of a significant
increase in execution time.

Kirovski et al. propose the Secure Program
Execution Framework for intrusion prevention [29].
The underlying idea is that the executable of a
program can have different representations that
produce the correct program behavior. Possible
code transformations include instruction
scheduling, basic block reordering, branch-type
selection, register permutation, etc. During
installation, a transformation-invariant (TI) hash
value is calculated for each instruction block and is
encrypted using a secret processor key. The
encrypted hash value defines the transformation of
the instruction block. During execution, the verifier
component calculates the TI hash for every
instruction block that is fetched after an instruction
cache miss. It then encrypts the hashed value, and
verifies whether the obtained transformation is
equal to the actual code. If there is no match, an
abort signal is sent to the processor. This solution
successfully prevents execution of injected code,
but at the cost of relatively significant performance
overhead. It must be customized for different
platforms and a particular instruction set.

An interesting approach is to tag all data
coming from “the outside world” (e.g., I/O
channels) as spurious and to prevent execution of
any control transfer instruction if the target address
depends on spurious data [30]. This approach may
generate some false positives, since the target
address may be input-dependant, for example in
switch constructs. Generally, input data can
propagate to a target address through a series of
calculations, so this technique requires a relatively
complex data dependency analysis.
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Signatures of instruction blocks of various
granularity are frequently used in fault-tolerant
computing [31]. Joseph and Avizienis proposed the
idea of a virus protection technique using an
extended Program Flow Monitor -- an error
detection mechanism that verifies the signature of
the sequence of instructions without any branch
instructions [32]. However, the paper does not
include any implementation details or evaluation.

3. PROCESSOR EXTENSIONS FOR
TRUSTED INSTRUCTION EXECUTION

All three approaches introduce relatively
modest changes in processor organization. We will
first describe the details of the SIGT mechanism,
and then the differences between the SIGT and the
other two proposed processor extensions.

3. 1. SIGT Implementation
Processor and Memory Segment

Modifications. A secure processor includes a
dedicated resource for signature verification, the
Instruction Block Signature Verification Unit
(IBSVU) (Figure 1), dedicated registers, and
additional control logic. The processor also includes
the Instruction Block Signature Table (IBST). The
IBST is a cache-like structure that keeps relevant
information about the most recently needed
instruction block signatures. The signature
information for all instruction blocks is stored in the
IBST_M table in main memory.

Compilation and Program Installation. The
program compilation process generates a list of all
basic blocks in the code and appends it to the
executable (Figure 1). Disassembling can extract
this list from the executable with more than 99%
accuracy [11], but some basic blocks may not be
easily recognized. During secure installation, the
code is augmented with encrypted instruction block
signatures, where a signature is a function of the
instruction words in the block. Although different
functions can be used for the signature, we propose
the use of a multiple input signature register
(MISR). The signature of a block is calculated with
the instruction words as consecutive inputs to the
MISR. The calculated signature is then encrypted
using a processor key hidden in hardware, which is
unique to each processor, and some symmetric
secure encryption algorithm such as AES
(Advanced Encryption Standard). For each new
block, the MISR is initialized to the same value.

The MISR linear feedback coefficients are also
based on the hardware encryption key. Signatures
are stored in a separate code segment: the
instruction block signature table in memory
(IBST_M). Each entry in the IBST_M includes the
IB.SA (Instruction Block Starting Address Offset)
and IB.S (Instruction Block Signature) fields. The
IB.SA is the offset of the address of the first
instruction in the basic block from the beginning of
the code. This field is used as a key for accessing
the IBST_M.
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Figure 1 SIGT: Compilation and installation,
and memory and processor modifications

Legend: MMU – Memory Management Unit, IF –
Instruction Fetch Unit, FPUs – Floating Point Unit(s),
Control – Control Unit, L1D – Level 1 Data Cache, L1I
– Level1 Instruction Cache, IBST – Instruction Block
Signature Table, IBST_M – Instruction Block Signature
Table in Memory, IBSVU – Instruction Block Signature
Verification Unit.

