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Abstract—In recent years, the WiFi channel state information
(CSI) has been increasingly used for human activity recognition
(HAR) during activities of daily living, because of nonin-
trusiveness and privacy preserving properties. However, most
previous works require complex processing of CSI signals, and
the large number of classification network parameters signif-
icantly increases the recognition time and deployment costs.
Accordingly, a WiFi signal-based lightweight deep learning
(WiLDAR) network is developed in this study to ensure sys-
tematic operation on edge computing devices. We combine the
random convolution kernel with deep separable convolution and
residual structure, so that WiLDAR can easily extract CSI signal
features without filtering and denoising. The parameter number
and training time of WiLDAR are, thus, much less than those
of previous neural networks. In addition, a tiny HAR system
using only Raspberry Pi and router is implemented. Experiments
verify that WiLDAR can achieve real-time HAR on Internet of
Things devices, which makes HAR deployment more convenient.
We test WiLDAR on three different fine-grained action data sets
to achieve 99%, 93.5%, and 97.5% recognition accuracy, respec-
tively. The demonstrated learning capability of WiLDAR makes
it an excellent option for the remote HAR.

Index Terms—Channel state information (CSI), edge comput-
ing, human activity recognition (HAR), Internet of Things (IoT),
neural network, WiFi sensing.

I. INTRODUCTION

HUMAN activity recognition (HAR) is traditionally used
for monitoring of the elderly and chronic patients in their

homes. Recently, activity monitoring is increasingly important
as integral part of Internet of Things (IoT) in smart homes and
offices [1]. HAR, can facilitate remote control of smart home
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appliances, security monitoring for special populations, and
smart health monitoring [2].

The need for unobtrusive and privacy preserving monitoring
of activity resulted in three types of HAR implementation:
1) vision-based [3], [4]; 2) wearable device-based [5], [6];
and 3) wireless sensing-based methods [7], [8].

The vision-based approach usually relies on high-resolution
camera or infrared camera, which allows for unobtrusive con-
tinuous monitoring [3], [4]. However, the camera is highly
susceptible to the effect of ambient lighting and affected
by obstructed view of the subjects. Wearable devices-based
method include inertial sensors with accelerometers, gyro-
scope, magnetometers, and physiological sensors (e.g., elec-
tromyogram for monitoring of muscle activity) [5]. However,
these methods require the subjects to regularly wear the sen-
sors, which exacerbates the physical burden and could be
inconvenient for some users, such as the elderly and the
children.

With respect to wireless sensing-based methods, several
technologies have been developed, including radar technol-
ogy [7], RFID technology [9], and WiFi technology [10], [11],
among others. Radar sensors are known for their robustness,
interference immunity, and wide detection range, but their
high-deployment costs, bulky devices, and high-power con-
sumption can be drawbacks. In the context of HAR, RFID
can be employed to track individuals and their movements by
attaching small RFID tags to clothing or accessories. However,
this method may not be suitable for motion detection unless
special reader designs are available. In contrast, pervasive
deployment of WiFi wireless networks make possible, inex-
pensive use of existing devices and signals, without additional
overhead. WiFi channel state information (CSI) signals have
more propagation channels, and each channel works in a dif-
ferent frequency band, which makes it easy for us to use
algorithms to reject the channels that are subject to more
interference and ensure the overall reliability of the signal.
Furthermore, WiFi-based HAR is nonintrusive and protects
privacy of users, as the most significant concerns of users.

The basic principle of passive WiFi monitoring is to moni-
tor changes in the WiFi signal influenced by human movement
in the propagation path of the signal. Therefore, real-time
monitoring of signals in the physical network layer provides
information of human activity. Moreover, development of new
devices and tools [12], [13], [14] allow acquisition of the
CSI using commercial WiFi devices. Gradually, the applica-
tion of CSI in HAR has also evolved from coarse-grained
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TABLE I
COMPARISON OF RELATED WORK

actions [15], such as running, jumping, to fine-grained actions,
such as identification [16], breathing [17], and even sleep
monitoring [18].

