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Multi-View Cross-Fusion Transformer Based
on Kinetic Features for Non-Invasive Blood
Glucose Measurement Using PPG Signal
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Abstract—Noninvasive blood glucose (BG) measure-
ment could significantly improve the prevention and man-
agement of diabetes. In this paper, we present a robust
novel paradigm based on analyzing photoplethysmogram
(PPG) signals. The method includes signal pre-processing
optimization and a multi-view cross-fusion transformer
(MvCFT) network for non-invasive BG assessment. Specif-
ically, a multi-size weighted fitting (MSWF) time-domain
filtering algorithm is proposed to optimally preserve the
most authentic morphological features of the original sig-
nals. Meanwhile, the spatial position encoding-based ki-
netics features are reconstructed and embedded as prior
knowledge to discern the implicit physiological patterns. In
addition, a cross-view feature fusion (CVFF) module is de-
signed to incorporate pairwise mutual information among
different views to adequately capture the potential comple-
mentary features in physiological sequences. Finally, the
subject-wise 5-fold cross-validation is performed on a clin-
ical dataset of 260 subjects. The root mean square error
(RMSE) and mean absolute error (MAE) of BG measure-
ments are 1.129 mmol/L and 0.659 mmol/L, respectively,
and the optimal Zone A in the Clark error grid, representing
none clinical risk, is 87.89%. The results indicate that the
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proposed method has great potential for homecare appli-
cations.

Index Terms—Blood glucose estimation, deep learning,
non-invasive measurement, photoplethysmography.

NOMENCLATURE

VPG Velocity plethysmogram.
APG Acceleration plethysmogram.
FPG Fasting plasma glucose.
SQA Signal quality assessment.
PAA Piecewise aggregation approximation.
KFR Kinetics feature reconstruction.
SPE Spatial position encoding.
GAF Gramian angular field.
RP Recurrence plot.
MSWF Multi-size weighted fitting.
CVFF Cross-view feature fusion.
CST Cross-scale transformer.
CEG Clark error grid.
SEG Surveillance error grid.
CV Cross-validation.

I. INTRODUCTION

D IABETES is a chronic disease that gravely impairs human
health and may trigger serious comorbidities, placing a

severe load on the healthcare system [1]. The International
Diabetes Association hence emphasizes the vital role of regular
at-home blood glucose (BG) monitoring for prevention and early
diagnosis of diabetes [2]. However, traditional approaches to BG
management primarily rely on invasive and minimally invasive
devices, which might bring psychological stress and physio-
logical pain to patients. Their effectiveness is also restricted
by factors such as frequency of testing, portability, and cost.
Therefore, the research community has been trying for decades
to develop a reliable, non-invasive BG monitoring technology,
preferably low-cost and portable, that would significantly im-
prove the management of chronic conditions and ease the burden
of care.

Photoplethysmography (PPG), an effective solution for de-
tecting multiple physiological parameters at low cost, is suc-
cessfully applied in commercial wearable devices for measuring
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heart rate (HR) and blood oxygen [3]. The technique is based
on the Beer-Lambert law and obtains physiological information
by measuring changes in light absorption in the blood [4]. In
addition, variations in BG levels affect the viscosity of the blood,
which in turn affects blood flow and velocity in the microvascu-
lature [5]. This physiological correlation is implicitly reflected
in the PPG signal. Therefore, important correlations between
hemodynamic characteristics and BG states can be revealed by
analyzing PPG signals with the powerful feature representation
ability of deep learning models [6].

Notably, acquiring reliable physiological signals is crucial to
enhance further the accuracy of non-invasive vital signs monitor-
ing. Unfortunately, many studies have ignored the filtering prob-
lem that results in distortion of the beginning and end parts of the
signal [7], [8], [9]. Additionally, manual screening of low-quality
signals increases labor and time costs and limits the application
of real-time monitoring and automated systems [10]. Moreover,
partitioning the signal by period requires interpolation to align
varying cardiac cycles due to differences in the cardiac cycle
duration across subjects. However, this approach may destroy
the temporal information in the original physiological sequence
while introducing unnecessary computational redundancy [6],
[11], [12].

Several advances have been made in recent non-invasive
BG measurement studies using conventional machine learning
methods [6], [8], [11], [13], [14], [15], [16], [17]. For example,
Zhang et al. [6] extracted 28 features in the time-frequency do-
main of each single-cycle signal using Gaussian fitting. Finally,
a Gaussian support vector machine was adopted to categorize
the BG into three warning levels, from normal to severe, with an
accuracy of 81.49%. Wei et al. [13] used a stacked fusion strategy
to extract 33 features related to HR, blood pressure (BP), and
the time-frequency domain. Random forest was then used as a
regression model, and 86.84% of the test data fell into region
A of the CEG. Alonso et al. [14] extracted 13 features related
to Mel-Frequency Cepstral Coefficients (MFCC) from the PPG
signals and used the AdaBoost multi-model integration method
to obtain the best result of MAE = 0.646 mmol/L. These studies
focus on extracting a few hand-designed features, such as heart
rate variability (HRV), HR, BP, MFCC, and time-frequency
domain. Although these features are computationally efficient
and, to some extent, interpretable, they often rely on the priori
knowledge of domain experts. Thus, providing generic features
to adequately express the complex relationship between PPG
signal and BG levels is challenging. In addition, the small
number of these features limits the model’s ability to present
individual variability.

