Wireless Technology and System Integration in Body Area Networks for m-Health Application

Emil Jovanov

Electrical and Computer Engineering Dept.
University of Alabama in Huntsville
http://www.ece.uah.edu/~jovanov
email: jovanov@ece.uah.edu

Introduction

- mHealth
 - special issue of IEEE Transactions on Information Technology in Biomedicine, Dec. 2004,
 M-Health: Beyond Seamless Mobility and Global Wireless Health-Care Connectivity
 - Mobile computing
 - Sensor technology
 - Communication technologies
- WBAN emerging integration technology
 - Promising technology for unsupervised, continuous, ambulatory health monitoring
 - Challenge: design WBAN for extended real-time monitoring of physiological data and events.

WBAN: Motivation

- Goal: ubiquitous and affordable healthcare
- Conditions: demographic and technology trends
 - Informal caregivers (1/3 in the U.S.)
- Solution: 3-tier ubiquitous monitoring system
 - Tier 1: Wireless Body Area Network (WBAN)
 - Tier 2: Personal Server
 - Tier 3: Healthcare Provider Servers/Medical Servers
- Opportunities:
 - Ambulatory health monitoring
 - Computer-assisted rehabilitation
 - Augmented reality systems
- Long-term benefits:
 - Promote healthy lifestyle
 - Seamless integration of data into personal medical records and research databases
 - Knowledge discovery through data mining

RMIT Sep. 2005, Melbourne, Australia

WBAN - design goals

- minimization of weight and size of sensors,
- user's acceptance,
- portability,
- unobtrusiveness,
- ubiquitous connectivity,
- reliability, and
- seamless system integration.

Wireless technologies

- WLAN and WPAN technologies
- Bluetooth
 - Widespread, cell phones/PDAs
 - 720 kbps
 - Relatively high power consumption, protocol stack complexity
- ZigBee
 - Emerging standard
 - Very low power
 - 250 kbps
- UWB
 - High bandwidth
- Alternative solutions
 - MEMS resonators (100 μ W)

Tier	1. Sensor	2. Personal server	3. Medical server
Processing Power	1-10 MIPS	~ 100 MIPS	~ GIPS
RAM	1-10 KB	~ 50 MB	~ <i>G</i> B
Secondary memory	10-100 KB, 1 MB (flash)	~ 1 <i>G</i> B	~ TB
Power consumption	1-10mW proc. ~50mW comm.	~ 100 mW	~ 100 W
Other	Peripherals, timers, etc.	WAN communication	Internet connectivity

RMIT Sep. 2005, Melbourne, Australia

Wireless Body Area Networks at UAH

2000: Wireless Intelligent Sensors (WISE)

2004: ActiS - Activity Sensor

- Standard sensor platforms and communication protocols

"A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation," Journal of NeuroEngineering and Rehabilitation, http://www.jneuroengrehab.com/content/2/1/6

Telos Wireless Platform

- 8MHz Texas Instruments 16-bit MSP430F1611 microcontroller
 - 10KB RAM, 48KB Flash
- Chipcon 2420, IEEE 802.15.4 compliant wireless transceiver
 - Hardware link layer encryption and authentication
 - 250kbps, 2.4GHz
 - programmable output power
- Onboard antenna
 - Range: 50 m / 125 m
- Integrated
 - humidity, temperature, and light sensors
 - ADC, DAC, DMA, Supply Voltage Supervisor
- TinyOS support

RMIT Sep. 2005, Melbourne, Australia

Intelligent Signal Processing Module ISPM

- 4MHz Texas Instruments 16-bit MSP430F1232 microcontroller (256B RAM, 8KB ROM)
- Multiple Dual Axis Analog Devices ADXL202 Accelerometers
- On-board bioamplifier (ECG, EMG)
 Texas Instruments INA321
 Instrumentation Amp.
- Force resistor signal conditioning circuit
 - Foot switch

Tier	1. Signal Processing Module	2. Sensor Platform	3. Wireless Gateway	4. Personal Server
Processing Power	1 MIPS	1 MIPS	60 MIPS	~ 100 MIPS
RAM	256B	10 KB	64 KB	~ 64MB
Power consumption	1 mW	3mW	60 mW	~ 300 mW

RMIT Sep. 2005, Melbourne, Australia

System Design Issues

- Extremely low-power, low-weight, and small size
- Non-invasive and unobtrusive operation
- Reliable transmission using retransmissions
- Time-stamping for collective processing and out of order message processing
- Interoperability requires standardization
 - Seamless connectivity
 - Application specific standards for wireless communications, messaging, and system support
- Seamless customization, configuration, and integration
- Sensor placement and mounting
 - Sensor commodization
- Security and Privacy
 - Communication and data storage
- Effective user interfaces

Time Synchronization

- Necessary for collective processing, data logging, power-efficient operation, etc.
- Problem:
 - High precision synchronization with low frequency clocks
 - · 32 KHz on Telos
- FTSP FloodingTime synchronization protocols
 - Telos specific implementation at UAH
 - Implemented precision ~2 μ S with 32KHz crystal!

Power Consumption

- User's convenience
 - Battery life
 - Size and weight of batteries
- Battery Life
 - Battery Capacity [mAh]
 - BL = BC / I_{ave}
 - For simple time keeping and minimal processing average power is
 ~2.1μA, standard 750 mAh batteries will allow battery life:
 - BL = 750 mAh / 2.1 μ A \approx 44 years !!!
- Introducing: Apple Computers

RMIT Sep. 2005, Melbourne, Australia

Power efficient communication

- Wireless communication requires
 - ~ 10 times more power than processing
 - Turn-off radio whenever you can
- Time slots
 - Time slot scheduling
 - Allow time slots for new sensors to join the club
- Design issues:
 - Battery life
 - Latency
 - Number of sensors

UAH 22

Personal Server program

- Implemented on PC/PDA
- Controls the network of wireless sensors
- Collects data from sensors
- Communicates with servers on higher levels of hierarchy whenever the connection is available
- Provides feedback and alerts to the user
- Stores user's inputs

Software Organization

ISPM Software

- Physiological sensor interface
- Preprocessing of signal data
- Resource constrained, no operating system

■ Telos Software

- Developed in component framework of TinyOS
- Significant signal processing
- Defines Sampling Frequency
- Server WBAN Communication

Privacy and Security

- Hardware encryption of wireless communications
- Standard security mechanisms from the personal server to the upper levels of hierarchy
- EMBC05 paper: "Interoperability and Security in Wireless Body Area Network (WBAN) Infrastructures"

Conclusions

- Promising technology for
 - Ambulatory monitoring
 - Early detection of abnormal conditions
 - Supervised rehabilitation
- Advantages
 - Increased confidence and better quality of life
 - Promotes healthy lifestyle / health awareness
 - Data mining of huge research databases
 - Effects of drug therapies and rehabilitation procedures
- Need for standards for wireless communications, messaging, and system support

RMIT Sep. 2005, Melbourne, Australia

Acknowledgments

- Aleksandar Milenkovic, Chris Otto, Corey Sanders, John Gober, Reggie McMurtrey, University of Alabama in Huntsville
- Piet de Groen, Bruce Johnson, Mayo Clinic
- Steve Warren, Kansas State University