Nevertheless, within the field of CSI, several challenges
persist. These challenges encompass high-signal dimension-
ality, intricate preprocessing procedures, and the absence of
lightweight models. For dimensional processing of CSI, a
commonly used approach involves performing principal com-
ponent analysis (PCA) and subsequently removing the first
component, which is typically associated with higher noise
levels [19]. However, this method may lead to a loss of rele-
vant action information in cases where the actions have small
amplitudes. In addition, due to environmental interference,
refraction of signal transmission process, and lack of syn-
chronization between transceivers, the CSI signal often needs
preprocessing, such as filtering, downscaling, and outlier
removing. Moreover, extracting meaningful features from the
CSI signal is a challenging task which demands specialized
expertise and algorithm development.

In order to solve the problems just mentioned, a WiFi
signal-based lightweight deep learning (WiLDAR) neural
network combining a random convolution kernel, a residual
block and a depthwise separable convolution is proposed.
Accordingly, our contributions are summarized in three
aspects.

1) We propose a neural network captioned WiLDAR con-
sisting of two blocks: a) the feature extraction block,
updated from the MiniRocket algorithm to achieve fast
feature extraction of the original CSI signal without
parameter learning and back propagation and b) the
learning block consists of a residual module combined
with a depthwise separable convolution, which reduces
the number of network parameters and decreases the
risk of overfitting. Overall, WiLDAR is a lightweight
network with no preprocessing, high-learning capability,
and simple structure.

2) By designing random convolution kernels with different
sizes, we can achieve automatic extraction of features
with different frequencies by using only a single layer
of the random convolutional network, which well corre-
sponds to the frequency differences of various activities
and greatly improves the model recognition capability
and interpretability. The diversity of extraction scales

also allows us to perform simple fusion of subcarriers or
multiple channels while preserving the amount of input
information, and avoiding data redundancy and complex
subcarrier selection algorithm design.

3) We tested WiLDAR on three different fine-grained
action data sets, all of which showed a significant
improvement in test accuracy. In addition, we also
implemented our algorithm on Raspberry Pi. This
greatly reduced the space and expense required for
practical deployment, and also demonstrated the feasi-
bility of integrating CSI collection and HAR recognition
algorithms into IoT devices.

The remainder of this article is organized as follows.
Section II describes the related works. Section III presents
the details of our proposed method. Section III-A introduces
the signal preprocessing. Section III-B introduces the system
architecture. Section III-C introduces the design of a tiny HAR
system. Then the performance of the proposed neural network
is evaluated in Section IV. Section V concludes this article
with an outlook.

II. RELATED WORK

HAR research based on CSI signals can be broadly divided
into two categories: 1) signal-based systems utilize feature
engineering for signal feature extraction and 2) deep learning-
based systems use signal representation generated by the deep
learning network. We summarize the comparison of related
work in Table I.

Signal-Based: In [20], the preprocessed CSI signals were
divided into measurement matrices in the time and frequency
domains. Coherence histograms representing the feature
distribution with self-organizing feature map and softmax
regression-based are used for classification. In Wifinger [21],
the authors designed a fine signal denoising module to com-
bine CSI subcarriers into feature vectors for dynamic time
warping (DTW) and k-nearest neighbor (KNN) classifica-
tion. Wang et al. [22] extracted the duration and velocity of
human motion using discrete wavelet transform. The features
extracted from each movement were then modeled as a hid-
den Markov model (HMM), which ignored the differences
in movements between individuals to focus only on the
differentiation of movement categories.

Authorized licensed use limited to: UNIV OF ALABAMA-HUNTSVILLE. Downloaded on May 01,2024 at 16:03:44 UTC from IEEE Xplore.  Restrictions apply. 



DENG et al.: WiLDAR: WiFi SIGNAL-BASED LIGHTWEIGHT DEEP LEARNING MODEL 2901

All these methods design a preprocessing and feature engi-
neering for CSI signals, and a simple classifier is used for the
identification of activity. However, they all require the design
of complicated feature extraction procedure, which increases
the development effort and requires significant expertise, and
decreases the scalability.