Because deep neural networks (DNN) have powerful non-
linear fitting capabilities, researchers have begun to explore
applying deep learning to BG measurement to improve per-
formance further. Notably, Li et al. [11] combined the feature
extraction capabilities of traditional machine learning and deep
learning to manually extract 160 time-frequency domain fea-
tures from ECG and PPG signals. In comparison, 66,560 spa-
tial morphological features were automatically extracted using
DNN. This work demonstrates the potential of deep learning in
BG monitoring but requires additional ECG signals, which may

cause discomfort to the user. In contrast, PPG signals have the ad-
vantage of being cost-effective and easily capturing physiolog-
ical patterns in vivo, enabling non-invasive BG measurements.
Zhang et al. [18] introduced a novel time-frequency graph to
enrich the time and frequency information of network learning
and finally estimates the BG level of fingertip videos by end-
to-end dual-stream DNN. In addition, Lee et al. [19] presented
a practical sensor placement approach to obtain higher-quality
signals and implemented the measurement of BG levels using a
convolutional neural network (CNN). They achieved 84.29% ac-
curacy based on International Organisation for Standardisation
(ISO) 15197:2013 standard [20].

Although previously cited research achieves promising pre-
liminary results, their performance can be improved by consid-
ering the kinetics and non-stationarity of the physiological time
series. Recently, researchers have recognized the limitations of
relying only on one-dimensional (1D) PPG signals to estimate
BG levels. To surmount this issue, several studies have applied
the dynamic trajectory of the PPG signal as a visual indication
of BP or BG changes [12], [21]. This method reduces the burden
of feature extraction and unveils more important hemodynamic
features in the PPG signal. For example, Wang et al. [12]
exploited inter-node visibility coding to map PPG waveforms
to visual graphs and estimated BP values via a ridge regression
algorithm. Ouyang et al. [21] proposed to encode peripheral
pulse waveforms as images and classify BG by multi-scale
fusion CNN. However, these methods rely solely on the encoded
images as input features to a single branch network, omitting
the importance of the original physiological sequences and
failing to provide sufficient priori knowledge for the model.
Furthermore, the adoption of shallow CNN makes it hard to
grasp contextual information at long distances, limiting its
ability to perceive global information. Moreover, the necessity
and effectiveness of signal conversion has not been adequately
validated.

Notably, most of the above work adopted the BG meter test
value as the ground truth. However, the device’s bias makes
it impossible to accurately assess the deviation between the
measured and actual values. In contrast, utilizing the FPG value
(the gold standard) as ground truth shows apparent advantages
because it avoids the potential influence of diet, exercise, and
other factors on BG measurement [22]. In addition, many studies
have not employed CV methods [8], [15], [16], [17], [19] and
have divided the dataset in a record-wise manner [13], [14]. In
the intra-patient (i.e., record-based) approach, the training and
testing sets come from different records of the same patient,
which may lead to overfitting and data leakage, resulting in
unreliable results. Conversely, our experiments are conducted in
a subject-based (i.e., inter-patient) approach. The training and
testing sets are from different patients to ensure the model better
accommodates inter-individual differences.

In this paper, we propose an elegant paradigm for a PPG based
noninvasive BG measurement to address the deficiencies of the
existing work. We present a comprehensive methodology, from
optimized data pre-processing to the design of a novel multi-
view cross-fusion transformer (MvCFT) network. The primary
contributions are as follows:
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1) We propose an optimized data pre-processing paradigm
to enhance the dataset’s quality and obtain reliable ex-
perimental results. A MSWF algorithm is designed to
minimize signal distortion during filtering. The noisy data
segments are automatically removed via SQA.

2) We propose a KFR algorithm based on spatial position
encoding. The effective fusion of positional information,
phase correlation, and periodicity between PPG points
facilitates the representation of underlying hemodynamic
features in the signal.

3) Our proposed MvCFT network deeply fuses comple-
mentary information of heterogeneous features among
views and potentially shared knowledge in physiologi-
cal sequences through the CVFF mechanism. Extensive
experiments on clinical datasets have proven that our
method outperforms previous state-of-the-art methods
and provides a more robust solution for non-invasive BG
monitoring.

II. METHODOLOGY

A. Problem Definition

This study aimed to regress BG values based on the sub-
jects’ PPG signals using a data set. The data set can be set
asD = {(X1, Y1), . . . , (Xn, Yn)}, whereXi, i ∈ [0, n] denotes
the entire PPG signal of subject i, Yi, i ∈ [0, n] represents the
FBG value of subject i, and n stands for the number of samples.
Xi is segmented into fixed frame length segments using a sliding
window, Xi = {St

1, . . . , S
t
l }, where St

ij , j ∈ [1, l] stands for
splitting the PPG signal into segments of t seconds (s) and
l stands for the number of segments. The first and second-
order derivatives of the St

ij (i.e., Sij
ppg), denoted as VPG, i.e.,

Sij
vpg and APG, i.e., Sij

apg , respectively, are concatenated as
Ct

ij = (Sij
ppg, S

ij
vpg, S

ij
apg) ∈ RD×1×L, where Ct

ij represents the
combined signals obtained by concatenating the jth PPG signal
(t(s) length) of subject i and its derivatives. Next, the kinetic
features matrix of St

ij is obtained by the KFR algorithm κ,
i.e.,Kt

ij = κ(St
ij) ∈ RD×S×S , whereKt

ij represents the kinetic
features obtained from the jth PPG signal (t(s) length) of subject
i, D represents the dimension, L represents the length of the
subframe signal, and S × S represents the size of the kinetic
features matrix.