The library code deserves a special note. If a
static library is used, only the necessary functions
are linked with the rest of the application into one
executable file. Basic block signatures are
calculated for that file, so the signature table
includes signatures of basic blocks in the used
library functions. Each dynamically linked library
(DLL) has its own signature table, and the pointers
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to that table can be loaded at load time, so all code 
can be safely verified. 

Program Loading. Signatures can be 
decrypted during program loading from a hard disk 
to memory, or when a particular signature is fetched 
from memory during program execution. If the 
IBST_M is decrypted at load time, the decryption 
overhead is concentrated at the beginning of 
program execution. This approach also avoids re-
decryption of the same signature when that 
signature must be fetched in the IBST from the 
IBST_M more than once. A memory region with 
the signatures must be protected, so it is accessible 
only by the IBSVU. Otherwise, an attacker might 
inject malicious basic blocks and change the 
corresponding signatures.  

The alternative approach for signature 
decryption is to decrypt signatures in the run time, 
possibly by a dedicated hardware resource. Run-
time decryption does not require protected memory, 
since signatures in the memory are encrypted. 

A subset of signatures can be preloaded into 
the processor’s IBST, and that subset can be chosen 
in various ways: by spatial locality, by applying 
profiling information, or randomly. Another option 
is not to preload the IBST, but to fill it dynamically, 
just like a regular cache structure.  

Program Execution. To reduce the number of 
verifications, we can optionally perform verification 
only for the last basic block in an instruction stream 
(a dynamic basic block), since any injected code 
will most likely change the control flow. Without 
loss of generality, we consider a case where the size 
of all instructions is 4 bytes, and the mechanism 

verifies the signature of the last basic block in an 
instruction stream. Figure 2 shows a block scheme 
of program flow monitoring. 

When the instruction decoder recognizes the 
end of a basic block, i.e., a control-flow changing 
instruction, it asserts the signal NewIB (New 
Instruction Block) for instruction that follows. The 
offset of the new basic block from the beginning of 
the code is calculated by deducting the value in the 
PC register from the value stored in the SA 
(program Starting Address) register, and stored in 
the CB.SA (Current Block Starting Address) 
register. The signature for the current basic block is 
calculated by using values of instruction words 
stored in the IR register, and the same MISR 
coefficients that are used for signature generation. 
The MISR is reset at the start of each new basic 
block. The current basic block signature is stored in 
the CB.S (Current Block Signature) register.  

The IBSVU needs to verify a basic block 
signature only if that block caused at least one 
instruction cache miss (signal ICacheMiss), and 
when that basic block was the last block in an 
instruction stream (signal NewStream). The end of 
the current instruction stream is detected by 
comparison of the PC (Program Counter) and PPC 
(Previous Program Counter) registers, where the 
PPC is an additional register saving the value of the 
previous PC. 

If both the NewStream and ICacheMiss signals 
are asserted, current values of the CB registers 
(CB.SA and CB.S) are transferred to the 
corresponding LB (Last Block) registers in the 
IBSVU.

NewStream

PPCPPC PCPC

PC-PPC = 4? CB.SACB.SA

Combinational 
Logic (MISR)

IRIRSASA

-

IBSVU

IBSTLB.SLB.S

LB.SALB.SA

CB.SCB.S

ICacheMiss

NewIBNewIB NewIBNewIB

Figure 2 SIGT program flow monitoring with fixed instruction size 
Legend: PC – Program Counter, PPC – Previous Program Counter, IR – Instruction Register, SA- Starting Address, IBSVU 
- Instruction Block Signature Verification Unit, CB.S/LB.S – Current Block/Last Block Signature Register, CB.SA/LB.SA 
Current Block/Last Block Starting Address Offset. Control signals are shown in dotted lines: ICacheMiss – indication of an 
instruction cache miss during basic block execution, NewIB – control signal from the decoder, indicating the beginning of a 
new basic block, NewStream – indication of the beginning of the new stream. 
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The CB registers then continue to capture the
relevant information of the currently executed basic
block, while concurrently the IBSVU is verifying the
signature of the last basic block in the previous
stream by comparing it to the corresponding data in
the IBST. The signature can be captured in parallel
with the execution pipeline stage for in-order
execution, and after the decode stage for out-of-order
execution.