Deep Learning-Based: In WiSDAR [10], a comprehensive
framework is proposed, leveraging the synergistic capabilities
of convolutional neural networks (CNNs) and long short-
term memory (LSTM). This framework successfully inte-
grates hidden features derived from both temporal and spatial
dimensions and finally achieves the classification of actions.
Zhou in [11] proposed a deep Q-network (DQN) network for
data annotation, and designed a multisensor data fusion algo-
rithm to generate sequential motion data, and finally achieved
classification by LSTM. In [23], in order to solve the problem
that segmentation of CSI action samples depends heavily on
the threshold, Xiao et al. designed a CNN to transform the
segmentation problem into a classification problem. Moreover,
Dempster et al. [24] proposed a MiniRocket algorithm for fast
feature extraction of signals. Xiaowu et al. [25] verified that
adjusting the activation function has an impact on the learn-
ing ability of the network. Bergstra et al. [26] proposed a
tree-structured Parzen estimator (TPE) for network parameter
searching to simplify algorithm development.

Deep learning-based methods enable automatic feature
extraction and higher scalability. However, the correlation
network is less interpretable, very complex, has large number
of parameters, and requires large data sets for training.

III. PROPOSED METHOD

In this section, we present the specific structure of
WiLDAR. First, we introduce the data preprocessing and the
general framework of the proposed network. Then, the feature
extraction module and the classification module in WiLDAR
will be analyzed. Finally, we present the implementation of
the HAR system.

A. Data Downscaling

Given the CSI data set has N samples {Cn}Nn=1, C ∈
R

Tx×Rx×Ns×T , where the dimensions represent the number of
transmitting (Tx), receiving antennas (Rx), subcarriers (Ns),
and time (T), as shown in Fig. 1. To solve the exces-
sive dimensionality problem, complex subcarrier selection or
fusion algorithms need to be designed, because simply merg-
ing often results in information loss. However, WiLDAR is
able to reconstruct different feature patterns to the fused signal
by designing multiscale convolutional kernels. For example,
high-frequency action features are restored using smaller-
sized convolutional kernels, while, low-frequency actions are
restored using larger sized convolutional kernels. Therefore,
WiLDAR requires only simple average of the input signal’s
subcarriers to reduce data redundancy while maintaining the
information amount, as presented is

CIn = 1

n

n∑

i=1

CTx×Rx×Ni×T (1)

Fig. 1. CSI dimensional diagram. “NS” represents the number of subcarriers
and “Tsamples” is the time dimension.

Fig. 2. WiLDAR feature extraction for unfused and fused signals. (a) and
(c) Unfused and fused CSI signals, respectively. (b) and (d) Corresponding
time–frequency features extracted by WiLDAR, respectively.

where CIn is the input signal after dimensionality reduction and
n represents the number of subcarriers. Fig. 2 demonstrates
that the features extracted from the fused signal are almost
indistinguishable from the unfused signal, and have no signif-
icant effect on the experimental performance. Furthermore, in
Table II, we also compare the accuracy of different networks
affected by the fused data. For convenience the experiment
epoch was set to 100. The results indicate that the sig-
nals were simply fused, which causes information loss and,
thus, makes the recognition accuracy decrease. In contrast,
WiLDAR undergoes multiscale feature reconstruction, and
there is no significant variation in terms of accuracy before
and after the fusion.

In addition, please be noted that all processing in this place
is only for adjusting the dimensionality of the signal input, not
for PCA dimensionality reduction, Hampel outlier removal,
and filtering and denoising operations as recommended in
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Fig. 3. Architecture of the WiLDAR. The convolution is followed by LReLU, PReLU, and ELU activation functions, respectively.

TABLE II
ACCURACY PERFORMANCE OF DIFFERENT NETWORKS BEFORE

AND AFTER DATA FUSION

other works [19]. This greatly reduces the preprocessing effort
on the CSI signal and avoids the need to design the cor-
responding signal-denoising works for different application
areas.