The proposed MvCFT network aims to learn the nonlinear
mapping relationship Fbg(·) between the multi-view data (i.e.,
Ct

ij and Kt
ij) and the BG values (Yi) as shown in the (1).

Ŷi = Fbg

((
Ct

ij ,K
t
ij

)
; θ
)

(1)

where θ represents the hyperparameters of the model. As shown
in (2), a hierarchical smoothing loss is introduced to match the
BG measurement standard (ISO 15197:2013),

LBG =

⎧⎨⎩0.5
(
Yi − Ŷi

)2
/β, if

∣∣∣Yi − Ŷi

∣∣∣ < β∣∣∣Yi − Ŷi

∣∣∣− 0.5× β otherwise
(2)

where β is set to 0.83, as specified in ISO 15197:2013. This stan-
dard dictates that the error should not exceed 0.83 mmol/L for

Algorithm 1: Multi-Size Weighted Fitting (MSWF).
Input: Input signal Xppg, Num_iterations N, Order of the

polynomial k, Size of the small sliding window
SWsize, Size of the large sliding window LWsize.

Output: Filtered signal Xf .
// Stage 1. Smoothing filter.

1: For each index i of the Xppg extract the data points in
[ 1−SWsize

2 , SWsize−1
2 ]:

2: Construct the Vandermonde matrix X , where each row
represents a data point with the highest order of k;

3: Compute the pseudo-inverse of X:
Xpinv = (XTX)−1XT . y values in Xppg as column
vectors Y ;

4: Compute the polynomial coefficients by multiplying
Xpinv with y: c = Xpinvy, Xppg filtered as Yf=Xc.
// Stage 2. Remove baseline drift.

5: For each index i of the Xppg extract the data points in
[ 1−LWsize

2 , LWsize−1
2 ] and map the interval to [−1, 1]:

6: Select the weight function W (x) and calculate the Wi

for each point;
7: Use weighted fitting to obtain a locally fitted curve

near point xi: Ŷ = X(XTwX)−1XTwY ;
8: Calculation error d = |Y − Ŷ | and the median of the d

is noted as dm;
9: Update the weights as W k

new = W ( dk

dm
) and calculate

the new Yb, repeat N times step 7, 8, 9;
10: Return: Xf = Yf - Yb;

BG values below 5.6 mmol/L. Our ultimate goal is to minimize
the loss of label Yi and the measured value Ŷi.

B. Preprocessing

Despite the efforts to ensure subjects’ resting status, their
micromovements and breathing during acquisition may still
impact the PPG signal, thereby introducing problems such as
high-frequency noise and baseline drift [23]. In order to mitigate
the problem of signal distortion and avoid misleading the model
to make wrong decisions due to signal quality issues, it is
crucial to implement data preprocessing. We implemented signal
preprocessing as follows:

1) Segmentation: Generally, the longer the signal length is,
the more likely it is to accumulate noise and interference, which
reduces signal quality. Therefore, the sliding window algorithm
is employed to partition the signal into segments of the same
frame length.

2) Filtering: When the noise spectrum overlaps with the
signal spectrum, the frequency domain filtering algorithm may
cause boundary effects and spectral overlap problems, leading
to signal distortion. [24]. We propose a filtering algorithm based
on MSWF from the time domain perspective as shown in the
Algorithm Algorithm 1. The MSWF removes the signal noise
and baseline drift while ensuring that the shape and width of the
signal are not distorted. Finally, the variability of PPG signals
among different individuals is eliminated by normalization of
the signal.
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Fig. 1. Pipeline of PPG signal kinetic feature reconstruction,
(a) is the PPG signal after normalization, (b) represents the KFR al-
gorithm with parameters set to m=’320’, Type=’SPE-GASF-RP’, and
(c) 3D visualization of PPG signal kinetic features.

3) Signal Quality Assessment: Automated signal quality
monitoring is essential to optimize the quality of model inputs
for a more robust BG assessment. 260 subjects participated in
this study to produce 4684 PPG segments. Referring to [23],
we found that skewness is the best metric for assessing the
PPG signal quality, as shown in (3). Therefore, we set the SSQI

threshold to 0.3, so that segments with SQA scores greater than
0.3 are accepted and those less than 0.3 are rejected. After this
screening, low-quality signals are removed from each subject
to retain 3,892 high-quality PPG segments for the following
experiments.

SSQI =
1

N

N∑
i=1

⎡⎣ xi − μ̂x√
1
N

∑N
i=1 (xi − μ̂x)

2

⎤⎦3

(3)

where μ̂x,N are the mean value ofxi and the number of samples,
respectively.

C. Kinetics Feature Reconstruction

The extreme similarity of PPG signals in the time domain
makes it hard for models to distinguish and capture subtle differ-
ences. To effectively map the complex nonlinear relationship be-
tween PPG signals and BG levels, we propose a KFR algorithm
based on spatial position encoding, as shown in Algorithm 2.
The algorithm captures the pattern of signal evolution over time
by fusing spatial position (SPE), phase correlation (GAF), and
periodicity (RP) to ultimately generate the combined nonlinear
kinetic features from the original PPG signal, as shown in Fig. 1.
The MvCFT network promises to reveal the signal’s intrinsic
structure and nonlinear kinetics by analyzing the signal and its
kinetic features, providing new insights into BG measurement
from PPG [25], [26].