The IBST lookup results in a miss or a hit. In the
case of a signature hit the executed instruction stream
has no malicious code. A signature miss can be an
infrequently executed basic block or injected code, so
the IBST_M must be searched for the signature with
the matching starting address offset. Since an
IBST_M does not change for a given program, the
secure installation process may find a near-perfect
hash function for a particular application, or choose
the most suitable hash function from a predefined set
of functions. The information about the chosen hash
function can be kept in the program header in an
encrypted form. If there is a corresponding entry in
the IBST_M and there is a signature match, the
instruction stream is not injected: the execution
continues as usual, and the IBST is updated.
Otherwise, it means that a malicious instruction
stream has been executed, so the IBSVU traps the
operating system. The operating system then halts the
program execution and audits the intrusion event.

3. 2. SIGE implementation
Processor and Memory Segment Modifications.

The SIGE requires less complex hardware resources
than the SIGT, since there is no IBST table. Since the
signatures are embedded in the code, there is no
additional memory segment for signatures.

Compilation and Program Installation.
Similarly to the SIGT, during secure installation
signatures are generated using a list of basic blocks
prepared by the compiler. The signatures are
embedded in the code, with each signature placed
before the first instruction in the corresponding
instruction block (Figure 3). The instruction decoder
must be able to tell the difference between the
signature and a regular instruction. This can be
achieved by reserving one instruction bit for the
signature flag, or by using a special opcode that
indicates to the decoder that the following instruction
is the signature.

Program Loading. Signatures are loaded in
main memory together with the code, and decrypted

when they are fetched from main memory to the
cache.
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Figure 3 SIGE compilation and Installation

Program Execution. The verification process is
similar to the SIGT: when current basic block is the
last one in an instruction stream and caused at least
one instruction cache miss, the signature embedded
in the block is compared to the signature calculated
during basic block execution.

3. 3. SIGC implementation
Processor and Memory Segment Modifications.

In the SIGC, the IBSVU is a part of the cache
controller (Figure 5), and the processor requires no
changes. The organization of memory segments is
not modified either.

Compilation and Program Installation. The
SIGC does not require any changes in the
compilation process, so it is even more suitable for
legacy code. The signatures are calculated, encrypted,
and inserted in the code during program installation,
for each instruction block that corresponds to the size
of the cache block in a given architecture. If the last
instruction block is shorter than a cache block, it is
padded with randomly chosen instructions that do not
change the state of the processor. Since all instruction
blocks in the SIGC have the same size, there is no
need for the change of the ISA.
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Figure 4 SIGC Installation
Program Loading. A signature of an instruction

block is decrypted when that block is fetched from
main memory.

Program Execution. On a cache miss, the
corresponding block is fetched from the memory; the
signature is stored in the signature register, and the
instruction block is stored in the cache without its
signature. Hence, there will be no additional cache
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misses due to embedded signatures as in the SIGE,
although we can expect a slight increase in the
number of page misses. As an encrypted signature
precedes its instruction block, it is fetched first and
decrypted concurrently with the transfer of the rest of
the block from memory. The calculation of the actual
signature using a MISR is also overlapped with the
memory transfer, so the whole verification process
can be done in the background. The SIGC includes a
simple mechanism for translation of program
addresses into domain of addresses with embedded
signatures.
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Figure 5 SIGC mechanism

4. PRELIMINARY RESULTS

Preliminary evaluation has been performed to
assess the performance overhead. Due to the ever-
increasing processor-memory speed gap, the memory
access overhead will be the predominant overhead
component. To assess this overhead, we measured the
number of IBST misses for the SIGT, and the number
of additional instruction cache misses for the SIGE.
The miss rates are measured using an originally
developed functional trace-driven simulator and
SPEC CPU2000 traces collected for Alpha
architecture [33]. The overhead of the SIGC
mechanism is evaluated using a modified
SimpleScalar simulator [34]: we take into account the
latency due to additional memory accesses for
signature fetching and to TLB misses due to address
translation.