B. System Architecture

The overall pipeline of WiLDAR consists of a feature
extraction module and a classification module is shown in
Fig. 3. The feature extraction module further consists of a
random convolution kernel that performs multiscale feature
extraction on the input CSI sequence. Then, the extracted
features are recalibrated and relearned using a classification
module which combines residual structure and depthwise sep-
arable convolution. Ultimately, the fast recognition of CSI
action sequences is achieved by the combination of the two
modules.

Feature Extraction: Our feature extraction module
WiRocket, updated from the MiniRocket [24], consists of
84 random convolution kernels of the same size, different

Algorithm 1 WiRocket Algorithm Flow
Input: S: Time series α: Series scaling factor
Output: F: Feature
Fit:

1. generate 84 convolution kernels with different weights.
// set the indices of β

I← [[0, 1, 2], [0, 1, 3], . . . , [6, 7, 8]]
2. derive the dilation group
max← log2(α ∗ length (S)− 1)/8
D̂← [⌊

20
⌋
,
⌊

2max /32
⌋
, . . . ,

⌊
232·max /32

⌋]

3. randomly selected a sample to calculate the bias
4. Combine dilation/bias/padding to form a set kernel_set

Transform:
F = [ ]

for k in kernel_set do
for d in D̂ do

feature = PPV(S⊗ k)
F = F ∪ feature

end
end

weights, and different dilation. In summary, the WiRocket
algorithm flow is shown in Algorithm 1.

We know that different types of actions not only differ in
action amplitude but also correspond to different frequencies.
Therefore, in order to better achieve action recognition, we
need to extract different frequency features. Unlike the con-
volution kernel with deterministic parameters, the random
convolution kernel can extract signal feature at different scales
and in different modes with various feature extraction pat-
terns for different signals. This allows extraction of features at
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different frequencies, with more comprehensive and targeted
features. Previous work using random convolutional kernels
for feature extraction, such as the classical U-net [27], uti-
lized convolutional kernels of different sizes to extract features
from the input. However, the size and depth of this network
need to be adjusted for different inputs, and as a deep learn-
ing network, the number of parameters is large and requires
more samples for training. The feature extraction module of
WiLDAR consists of convolutional kernels of different sizes
with defined parameters, avoiding the need for model training,
which makes the model feature extraction easier and reduces
the deployment overhead of the model.

The length of each convolution kernel S ∈ {S1, S2, . . . , S84}
is fixed to 9, and the weights are random combinations of
α and β under the condition that the sum of weights is 0. (We
set six of α = −1 and three of β = 2). When the weight sum
equals to 0, the convolution for the input X with weights W
will not be affected by panning, i.e., X ∗W = (X ± c) ∗W.
That is, adding this constraint ensures that the kernels are only
sensitive to the relative magnitude of the input values, making
the output of the convolution translation invariant and reducing
the operation burden.

Spectral power of human activity mostly concentrated from
0 to 20 Hz, and the common CSI acquisition frequency is
1000 Hz. The sampling points are calculated as follows:

N = f ∗ 1

F
(2)

where N represents the number of sampling points, f repre-
sents the signal sending rate, and F represents the frequency
corresponding to the action. Therefore, 20 Hz is equiva-
lent to 50 samples in the time domain. Accordingly, we
design the dilation to ensure the receptive field is within
this range. The range of the dilation group is determined
by the input length within the range D = [20, 2max], where
max = log2 [(α ∗ Linput − 1)/(Lkernel − 1)]. Linput is the input
length, Lkernel is kernel size, and α is an artificial parameter
based on the input length to control the receptive field. Dilation
group will produce a geometric progression of 32 values from
the range, and finally the dilation group is combined with each
kernel to extract features.