Considering the conversion efficiency, the pre-processed PPG
can be represented as X = {x1, x2, . . . , xn}, X ∈ [0, 1] se-
quence data of length n. The sequence is embedded in m
dimensions with PAA, as shown in (4).

X
i
paa =

m

n

n
m i∑

j= n
m (i−1)+1

xj , i ∈ [0,m] (4)

Algorithm 2: KFR Algorithm Flow.

Input: PPG data X = {xi}ni=1; the PPG dimensions after
dimensionality reduction is m; the combination Type
of kinetic features.

Output: kinetic features F.
// PPG data is dimensionally reduced by PAA to obtain
Xpaa ∈ R1×m by (4).

1: Xpaa ← PAA(X,m)
// The matrix SPE ∈ Rm×m is obtained by (5).

2: SPE ← ReconstructSPE(Xpaa)
// The matrices GASF and GADF ∈ Rm×m is
obtained by (7) and (8).

3: GASF ← ReconstructGASF(Xpaa)
4: GADF ← ReconstructGADF(Xpaa)

// The matrix RP ∈ Rm×m is obtained by (9).
5: RP ← ReconstructRP(Xpaa)

// According to the parameter Type, combining the
three kinetic features in SPE,GASF,GADF , and
RP to obtain F ∈ R3×m×m.

6: F←
CombineFeatures(SPE,GASF,GADF,RP,Type)

7: return kinetic features F

1) Spatial Position Encoding (SPE): Inspired by the relative
position embedding, described in [27], SPE incorporates spatial
location information with feature representation to augment
the distinguishability of the features by the model. The same
PPG may have different feature patterns at points in different
spatial positions, which reflects the dynamic changes in blood
flow. Embedding the SPE matrix can facilitate the model to
mine more long-range and local time series dependencies, thus
enhancing the generalisability of features. Specifically, the se-
quence Xpaa = {�xi}mi=1 after PAA dimensionality reduction.
The spatial location information between arbitrary two points
in the sequence is computed sequentially by Euclidean norm
‖�xi − �xj‖, i, j ∈ [0,m]. From (5), the SPE matrix SPEij ∈
Rm×m of the sequence can be derived.

SPEij = ‖�xi − �xj‖ =
√

(�xi − �xj)T (�xi − �xj) (5)

2) Gramian Angular Field (GAF): GAF maps each time point
in the time series to an angular value and a polar radius in the
polar coordinate system by calculating the difference or relative
angle between different time points. Such representation can
help reveal the signal’s dynamic evolution pattern at different
time points and further explore the implicit cardiovascular ki-
netics information in the signal. Specifically, Xpaa = {�xi}mi=1

is transformed from the Cartesian coordinate system to the Polar
coordinate system using (6):

φi = arccos(�xi), ri =
i

m
, i ∈ [0,m] (6)

where φi is the angle vector and ri corresponds to the radius.
Finally, considering the angular sum or difference between
different points through (7) and (8) obtains two forms of GAF as
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Fig. 2. Pipeline diagram of the proposed MvCFT framework for BG measurement. In the figure, (• × • × •) stands for (C ×H ×W ), where C,
H, and W are the number of channels, height, and width of the features or signals, respectively. Ct=6

ij and Kt=6
ij represent the combined signals

and combined kinetic features from segment j after segmenting the PPG signal of subject i by 6 s, respectively. The legend is shown in the lower
right, where BN stands for batch normalization and GELU (Gaussian Error Linear Units) is the activation function.

GASF and GADF respectively; GASF,GADF ∈ Rm×m.

GASF = cos (φi + φj)

= XT
paaXpaa −

√
I −X2

paa

T√
I −X2

paa (7)

GADF = sin (φi − φj)

=
√
I −X2

paa

T

Xpaa −XT
paa

√
I −X2

paa (8)

3) Recurrence Plot (RP): RP is a method for analyzing non-
linear kinetics [25]. It reveals a time series’ intrinsic structure
by analyzing the signal’s periodicity, chaos, and non-stationarity.
RP enables the capture of the nonlinear kinetic features in PPG
signals, which helps to enhance the model’s perception of the
latent physiological information in PPG signals. Particularly, for
Xpaa = {�xi}mi=1 the corresponding RPij ∈ Rm×m matrix can
be obtained through (9):

RPij = Θ(ε− ‖�xi − �xj‖), i, j ∈ [0,m] (9)

where the threshold ε is empirically taken to be 10% of the peak
value [28] and Θ(·) is a step function as shown in (10).