We use 10 integer (INT) and 12 floating-point
(FP) applications (Table 1). Each application is run in
two segments for the reference data input: the first
two billion instructions (F2B), and the two billion
instructions after skipping 50 billion (M2B). The
IBST_M and the code with embedded signatures are
generated using the complete code, and not only the

executed basic blocks. The instruction cache size is
fixed for all experiments, with 64B lines, 4 ways, 128
sets, and the least recently used replacement policy
(LRU).

Table 1 shows the number of unique basic
blocks executed in each traced segment (F2B/M2B),
executed in complete benchmark execution (All), and
identified in the code (Code). The results in the table
indicate feasibility of the SIGT, as the number of
executed basic blocks is relatively small and as they
exhibit strong temporal locality. The code expansion
for all three mechanisms can be calculated as:

)/( izeSignatureSNumBlocksCodeSizeExpansion ×= ,
where NumBlocks is the number of basic blocks in
the code for SIGT and SIGE and the code size
divided by the size of a cache block for SIGC. Our
preliminary evaluation does not include effects of the
increased code size in main memory. In the future we
plan to simulate context switches between several
applications and additional hard disk I/O due to the
increased code size.

Table 1 Unique basic blocks and code size

Unique basic blocks
Code Size

[B]
F2B M2B All Code

164.gzip 872 327 1480 8660 212992
176.gcc 29133 25777 32493 98478 1990656

181.mcf 981 327 1399 7401 163840
186.crafty 4161 1692 4801 17761 442368

197.parser 4193 4145 5597 14663 319488
252.eon 3885 675 4298 24285 794624

253.perlbmk 10425 7542 12290 43294 876544
254.gap 3580 542 3740 47365 933888
255.vortex 8086 3823 11765 33336 819200

300.twolf 2842 1195 5425 17931 450560

FP
168.wupwise 2132 312 2435 32989 819200
171.swim 2268 793 2510 32759 819200
172.mgrid 1909 1082 2140 32312 802816

177.mesa 2177 763 2452 33757 917504
178.galgel 2518 166 5797 41805 1048576

179.art 549 502 1222 9600 237568
183.equake 668 395 1629 9436 253952

188.ammp 1100 566 2032 19917 385024
189.lucas 1318 458 1833 33246 851968
191.fma3d 2447 1082 5820 59790 1867776

200.sixtrack 4325 144 7859 61938 2596864
301.appsi 2439 636 3867 35393 1114112
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The SIGT and SIGE experiments use a 32-bit
signature. An attacker may have knowledge only
about the program code, and not about the signatures,
so it is very difficult to discover the MISR function
by cryptanalysis [28]. For example, a brute force
buffer overflow attack would need to overflow the
buffer up to 232 times to find a basic block with a
signature that is accepted by the system.
Nevertheless, if more security is needed, we may use
longer signatures or a different MISR function for
each installed program, with the corresponding MISR
coefficients stored in the program header in an
encrypted form. Since SIGC is simulated in more
details, we use a more realistic signature size of 128
bits.

Figure 6 shows the number of IBST misses per
one million executed instructions (SIGT). Each IBST
miss causes additional memory accesses for the
IBST_M search. The simulated IBST is filled
dynamically, has LRU replacement policy, and two
ways; one IBST block contains one signature. We
simulated the IBST that can hold 32, 64, 128, 256
and 512 signatures. Only three INT applications in
the F2B segment have over 1000 misses per 1M
instructions for all simulated sizes -- 255.vortex,
176.gcc, and 253.perlbmk -- and of the FP
applications only 191.fma3d in the F2B segment has
over 1000 misses, and only for the smallest simulated
sizes. On average, the number of IBST misses is
smaller in the M2B segment than in the F2B, due to
the smaller number of cache misses in the M2B,
when most applications enter the main program loop.
The results indicate that a very small IBST size is
enough for most simulated applications. We also
evaluated the influence of IBST associativity to the
number of misses for an IBST with 128 entries, and
direct mapped organization, 2, 4, and 8 ways. Most
applications do not significantly benefit from more
than two ways.

In the SIGE the signatures are fetched from
memory into the instruction cache together with the
regular instructions, so there are no extra memory
accesses for signature verification, but the overall
number of cache misses increases. To assess the
SIGE potential, we compared the number of
instruction cache misses per one million instructions
for the original code and for the code with embedded
signatures (Figure 7).