Bias is taken from the convolutional output by randomly
selecting a single training sample, with quartiles of its con-
volutional output computed as bias. The convolution layer
automatically calculates the proportion of positive values
(PPVs) metrics to enrich the extracted spatio-temporal fea-
tures, in addition to the convolutional output. PPV is calculated
by the following:

PPV(X ∗W − b) = 1

n

∑
[X ∗W − b > 0] (3)

where X is the input sequence, W is the convolution kernel
weight, and b is bias. Calculating PPV is essentially equivalent
to calculating the empirical cumulative distribution function,
which allows the classifier to determine the prevalence of a
given pattern in a time series.

The random convolution layer automatically extracts
multichannel features for each sample considering tempo-
ral coherence, thus, retaining more detailed information. The

Fig. 4. Classification module of WiLDAR. (a) Residual block. (b) Posterior
network.

features are automatically split according to the convolu-
tional combinations of different frequency. Finally, we get a
[84, 119] multichannel message, where different channels are
composed by random convolution kernels at the same point of
the sequence, to maximize the spatio-temporal information of
the extracted feature.

Classification: To classify the features, a CNN network with
residual structure is designed, as shown in Fig. 4. We combine
the residual structure with depthwise separable convolution to
relearn and classify the features while reducing the parame-
ters. The TPE algorithm is applied for parameter search and
relevant updates are made to the activation function to improve
the network classification ability.

The residual structure can transform network learning
objectives by introducing shortcut connections and identity
mappings. In turn, the gradient disappearance and gradi-
ent explosion problems could be avoided. Given the input
F = {f1, f2, . . . , fN} ∈ R

N×84×119 where N is the number
of inputs and f is the feature extracted by WiRocket, the
transforming function is represented as follows:

y = H(f )+ F(f ,W) (4)

where y represents the output, H represents the identity map-
pings, and F represents the residual function which is often a
series of convolution operations. After the residual structure,
we use a posterior network consisting of multiple convolution
layers, as shown in Fig. 4, for classification. Three different
activation functions, leaky rectified linear unit (LReLu), para-
metric rectified linear unit (PReLU) and exponential linear unit
(ELu) [28], are implemented after the convolutional layers to
improve the network mapping ability and avoid the gradient
problem caused by a single activation function. Specifically,
LReLU can be used to alleviate the problem of the activation
function encountering zero gradients by slightly tilting it in
the negative range. The PReLU, on the other hand, uses the
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parameters of the adaptive learning rectifier to avoid param-
eter settings for the activation function. The last used ELU
can produce negative outputs, which helps to speed up the
learning process and increase the robustness to noise. This
function does not produce smaller derivatives and can avoid
the problem of gradient disappearance due to the mismatch
between the input and output space sizes.

To reduce the computational effort, we replace all the
convolutions in the network with 1-D depthwise separable con-
volutions. It uses depthwise convolution to reduce the depth
and pointwise convolution to feature fusion and depth expan-
sion. After that, the number of convolutional parameters can
be reduced to about one-ninth, which greatly reduces the
overhead of convolutional operations.

To avoid manually tuning the hyperparameters of the
network, the TPE algorithm is used to automatically search the
hyperparameters. The algorithm flow is shown in Algorithm 2.
It fuzzily slices the sample points into two categories of
superiority g(x) and inferiority �(x). The optimal parameters
are obtained by iterating to update the two sets and finally
maximize the expected improvement (EI) function. The EI
after the Bayes’ rule transformation is shown as follows:

EIy∗(x) =
γ y∗�(x)− �(x)

∫ y∗
−∞ p(y)dy

γ �(x)+ (1− γ )g(x)

∝
(

γ + g(x)

�(x)
(1− γ )

)−1

. (5)

Equation (5) indicates that to maximize EI we need to make
(g(x)/�(x)) minimum, so the set of x which makes g(x)
smaller and �(x) larger is returned in each iteration. The
hyperparameters in the set are evaluated on the objective
function. Eventually the process is repeated to achieve the
hyperparameter search.