Θ(·) =
{
1, if(ε− ‖�xi − �xj‖) ≥ 0

0, if(ε− ‖�xi − �xj‖) < 0
(10)

D. Proposed Model

The proposed model MvCFT consists of three significant
components: 1) Feature Encoder, 2) Cross-View Feature Fusion,
and 3) Cross-Scale Transformer, as shown in Fig. 2. The detailed
description is as follows:

TABLE I
STATISTICAL INFORMATION OF THE CLINICAL DATASET

1) Multi-View Learning: Multi-view learning aims to distin-
guish a shared set of high-level semantic features or latent
structures from data captured from multiple sources, spaces, and
forms via feature encoders [29]. This set of features is consistent
and complementary across views, providing a more comprehen-
sive and robust representation of the data for the model. Thus, it is
expected to improve the performance and generalization of the
model. Specifically, Ct

ij = (Sij
ppg, S

ij
vpg, S

ij
apg) ∈ RD×1×L and

Kt
ij = κ(St

ij) ∈ RD×S×S are considered as two input views.
The proposed MvCFT learns the potential feature representa-
tions of multiple heterogeneous information.

2) Cross-View Feature Fusion (CVFF): Multi-views have
complementary information about the identical data, but direct
integration of low-level spatial features may impair model per-
formance due to view bias [30]. We propose a CVFF mod-
ule, as shown in Fig. 2(a), to project the heterogeneous in-
formation of multi-views into a common feature space. The
underlying feature representations of multi-views are aligned by
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incorporating a self-attention mechanism, while preserving intra
and inter-view semantic features.

Assume that Ci and Ki are passed through the backbone
to obtain two feature maps vK1 , vD2 ∈ RC×H×W , C, H , W
representing the number of channels, height, and width
of the feature maps respectively. Two feature maps are
tiled as N patches, using linear projections to obtain the
embedded patches Px = (p1x, . . . , p

N
x ) ∈ RD1×N and Py =

(p1y, . . . , p
N
y ) ∈ RD1×N , respectively, where D1 is the length of

each embedded patch. We define three matrices of learnable pa-
rameters, WQ

x , WK
y , and WV

y , and finally, the patch embedding
is projected to the weight matrix, and V K

1out, V
D
2out are calculated

by cross-view attention as shown in (11),

Qx =
(
PT
x

)
WQ

x , Ky =
(
PT
y

)
WK

y , Vy =
(
PT
y

)
W v

y ,

V K
1out = U

(
Softmax

(
(QxK

T
y√

D2

)
Vy

)
, (11)

where U(·) reverts the embedded patches to the original patches
to better aggregate the two view context information. The fused
features Z with inter and intra-view information are finally
obtained through the local feature extraction block L(X) and
the global feature extraction block G(X) in (12).

L(X) = DSC2(GELU(Bn(DSC1(X))))

G(X) = DSC2(GELU(Bn(DSC1(GAP (X)))))

Z = (Vcombine)⊗ (L(Vcombine))⊕G(Vcombine))) (12)

where GELU is the activation function, Bn stands for batch
normalization, DSC is depthwise separable convolution, GAP
is global average pooling, and Vcombine = (V K

1out ⊕ V D
2out).

Fig. 2(c)
3) Cross-Scale Transformer (CST): Traditional single-scale

networks are usually designed to handle features at a specific
scale [31]. They cannot effectively capture dynamic changes in
the data and cross-scale information in the features, leading to
the model’s incomplete understanding of the overall data. The
CST is introduced to facilitate the model to learn generalized
features more easily by interacting information at different
scales rather than just relying on specific scales. This cross-scale
information extraction helps the model focus on both global and
local information, which is expected to improve the robustness
and generalization ability.

To further capture the dependencies among features, we ex-
tract multi-scale information by dividing the fused features into
small and large patches, as shown in Fig. 2(c). The small-size
patch can capture the details and local information, while the
large-size patch can capture the global and integral information.
It can boost the model’s ability to perceive features at different
scales, making it more adaptive and generalizable. Specifically,
the feature Z is split into a large size patch ZL

patch and a small
size patch ZS

patch with embedded position information (ZS
pos,

ZL
pos), as shown in (13):

Z ′S =
[
ZS
class;Z

S
patch

]
+ ZS

pos

Z ′L =
[
ZL
class;Z

L
patch

]
+ ZL

pos (13)

where ZL
class is the class token for large patches and ZS

class

is the class token for small patches. The (ZL
class, Z

S
class) act

as proxies in charge of exchanging pertinent information about
patch tokens of diverse scales. Finally, Z ′S and Z ′L are processed
through a stack of CST blocks to derive two class tokens, i.e.,
Y S
class and Y L

class from the two branches. They are concatenated
in the multi-layer perceptron (MLP) and put into the Regressor
to obtain the ultimate BG measurement result ŶBG.

III. EXPERIMENTAL SETUP

A. Data Acquisition

In this study, we recruited 260 subjects (126 males and 134 fe-
males), including 171 healthy ones (BG range: 4.0–6.0 mmol/L)
and 89 diabetes-related subjects. Of these, 40 were pre-diabetic
subjects (BG range: 6.1–6.9 mmol/L) and 49 were diabetic
subjects (BG range: 7.0–12.0 mmol/L). More details are given
in Table I. All data were obtained from the Ninth People’s
Hospital of Chongqing. The hospital’s Ethics Committee ap-
proved the study (Ethics Approval No. 2022-SCI-007), and
participants were asked to sign an informed consent form before
the data collection. To improve the reliability of the acquired
PPG signals and BG values, a strict acquisition paradigm is
utilized to minimize signal interference from diet, respiration,
and arterial factors [11]. The experiment was conducted under
uniformly restrictive conditions, requiring subjects to avoid
glucose-lowering drugs (including insulin) the day before the
experiment and to fast for at least 8 hours before collection. It en-
sures that subjects’ PPG signals and BG levels are obtained under
relatively consistent physiological conditions, which would help
uncover the most authentic relationship between individual PPG
signals and BG levels. In contrast, random BG measurements
would be influenced by recent meals, resulting in fluctuating BG
levels and making it difficult to obtain the actual baseline con-
dition of the patient. In addition, FPG is often used to assess an
individual’s risk of developing diabetes so that its measurement
can be considered an essential reference for individual health
management [22].

