Wireless body area networks for ambulatory health monitoring

with prototype demonstration

August 25, 2006

Chris A. Otto chrisaotto@yahoo.com

Electrical and Computer Engineering Department University of Alabama in Huntsville

Outline

- Introduction
- Proposed Solution
- WBAN Prototype
- WBAN Wireless Communications
- Embedded Software
- Personal Server Application
- Demonstration
- Conclusions

Motivation

- Healthcare is the Largest Segment of US Economy
 - □ \$1.8 Trillion in 2004 (15% of GDP)
 - □ \$200 Million Informal Care Givers
 - □ \$4178 per capita (50% more than the next nearest nation)
 - US is less than 10th in life expectancy
 - US is 26th in infant mortality rates
- Pending Crisis
 - □ Retiring Baby Boomers
 - □ Elderly is the Largest Growing Age Group
 - □ 45 million Uninsured

Motivation

- Current Healthcare Systems are Centralized, Focused on Reacting to Illness
- We are in need of Distributed Systems, Focused on Proactive Wellness Management

Healthcare Spending by Category

Causes of Death in the US in 2000	
Tobacco	18.1%
Poor diet and physical inactivity	16.0%
Alcohol consumption	3.5%
Microbial agents	3.1%
Toxic agents	2.3%
Motor vehicles	1.8%
Firearms	1.2%

Ambulatory Health Monitoring

- Wearable Systems For Health Monitoring
 - □ Close monitoring of Vital Signs
 - Quantitative Feedback
 - Computer Assisted Rehabilitation
- Holter Monitors
 - □ Data Recorders (< 24 hours)</p>
 - □ Post-session Analysis
- Telemedicine Systems

CardioLabs

- Ambulatory Heart Monitoring
- Event-based Recorders
 - □ Loop Recorders (32 min)
 - Patient Presses "event" button during episode
- Data Extracted for Post-Analysis

CardioNet

- Mobile Cardiac Outpatient Telemetry (MCOT)
- Wireless Sensor and Wireless Monitor
- Heartbeat by Heartbeat Monitoring
- Arrythmia event detection

Heart Rate Monitors

- Polar Electro, Suunto, Timex, Reebok,...
- Integration into Fitness Equipment
- Real-time Heart rate

Some "Journal" capabilities

ActiWatch

- Cambridge Neurotechnology
- Actigraphy
- Single Axis Accelerometer
- Clinical Research
 - □ Sleep / Wake Patterns
 - □ Sleep Disorders
 - □ Periodic Leg Movement (PLMS)
 - □ Infant Monitoring

Body Media (bodyBugg)

- Multi-modal sensing
 - ☐ Single axis-accelerometer (motion)
 - □ (2) Temperature Sensors (heat flux)
 - ☐ Galvanic Skin Response (GSR)
- Upload Data using USB
- Calorie Consumption Estimation
 - □ Proprietary Algorithms
 - □ Clinically tested

Body Media Monitor

CodeBlue

- 100
 - Harvard University, Boston University School of Management, and Boston Medical Center, 10Blade (start-up)
 - Real-time Triage, Disaster Relief
 - Pulse Oximeters, ECG, accelerometers

Outline

- Introduction
- Proposed Solution
- WBAN Prototype
- WBAN Wireless Communications
- Embedded Software
- Personal Server Application
- Demonstration
- Conclusions

Proposed Solution

Wireless Body Area Network (WBAN) for Ambulatory Health Monitoring

- Mobility
- □ Increased Quality of Life
- Multimodal Physiological Monitoring
- Hierarchical Multi-tier
 Telemedicine System

System Architecture

Outline

- Introduction
- Proposed Solution
- WBAN Prototype
- WBAN Wireless Communications
- Embedded Software
- Personal Server Application
- Demonstration
- Conclusions

WBAN Prototype - Goals

- Implement a Working WBAN
 - Activity Monitor / Motion Sensor
 - □ ECG Sensor
 - □ Network Coordinator
 - □ Personal Server
- Explore Challenges
 - □ Sensor Fusion
 - □ On-Sensor Processing
 - Communications
 - □ Power Efficiency

Hardware Architecture - Tmote Sky

Hardware Architecture - ISPM

- MSP430F1232
 - □ 32KHz (ACLK) / ~4.6MHz DCO Clock (MCLK,SMCLK)
 - 8KB Flash / 256B RAM
- Two (2) ADXL202 Accelerometers
- Two Analog ECG Channels
- 10-pin Tmote Sky Header

