
U430-5

MSP430 IAR Embedded
Workbench® IDE

User Guide

for Texas Instruments’
MSP430 Microcontroller Family

U430-5

COPYRIGHT NOTICE
© Copyright 1996–2006 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, From Idea to Target, IAR Embedded Workbench, visualSTATE, IAR
MakeApp and C-SPY are trademarks owned by IAR Systems AB.

Texas Instruments is a registered trademark of Texas Instruments Incorporated.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Adobe and
Acrobat Reader are registered trademarks of Adobe Systems Incorporated. CodeWright
is a registered trademark of Starbase Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fifth edition: March 2006

Part number: U430-5

This guide describes version 3.x of IAR Embedded Workbench® for Texas Instruments’
MSP430 microcontroller family.

Brief contents
Tables ... xxiii

Figures .. xxvii

Preface .. xxxv

Part 1. Product overview ... 1

Product introduction .. 3

Installed files .. 15

Part 2. Tutorials .. 23

Creating an application project ... 25

Debugging using the IAR C-SPY® Debugger 37

Mixing C and assembler modules .. 49

Using C++ .. 53

Simulating an interrupt .. 57

Working with library modules .. 67

Part 3. Project management and building 71

The development environment ... 73

Managing projects ... 79

Building ... 89

Editing ... 95

Part 4. Debugging .. 105

The IAR C-SPY® Debugger ... 107
U430-5

iii

iv
Executing your application ... 117

Working with variables and expressions .. 123

Using breakpoints ... 129

Monitoring memory and registers .. 135

Using the C-SPY® macro system .. 143

Analyzing your application ... 151

Part 5. IAR C-SPY Simulator .. 157

Simulator-specific debugging ... 159

Simulating interrupts ... 177

Part 6. IAR C-SPY® FET debugger 189

Introduction to the IAR C-SPY® FET Debugger 191

C-SPY® FET-specific debugging .. 197

Design considerations for in-circuit programming 229

Part 7. Reference information ... 235

IAR Embedded Workbench® IDE reference 237

C-SPY® Debugger reference ... 313

General options .. 343

Compiler options ... 351

Assembler options ... 365

Custom build options ... 373

Build actions options .. 375

Linker options .. 377
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Brief contents
Library builder options .. 391

Debugger options ... 393

C-SPY® macros reference .. 397

Glossary .. 425

Index ... 439
U430-5

v

vi
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents
Tables ... xxiii

Figures .. xxvii

Preface .. xxxv

Who should read this guide ... xxxv

How to use this guide ... xxxv

What this guide contains ..xxxvi

Other documentation ..xxxix

Document conventions ...xl

Part 1. Product overview ... 1

Product introduction .. 3

The IAR Embedded Workbench IDE .. 3

An extensible and modular environment ... 4

Features .. 4

Documentation ... 5

IAR C-SPY Debugger .. 5

General C-SPY Debugger features .. 6

RTOS awareness .. 8

Documentation ... 8

IAR C-SPY Debugger systems .. 8

IAR C-SPY Simulator .. 9

IAR C-SPY FET Debugger .. 9

IAR C/C++ Compiler ... 10

Features .. 10

Runtime environment ... 11

Documentation ... 11

IAR Assembler ... 11

Features .. 11

Documentation ... 11
U430-5

vii

viii
IAR XLINK Linker .. 12

Features .. 12

Documentation ... 12

IAR XAR Library Builder and IAR XLIB Librarian 13

Features .. 13

Documentation ... 13

Installed files .. 15

Directory structure .. 15

Root directory .. 15

The 430 directory ... 16

The common directory ... 17

File types ... 18

Documentation .. 20

The user and reference guides .. 20

Online help ... 21

IAR on the web .. 21

Part 2. Tutorials .. 23

Creating an application project ... 25

Setting up a new project ... 25

Creating a Workspace window .. 25

Creating the new project .. 26

Adding files to the project .. 28

Setting project options ... 29

Compiling and linking the application ... 31

Compiling the source files ... 31

Viewing the list file .. 32

Linking the application .. 34

Viewing the map file .. 35

Debugging using the IAR C-SPY® Debugger 37

Debugging the application .. 37

Starting the debugger ... 37
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents
Organizing the windows .. 37