Before the signal acquisition, subjects were required to rest
in the most comfortable sitting position for over 5 minutes
to accommodate the acquisition environment and familiarize
themselves with the experimental procedure. Data collection
phase. Firstly, the nurse collected fasting venous blood from
the subject once to obtain FPG values (the gold standard for
BG [22]). Then, we continuously collected PPG signals from
the subject’s fingertip for about 3 minutes using the HKG-07 C
sensor (200 Hz sampling rate). Data preprocessing phase. The
entire PPG signal of each subject was segmented into sub-signals
of fixed frame lengths. Each sub-signal corresponds to the same
FPG value for each subject, as the FPG does not change over a
short period [32].

B. Experimental Details

Our experiments are based on PyTorch and Python 3.9, trained
and validated on two RTX 3090 graphics cards and 64 GB
DRAM. This study uses a stratified 5-fold CV method based on
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT FILTERING ALGORITHMS

subject numbering, i.e., subject-wise CV, for all experiments. It
ensures that the division of the training and testing datasets is
based on the subject number, i.e., each subject’s data is wholly
included in the training or testing set. This division method
aims to obtain fairer and more reliable experimental results. All
experiments use the same hyperparameter settings with an initial
learning rate (0.01), batch size (32), number of training iterations
(100), and optimizer (stochastic gradient descent, SGD). The
learning rate is periodically adjusted using a cosine annealing
strategy, and the model weights are initialized before the start
of each fold. Notably, to minimize the impact of data imbalance
on the model performance, we combine two strategies, stratified
5-fold CV and weighted random sampling, to ensure that the
model pays sufficient attention to samples with different BG
ranges during the training process.

C. Evaluation Criteria

In this study, we used RMSE, mean absolute error (MAE),
and R-square (R2) metrics to evaluate the effectiveness of the
proposed filtering algorithm. Meanwhile, to evaluate the perfor-
mance of the proposed model for BG measurements, we use
the primary evaluation metrics, including RMSE, MAE, and
MARD. In addition, compared with other studies [5], [8], [9],
[11], [13], [14], [15], [16], [17], we also use the latest ISO
15197:2013 standards to evaluate the accuracy of BG measure-
ments further comprehensively. CEG [33] and SEG [34] are
also applied to provide clinical insights for the proposed BG
measurement model. These metrics can facilitate the assessment
of the degree of deviation between the measured BG and the
reference BG to reveal the clinical implications and potential
risks associated with BG measurement.

IV. RESULTS AND DISCUSSION

A. Optimization of Filtering Algorithms

We evaluated alternative filtering algorithms to minimize sig-
nal distortion and interference and ensure that the filtered signal
has the most authentic correlation with the corresponding BG
level. We used RMSE, MAE, andR2 as measures to evaluate the
effectiveness of different filtering methods. As shown in Table II,
the proposed MSWF algorithm has the lowest RMSE and MAE
and the highest R2 value. The MTWF employs sliding windows
of different sizes to locally smooth the time-domain signals,
thereby achieving effective noise elimination while retaining
the overall signal morphology. However, filtering methods in

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT INPUT SIGNAL LENGTHS

the frequency domain (e.g., Wavelet transforms and Butterworth
filters) may cause signal distortion due to the problem of spectral
overlap among the noise and the signal and boundary effect
problems arising from incompleteness at the boundaries of the
subframe signals. These problems exist in [7], [8], [9].

Secondly, in the baseline removal stage (Stage 2), we found
that the Gaussian weighting function outperforms the Triweight
and Tricube functions. MSWF(Gaussian) is smoother in weight
decay and matches continuous variations in the baseline better,
making the fitting process smoother and reducing the effect of
noise.

B. Signal Frame Lengths

We segmented the PPG signal (single-cycle frame or multiple
cycles of 2 to 10 seconds in frame length) to investigate the
effect of various types of frame length on BG measurement.
Meanwhile, we also test the memory usage, inference time, and
the number of parameters when the signals are put with different
frame lengths into the MvCFT network. The KFR algorithm is
utilized to obtain the kinetic features of the partitioned signals.
The kinetic features and the signal derivatives are input simul-
taneously into both branches of the MvCFT network, ultimately
obtaining the BG measurements. The experimental results are
shown in Table III, and the best balance between performance
and efficiency is reached at a frame length of 6 s. The poor
performance of the single-cycle segmentation-based method
may be attributed to the fact that interpolation is required to
align the single-cycle signals of different subjects, which may
alter the characteristics of the signal. In addition, the cycle-based
segmentation signal could not reflect essential information such
as HR and HRV, which are features intimately correlated with
BG levels [35].