ActiS Sensor Nodes

- 3 axis motion detection
- Step detection and gait analysis
- Activity induced Energy Estimation (AEE)

Intelligent Signal Processing Modules (ISPM)

ISPM for Activity / ECG

Polar Heart Rate Monitor

Single chip 3-axis Accelerometer

Outline

- Introduction
- Proposed Solution
- WBAN Prototype
- WBAN Wireless Communications
- Embedded Software
- Personal Server Application
- Demonstration
- Conclusions

IEEE 802.15.4 and ZigBee

- □ LR-WPAN Access
- □ 250 Kbps
- □ CSMA-CA
- ZigBee
 - Network
 - Application and Application Sublayer
 - □ Security
 - ☐ Star Network Topology

Power Efficient TDMA

- >90% Sensor Power from Radio
- Significant Power Savings From Disabling Radio
- Timeslots for Communication
 - □ Distributed Events → Concentrated Bursts
 - Allows Radio to be disabled
- Extended Battery Life / Lower Weight

TDMA Means Low Power

1.5

2.5

Time [sec]

2

3.5

4.5

0.5

Battery Life

Typical Message Flow

Outline

- Introduction
- Proposed Solution
- WBAN Prototype
- WBAN Wireless Communications
- Embedded Software
- Personal Server Application
- Demonstration
- Conclusions

Embedded Software - TinyOS

- Lightweight
- Open Source
- Configuration Defined at Compile Time
- nesC (for Networked Embedded Sensors)
 - Component model
 - □ Task support
 - □ Split-phase Operation (command / event model)

Network Coordinator

- WBAN Access for Personal Server
- Network Channel Management
- Distribute Global Timing

Network Coordinator

Time Synchronization - Motivation

TDMA

- Efficient Sharing of Communication Channels
- □ Timeslot Assignments
- □ Beacon Prediction (Maximize Radio off)
- Correlating Intra-WBAN events
 - □ Relative timing is important
 - Synchronizing start time

Time Synchronization Protocol

- м
 - Flooding Time Synchronization Protocol (FTSP)
 - ☐ MAC Layer Time Stamping
 - Skew Compensation with Linear Regression

Sensor Nodes

- Collect Physiological Data
- Process Data (Feature Extraction)
- Event Management
- Resource Management
- WBAN Communications

Sensor Nodes

Feature Extraction – Step Detection

Feature Extraction – Activity Estimation

$$AEE_t = \int_{t-\delta}^{t} \sqrt{AC(a_x)^2 + AC(a_y)^2 + AC(a_z)^2} \cdot dt$$

Feature Extraction – AEE and Heart Rate

Event Management

Event Management

Resource Management – USART0

Outline

- Introduction
- Proposed Solution
- WBAN Prototype
- WBAN Wireless Communications
- Embedded Software
- Personal Server Application
- Demonstration
- Conclusions

Personal Health Server

- Sensor Node Identification and Configuration
- Sensor Fusion
- Session File Management
- Graphical User Interface (GUI)

Health Server – Configuration

Health Server – Real-time Display

Outline

- Introduction
- Proposed Solution
- WBAN Prototype
- WBAN Wireless Communications
- Embedded Software
- Personal Server Application
- Demonstration
- Conclusions

Outline

- Introduction
- Proposed Solution
- WBAN Prototype
- WBAN Wireless Communications
- Embedded Software
- Personal Server Application
- Demonstration
- Conclusions

Conclusions

- Working WBAN Prototype
 - ☐ Custom-designed ISPM daughter cards
 - ☐ Off-the-shelf wireless sensor platforms
 - □ Standard IEEE 802.15.4 communications
- Original Solutions
 - ☐ Health monitoring specific, Power Efficient TDMA Scheme
 - □ WBAN communication protocol
 - On-sensor real-time signal processing
- Promising Technology
 - □ Optimal Treatment of Disease Rehabilitation
 - □ Low Cost Early Diagnosis
 - □ Encourages Wellness Management
 - □ Improved Mobility
 - □ Low Weight (Increased Compliance)

Future Research

- Validation
- Security
 - □ Hardware encryption of wireless communications
 - Standard security mechanisms from the personal server to the upper levels of hierarchy
- Signal Processing
 - □ Discern category of activity
 - □ Improved Step Detection
 - □ Improve ECG Analysis
- Upper Tier Development
- Integration into Electronic Medical Records (EMR)

Acknowledgements

- Dr. Emil Jovanov, Dr. Alex Milenkovic
- Elise Haley, Corey Sanders, Reggie McMurtrey, John Gober
- University of Alabama in Huntsville