C. Tiny HAR System

In order to apply CSI signals to remote monitoring of
special population and controlling of smart home in appli-
cation scenarios of the IoT, we designed a tiny HAR system
using Raspberry Pi and existing WiFi router. By modifying
the Raspberry Pi’s network card configuration [14], CSI sig-
nal can be acquired through Raspberry Pi and WiFI router.
The specific version is the Raspberry Pi 4B with 8-GB RAM
and 64-GB ROM, as shown in Fig. 5. The deployment sce-
nario is a typical office scenario, with furniture, such as desks
and chairs, and the presence of more electronic devices, such
as computers, cell phones, etc. The placement of the devices
ensures the existence of the Line of Sight (LoS). The actual
performance of the system is shown in Table III.

We use the ARIL data set for testing on the Raspberry Pi
platform, and the training time for a single epoch across all
samples is presented in Table III. From the results, it can
be seen that compared to other CSI-based HAR networks,
WiLDAR has a substantially lower training and testing time.
This is because of the feature extraction module in WiLDAR
has no parameters to learn and, therefore, does not need back
propagation, which greatly reduces the training time of the
network. The depthwise separable convolution reduces the

Algorithm 2 TPE Algorithm Flow
Input: Search Target T Search Scope S

Maximum number of iterations N
Output: Specific results for each search OUT

1: Create an objective function applied in T and output a
score that we want to minimize.

2: Get couple of observations (score) using randomly
selected set of S.

3: Sort the collected observations by score and divide them
into two groups x1, x2 based on some quantile.

4: Two densities �(x1) and g(x2) are modeled using Parzen
Estimators.

5: Draw sample hyperparameters from �(x1), evaluating them
in terms of �(x1)

g(x2)
, and returning the set that yields the

minimum value under �(x1)
g(x1)

corresponding to the largest
expected improvement. These hyperparameters are then
evaluated by the objective function.

6: Update the observation list from step 3.

7: Repeat step 3-6 with a fixed number of trials or until time
limit is reached

Fig. 5. Raspberry Pi 4B platform.

TABLE III
TRAINING AND TESTING TIME ON RASPBERRY PI

network parameters and time consumption. Furthermore, the
test time of WiLDAR is only 0.03 s, which can fully achieve
the purpose of real-time monitoring of the action. This shows
that it is feasible to migrate WiLDAR to IoT devices and the
simultaneous acquisition and real-time classification of CSI
signals on IoT devices in the future. The system can also sig-
nificantly reduce the actual cost and facilitate the deployment
of HAR.
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Fig. 6. Confusion matrix of WiLDAR on publicly available data sets at different fine grains of granularity. (a) ARIL. (b) CSI-HAR.

(a) (b) (c)

Fig. 7. Accuracy comparison of different networks on three publicly available data sets. (a) CSI-HAR. (b) SignFi. (c) ARIL.

IV. EXPERIMENTAL EVALUATION

In this section, we present the effectiveness of WiLDAR by
comparing the test accuracy, number of parameters, and time
complexity with other networks. Furthermore, we analyze the
impact of individual diversity and ablation experiments.

A. Experimental Setup

We tested WiLDAR on three different fine-grained public
data sets. The key information of these data sets are shown in
Table IV.

1) SignFi: In [30], CSI data for 276 sign language poses
were collected from five males, either at home or in the
laboratory, which is more complex. In our experiments,
a total of 8280 samples from laboratory and home were
used.

2) ARIL: The data set [31] was originally captured to
enable remote control of smart homes. Six hand ges-
tures, such as hand up, hand down, hand left, etc., were
collected from 16 different location to form a total of
1394 samples.

3) CSI-HAR: In [32], the CSI data of seven actions were
collected from three subjects. The collected actions are
common sitting, standing, running, etc. Each action, with
unfixed duration, was performed 20 times per person,
and, therefore, the number of sample packets acquired
was not fixed. In this article, we downsample irregular
time series to the same length.