It can be noticed in Table III that as the signal frame length
increases, the performance improves because longer signals
contain more internal latent features and thus better indicate BG
levels. However, when the signal length exceeded 6 s, the perfor-
mance of BG measurement decreased significantly. Performance
decrease might be caused by the loss of fine-grained features in
the longer signal frame when the PPG signal is embedded in low
dimensions using PAA. Additionally, longer signals not only
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TABLE IV
THE SUBJECT-WISE 5-FOLD CROSS VALIDATION PERFORMANCE OF THE

PROPOSED METHOD

TABLE V
RESULTS OF PERCENTAGE OF DIFFERENT ISO RANGES ON THE 4TH FOLD

increase the computational complexity of the model but may
also introduce more noise and interference, causing performance
degradation. As shown in Table III, memory usage, inference
time, and number of parameters vary little at different frame
lengths. It only takes about 0.4(s) to complete a test without
a GPU, which shows the potential of our approach for home
monitoring. Finally, to balance performance and efficiency, we
segment the PPG signals into 6(s) frames for processing in all
subsequent experiments.

C. Overall Performance Evaluation

Record-wise CV could obscure inter-subject differences and
lead to overly optimistic results. We consider the individual
discrepancies and variations in physiological features among
subjects. We tested a subjects-wise 5-fold CV to more compre-
hensively assess the adaptability and robustness of the algorithm
to different individuals. Table IV shows the detailed results,
including the performance metrics for each fold. The critical
finding is that all measurements at each fold fall within the
zone of none or slight clinical risk in the CEG (Zone A +
B = 100%). The best performance is obtained at the fourth
fold with RMSE, MAE, and ACC (ISO 15197:2013), obtaining
0.751 mmol/L, 0.545 mmol/L, and 88.67%, respectively (The
test set in the fourth fold contained 52 subjects with a total of
768 PPG segments). Notably, 92.97% of the measurements fall
into Zone A in the CEG, suggesting that most BG measurements
are within the clinically acceptable range.

In addition, the percentage of estimates that fall in different
error ranges were tallied based on ISO criteria, and 88.67% of
the estimates satisfy this criterion, as shown in Table V. In order
to visualize the measurement and assess its clinical risk level, a
modern error grid SEG was used to visualize the correspondence
between the reference and measured values. In Fig. 3, it can be
found that the measurements are all in the clinical no-risk and

Fig. 3. Assessment of the clinical risk level; the color-coded SEG; the
white circles indicate the measured BG and the corresponding refer-
ence BG; risk levels are categorized into five categories: none, slight,
moderate, high, and extreme.

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT INPUTS

slight-risk regions, which strongly proves the potential of the
proposed method for home care applications.

D. Ablation Study on MvCFT Network

To verify the necessity of different components in the pro-
posed network. Some ablation experiments are performed to
evaluate the effect of each component on the overall perfor-
mance.

1) Performance Comparison of Different Inputs: Table VI
demonstrates the effect of different inputs on the performance
of BG measurements. Firstly, the performance of single-channel
PPG signals is relatively poor due to the high similarity of the
PPG signals in the time domain, which makes it challenging to
capture discriminative features. The performance is improved
after combining PPG, VPG, and APG into a multi-channel signal
as input. Since changes in the cardiovascular system may be
related to BG levels [36], VPG and APG are introduced to
provide information on changes in the velocity and acceler-
ation of the heartbeat. It enhances the model’s understanding
of physiological states and improves the accuracy of BG level
estimation.
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TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT BACKBONES

In addition, four different combinations of kinetic features
were obtained by adjusting the Type parameter in the KFR
algorithm. The poor performance when using (GASF, GADF,
RP) as a single-view input may be due to the redundancy of
the features produced by GASF and GADF, which increases
the difficulty of the model in finding distinguishing features.
However, better performance is realized when both SPE and RP
are used because SPE provides information about the relative
position of the signal in time and space. At the same time,
GASF and RP focus more on the signal’s nonlinear kinetic
features, periodicity, and repetitiveness [21]. Their combination
provides additional positional cues for the model to extract
kinetic features. It helps better capture the nonlinear relationship
between the kinetic features of the PPG signal and BG levels.
Rows 3–6 in Table VI, using only kinetic features as single-view
inputs, under-explore the potential features of the PPG signal
and ignore the importance of the original time-domain signal.
Thus, the performance improvement is also limited. Ultimately,
the best performance was obtained by simultaneously inputting
multi-channel signals and combined kinetic features into the
multi-view network MvCFT. This further validates that the
performance of BG measurements can be effectively improved
by jointing the potential morphological and time-frequency fea-
tures in the multi-channel signals and the kinetic features of the
PPG signal.

2) Performance Comparison of Different Backbones: To val-
idate the adaptability of the proposed network, we performed an
experimental comparison with different backbones as feature
encoders, as shown in Table VII. One of the branches in the
multi-view network will input multi-channel signals. Thus,
ResNet-1D [37] and Inceptiontime [38] are considered alterna-
tive feature encoders. Likewise, the kinetic features are input in
the other branch, and CMT [31] and EfficientNet [39] are consid-
ered alternative feature encoders. After four different combina-
tions, we can see that ResNet-1D outperforms Inceptiontime for
the time series feature encoder, and CMT exceeds EfficientNet
for the 3D feature matrix feature encoder. Ultimately, the feature
encoder of the combination of ResNet-1D and CMT is chosen
as the feature extractor for MvCFT.