INT: F2B

0.1

1

10

100

1000

10000

16x2 32x2 64x2 128x2 256x2
Sets xWays

M
is

se
s

p
er

1M

164.gzip

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

300.twolf

INT: M2B

0.01

0.1

1

10

100

1000

10000

16x2 32x2 64x2 128x2 256x2
Sets xWays

M
is

se
s

p
er

1M

164.gzip

176.gcc

181.mcf

186.crafty

197.parser

252.eon

253.perlbmk

254.gap

255.vortex

300.twolf

FP: F2B

0.01

0.1

1

10

100

1000

10000

16x2 32x2 64x2 128x2 256x2
Sets xWays

M
is

se
s

p
er

1M

168.wupwise

171.swim

172.mgrid

177.mesa

178.galgel

179.art

183.equake

188.ammp

189.lucas

191.fma3d

200.sixtrack

301.appsi

FP: M2B

0.01

0.1

1

10

100

1000

16x2 32x2 64x2 128x2 256x2
Sets x Ways

M
is

se
s

p
er

1M

168.wupwise

171.swim

172.mgrid

177.mesa

178.galgel

179.art

183.equake

188.ammp

189.lucas

191.fma3d

200.sixtrack

301.appsi

Figure 6 IBST misses per 1M instructions

Since most applications have relatively few
instruction cache misses, the SIGE should not
significantly influence overall program performance.
For one application in the F2B segment, 183.equake,
the number of cache misses is even reduced, due to
the better alignment of some portions of the code.
However, for some applications the increase in the
number of cache misses can be considerable: for
example, for 252.eon this number increases for one
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order of magnitude, from about 300 to about 4000
cache misses per one million instructions.
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Figure 7 Instruction cache misses for SIGE vs.
code without embedded signatures

The increase in the number of cache misses is
avoided with the SIGC, since signatures are stripped
before an instruction block is stored in the cache. The
overhead of the SIGC is evaluated by comparing IPC
(instructions per cycle) measure for original code and
the code with embedded signatures. All sim-outorder
simulator parameters except cache sizes have default
values. We simulated two instruction cache L1 sizes:
32K (64B line, 4 ways, LRU) and 4K (32B line,
direct mapped). The L1 data cache is the same as the
instruction cache, and there is no L2 cache. Figure 8
shows the results for the F2B segment. Since a
signature is stored at the beginning of an instruction
block, we assume that signature decryption can be
overlapped with memory accesses for the rest of the
block. For simulated architectures the SIGC does not
significantly change the IPC: up to 0.075 for 4K
cache, and up to 0.056 for 32K cache.
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Figure 8 IPC increase with SIGC

5. CONCLUSION

The contributions of this paper are as follows:
- Proposal of a cost-effective architecture for

trusted program execution based on the verification
of the instruction block signatures. We believe that
processor extensions for verification of instruction
block signatures can be an efficient and inexpensive
defense against attacks injecting malicious code.

- Three implementations of the proposed
extensions, with signatures stored in the separate
code section (SIGT), embedded in the code (SIGE),
embedded in the code but not stored in the cache
(SIGC). The proposed trusted execution mechanism
can be applied to other purposes, such as fault-
tolerant execution, virus protection, and protection
from software tampering.

- Initial performance evaluation, based on the
functional simulation of execution of SPEC
CPU2000 benchmarks. The results suggest that the
proposed implementations do not impose significant
burden on the overall performance. In the SIGT the
number of IBST misses is relatively small, even for
the smallest simulated IBST: for 16 sets and 2 ways,
the number of IBST misses per one million
instructions varies from less than 1 to 5700. In the
SIGC, simulated with cycle-by-cycle simulator, the
increase in the IPC ranges from 0 to 0.075.

Future work will include cycle-by-cycle
simulation in the design space of current and future
microprocessors, the effects of signature decryption
and context switching, and power analysis. Different
IBST_M access functions should also be explored, as
well as whether profiling information can reduce the
number of IBST misses. We also plan to evaluate a
variant of the SIGT, where the size of an instruction
block is equal to the cache block size.
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