In the actual experiment, we use Adam as the optimizer, Cross
Entropy as the loss function, batch size set to 32, learning rate
set to 0.0001, and a weight decay of 0.01 in the training. All of
our training and testing processes are conducted on a Lenovo

TABLE IV
INFORMATION ABOUT CSI DATA SETS

TABLE V
COMPARISON WITH CLASSIFICATION MACRO INDICATORS

r9000p laptop with AMD Ryzen 7 5800H CPU and NVIDIA
GeForce RTX 3070 Laptop GPU.

B. Performance Evaluation

We will show the specific performance of WiLDAR on the
relevant data sets. The metrics we calculate include accuracy,
precision, recall, specificity, and F1-Score [33], all of which
are calculated on a macro-average. The confusion matrix and
classification performance of the experiment are shown in
Figs. 6 and 7 and Table V.
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TABLE VI
COMPARISON OF CLASSIFICATION INDICATORS AT DIFFERENT MOVEMENTS

Confusion matrices of ARIL and CSI-HAR are presented
in Fig. 6, where SignFi is not included due to the large num-
ber of classification categories. It can been seen that in the
ARIL data set, the gesture with the highest recognition accu-
racy is “down” and the lowest is “left.” All the actions except
the left and right gestures achieve an accuracy higher than
95%. Considering that the left and right gestures are con-
sistent in terms of movement amplitude and frequency, the
network will cause confusion in classification. In the CSI-HAR
data set, characterized by notable action amplitudes and clear
distinctions among individual actions, all actions demonstrate
classification accuracies exceeding 99%. This can be attributed
to the inherent robustness and efficacy of WiLDAR’s feature
extraction capabilities, which enable it to leverage the data
set’s characteristics effectively.

In Fig. 7 and Table V, we compared WiLDAR with other
methods, including some classical networks and some recent
networks using the same data set [29], [30], [31], [32], [34].
By analyzing the charts, we achieved the highest accuracy
of 97.5%, 93.5%, and 99.5% on the three data sets, respec-
tively. It can be seen that the classical network shows the
worst learning ability for CSI signals, indicating that the high-
dimensionality and multichannel characteristics of the CSI
signal make the feature extraction difficult. Although previous
work tried to improve the accuracy by refining the network
structure, the single feature extraction mode cannot adapt to
multiple actions. However, with the combination of random
convolution and residual structure, WiLDAR is able to extract
action features on different frequencies in multidimensional
CSI signals. Multiscale random convolution makes it easier to
capture the expression patterns of different action information
in different dimensions. Furthermore, by designing different
activation functions, a more comprehensive feature map is
achieved. Through multichannel reduction of the extracted
features according to time nodes, the spatio-temporal char-
acteristics could be maximized. All this ensures WiLDAR’s
feature extraction ability and action recognition performance.

Fig. 8. Hyperparametric search results. In the figure, “BS” is the batch size,
“KSS” is the convolutional kernel size of the three convolutional layers, and
NF is the number of filters.

We also tested the recognition performance of different
movements as shown in Table VI. The bolded data are the
actions with the highest F1-score for each network, from which
it can be seen that different networks fit different actions,
however, WiLDAR achieves a very high-recognition accu-
racy for each action. Notably, WiLDAR showcased reduced
fluctuations in Fi scores across different actions, indicating
a significant enhancement in its capacity to extract multiscale
features. This improvement can be attributed to the integration
of the WiRocket algorithm, facilitating automatic feature
extraction within the network.

C. Discussion

We test the effect of WiLDAR’s structure on accuracy, and
verification associated with its time complexity and indepen-
dence.

Hyperparameter Search: Results of hyperparametric search
are shown in Fig. 8. We use the TPE algorithm described in
Section III to automatically search for the structural param-
eters of WiLDAR. Three search parameters are batch size,
convolutional kernel size, and the number of kernels.
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TABLE VII
ABLATION TEST OF WILDAR

TABLE VIII
IMPACT OF INDIVIDUAL DIVERSITY OF WILDAR

The yellow line represents the combination with higher
accuracy, so the more concentrated the yellow line crosses,
the better choice of the parameters. From Fig. 8, we can see
that the best choice of batch size is 64, convolutional kernel
size is [7, 5, 3], and the number of kernels is 256. It can be
seen that a moderate batch size and convolutional kernel size
are more conducive to the extraction of detailed features by
the network, and more convolutional kernels bring more fea-
ture extraction patterns. However, considering the number of
parameters in the actual deployment, the number of convolu-
tion kernels was chosen to be 64, which can reduce a lot of
operation overhead without notable accuracy degradation.