3) Performance Comparison of Different Components: To
verify the practicality of different components in MvCFT, a
series of experiments were designed to prove the dedication
of each component to the overall performance, as shown in
Table VIII. The first row of Table VIII shows the performance
of the baseline model. It is observed that adding CVFF to
the baseline model improves the performance of BG measure-
ment. CVFF effectively enhances the learning capability of the

TABLE VIII
PERFORMANCE COMPARISON OF DIFFERENT COMPONENTS

TABLE IX
PERFORMANCE COMPARISON OF DIFFERENT FUSION METHODS

model by fusing high-dimensional representations of Ct=6
ij ∈

R3×1×1200 (PPG and its derivatives) and Kt=6
ij ∈ R3×320×320

(PPG kinetic features), enabling it to derive complementary
information from multi-views. Notably, after adding CVFF,
the model remains a single-scale architecture without inter-
active learning of cross-scale features. After adding CST, the
model performance is further improved compared to the baseline
model. This is attributed to the fact that CST introduces scale
transformations and feature interactions, which are more flexible
in modeling complex relationships between cross-scale features.

Interestingly, there is a discrepancy in the performance im-
provement using different patch size scales. This suggests the
importance of choosing the right patch size in CST for mapping
the complex nonlinear relationship with the BG values. Con-
sequently, we evaluate the impact of different patch sizes. The
patches (S = 4× 4, L = 20× 20) and (S = 5× 5, L = 16×
16) subjectively deserve better performance as finer-grained
features are provided. However, (S = 8× 8, L = 10× 10) ob-
tained a better performance, for which we consider that due to
the excessive disparity in feature granularity between different
branches, it is hard to learn features properly. Besides, exper-
iments with stacking different numbers of transformer blocks
were also conducted. We set K = 3 as the optimal variable
considering the model processing speed.

4) Results of Different Fusion Modules: To appraise the va-
lidity of the CVFF module, we compared CVFF with the cur-
rently prevalent feature fusion methods [30], [40]. As shown
in Table IX, the most straightforward feature concatenation
approach performs the worst, producing feature redundancy
and disregarding feature interactions between different views.
MS-CAM and AFF, feature fusion based on the attention mecha-
nism, improved the feature representation somewhat and slightly
increased the measurement accuracy. However, learning natural
pairwise relationships among different views is still challenging.
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TABLE X
COMPARISON RESULTS OF DIFFERENT METHODS ON CLINICAL DATASETS

The CVFF module exploits the complementarity and consis-
tency among views in a shared feature space through feature
mapping and all-around fusion across views. Compared with
the other three methods, the CVFF module performs best. The
results show that the CVFF module outperforms the other three
methods in multi-view feature fusion.

E. Comparison With Other BG Measurement Methods

To fairly compare the performance of different solutions
on the same dataset, we re-implement the traditional machine
learning methods [6], [8], [15] and the end-to-end deep learning
methods [18], [19], [36]. As indicated in Table X, our method
achieved more promising results. These studies [6], [8], [15]
extracted a small number of hand-crafted features (e.g., mor-
phological features, time-frequency features) to achieve BG
measurements through different regressors. However, the per-
formance of these methods is not satisfactory. We observe that
relying on only a few morphological and time-frequency features
makes capturing more distinguishing features on more subject
datasets challenging. In addition, these methods depend highly
on professional expertise for the number and category of manual
features, making it difficult to generalize them to other domain
applications.

In end-to-end deep learning studies, we observe that [19],
[36] employ shallow CNN networks with fewer parameters
and shorter inference time. However, the performance metrics
show that shallow CNN networks are limited in mining deep
discriminative features, making them less effective. Our pre-
vious work [18] achieved promising results by converting the
signal into time-frequency maps for glucose measurement using
a DNN model. However, the model architecture is single-view,
i.e., only the time-frequency map serves as input, which may
lose critical features of the time-domain PPG signal. Notably,
the inference times of the above studies are at the millisecond
level and do not cause significant delays in real-world scenarios.

V. CONCLUSION

Unobtrusive BG measurement can significantly improve the
quality of healthcare and patient outcomes. This paper presents
a new paradigm for non-invasive BG measurement using PPG
signals. The reliability of the input signal is ensured by em-
ploying the MSWF algorithm, which avoids boundary effects

and spectral overlap problems that may be introduced during
filtering. The proposed MvCFT network deeply fuses comple-
mentary information among views through the CVFF module.
It is designed to capture reconstructed kinetic features and
derivatives for potential correlation with BG levels. The results
show that our method performs better than the existing works and
provides new insights into non-invasive BG measurements. In
addition, our proposed KFR algorithm and MvCFT framework
can also be applied to other clinical research fields involving
physiological signals.

This study performed the training and inference processes on
the server. The system’s applicability under different conditions
(e.g., skin color, environment, etc.) has yet to be considered.
Since we focus on fasting BG, subjects are required to perform
measurements at rest, which may limit the ability to observe
changes in dynamic BG under non-standard conditions. There-
fore, the current approach does not apply to ambulatory BG
measurement. In future work, we will continue to expand the
testing with hyperglycemic samples and conduct external valida-
tion studies using datasets from different hospitals. Meanwhile,
we will explore ambulatory BG monitoring protocols to build a
robust and accurate BG measurement model for diverse real-life
BG monitoring scenarios.
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