Ablation Test: Accuracy performance of ablation test is
shown in Table VII. We performed ablation tests on the
individual blocks of WiLDAR, where Baseline refers to the
MiniRocket [24] network, Residual block refers to the resid-
ual block structure proposed in Section III, and DS-Conv refers
to the depthwise separable convolution. The experiments use
the SigFi data set with the training epoch set to 250.

From the results, the accuracy performance of MiniRocket
and residual convolution is similar. With the combination of
depth-separable convolution, the feature extraction and fusion
is separated, bringing some degree of accuracy improvement.
The combination of the three shows the highest accuracy and
maximum accuracy improvement, which indicates that the
combination of MiniRocket and the residual structure greatly
improves the learning ability of the network, and the improve-
ment is more pronounced than that of depthwise separable
convolution.

Impact of Individual Diversity: In Table VIII, we performed
the impact of individual diversity on WiLDAR. The network
was trained using the data of the first two users in CSI-HAR,
and tested by the third one.

The recognition accuracy decreases substantially when there
is a difference between the source and target domains. This is
because the network extracts the environment and background

TABLE IX
COMPARISON OF TIME COMPLEXITY OF DIFFERENT NETWORKS

features during feature extraction, and when these conditions
change, it affects the specific performance of the model. We
also add 7% of the target domain samples to the training set,
and the performance improved dramatically. This indicates that
only a small number of target domain samples are needed to
significantly improve the recognition capability of WiLDAR.
In tests, WiLDAR recognized key actions, such as falls with up
to 95% accuracy, even with a small number of target domain
samples. This verifies that WiLDAR is able to perform well
in remote health monitoring even when the subject changes.

Time Complexity: We compared the number of parameters
and the time complexity of WiLDAR with ARIL and T-Unet,
and the results are shown in Table IX. The data are taken
from the ARIL data set, the batch size is taken as 128, and
the training epoch is 200. The testing time is the time required
to test all 278 samples.

It can be seen from the Table IX that both the training and
testing time of WiLDAR are much smaller than the other two
networks. This is precisely due to the random convolution
kernel, which does not use backpropagation, reducing the gra-
dient calculation in training. In addition, WiLDAR has less
than one-tenth of the parameters compared with the other two
networks, due to the adaption of depthwise separable convo-
lution. These results demonstrate the lightweight features of
WiLDAR.

V. CONCLUSION

In this article, we propose the WiLDAR, a lightweight
network that can easily perform feature extraction on the orig-
inal CSI signal for HAR. We design multiscale convolution
to extract different action features and eliminate the tedious
signal preprocessing and manual feature extraction. A block
combining residual networks with depthwise separable con-
volution is proposed to reduce the number of parameters and
the training time. We tested WiLDAR on three different fine-
grained public data sets, and achieved the highest classification
accuracy with less than one-tenth of the parameters compar-
ing to other networks, resulting in shorter training. Finally, we
implemented a tiny HAR system with only Raspberry Pi and
WiFi router, which can greatly reduce the space requirements
and cost of the deployment. The experimental results show that
WiLDAR is fully capable of real time human activity monitor-
ing. In the future, we can build an all-round monitoring system
with multiterminal interconnection using embedded terminal,
cell phone terminal, and PC terminal around the home WiFi
LAN, which aligns with the IoT development trend of the
Internet of Everything. We believe that WiLDAR can be well
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applied to the Internet of Things, human–computer interaction,
remote medical monitoring, and other applications that require
the lightweight implementation and learning ability.
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