Inspecting source statements .. 38

Inspecting variables ... 40

Setting and monitoring breakpoints ... 42

Debugging in disassembly mode .. 43

Monitoring registers ... 44

Monitoring memory ... 44

Viewing terminal I/O ... 45

Reaching program exit ... 46

Mixing C and assembler modules .. 49

Examining the calling convention .. 49

Adding an assembler module to the project 50

Setting up the project ... 50

Using C++ .. 53

Creating a C++ application ... 53

Compiling and linking the C++ application 53

Setting a breakpoint and executing to it ... 54

Printing the Fibonacci numbers ... 56

Simulating an interrupt .. 57

Adding an interrupt handler .. 57

The application—a brief description .. 57

Writing an interrupt handler ... 58

Setting up the project ... 58

Setting up the simulation environment .. 58

Defining a C-SPY setup macro file .. 59

Specifying C-SPY options ... 60

Building the project .. 61

Starting the simulator ... 61

Specifying a simulated interrupt ... 62

Setting an immediate breakpoint .. 63

Simulating the interrupt .. 64

Executing the application ... 64
U430-5

ix

x

Using macros for interrupts and breakpoints 65

Working with library modules .. 67

Using libraries .. 67

Creating a new project ... 68

Creating a library project ... 68

Using the library in your application project 69

Part 3. Project management and building 71

The development environment ... 73

The IAR Embedded Workbench IDE .. 73

Running the IAR Embedded Workbench IDE 74

Exiting .. 75

Customizing the environment .. 75

Organizing the windows on the screen .. 75

Customizing the IDE .. 76

Communicating with external tools ... 77

Managing projects ... 79

The project model .. 79

How projects are organized .. 79

Creating and managing workspaces ... 82

Navigating project files .. 83

Viewing the workspace .. 84

Displaying browse information .. 85

Source code control .. 86

Interacting with source code control systems 86

Building ... 89

Building your application ... 89

Setting options .. 89

Building a project ... 91

Building multiple configurations in a batch 91

Correcting errors found during build ... 92
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents
Building from the command line ... 92

Extending the tool chain .. 93

Tools that can be added to the tool chain ... 93

Adding an external tool .. 93

Editing ... 95

Using the IAR Embedded Workbench editor 95

Editing a file ... 95

Using and adding code templates ... 99

Navigating in and between files ... 101

Searching .. 101

Customizing the editor environment .. 101

Using an external editor ... 102

Part 4. Debugging .. 105

The IAR C-SPY® Debugger ... 107

Debugger concepts .. 107

IAR C-SPY Debugger and target systems 107

Debugger .. 108

Target system ... 108

User application ... 108

IAR C-SPY Debugger systems .. 109

ROM-monitor program .. 109

Third-party debuggers .. 109

The C-SPY environment ... 109

An integrated environment ... 109

Setting up the IAR C-SPY Debugger ... 110

Choosing a debug driver .. 110

Executing from reset ... 111

Using a setup macro file ... 111

Selecting a device description file ... 111

Loading plugin modules ... 112
U430-5

xi

xii
Starting the IAR C-SPY Debugger .. 112

Redirecting debugger output to a file ... 113

Adapting C-SPY to target hardware .. 113

Device description file ... 113

Executing your application ... 117

Source and disassembly mode debugging 117

Executing .. 118

Step ... 118

Go ... 120

Run to Cursor ... 120

Highlighting ... 120

Using breakpoints to stop ... 120

Using the Break button to stop ... 121

Stop at program exit ... 121

Call stack information .. 121

Terminal input and output ... 122

Working with variables and expressions .. 123

C-SPY expressions ... 123

C symbols ... 123

Assembler symbols .. 124

Macro functions .. 124

Macro variables .. 124

Limitations on variable information ... 125

Effects of optimizations ... 125

Viewing variables and expressions .. 126

Working with the windows .. 126

Using the trace system ... 127

Viewing assembler variables ... 128

Using breakpoints ... 129

The breakpoint system .. 129

Defining breakpoints ... 129

Toggling a simple code breakpoint .. 130
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents
Setting a breakpoint in the Memory window 130

Defining breakpoints using the dialog box 130

Defining breakpoints using system macros 132

Viewing all breakpoints .. 132

Using the Breakpoint Usage dialog box .. 133

Monitoring memory and registers .. 135

Memory addressing .. 135

Using the Memory window .. 136

Working with registers .. 138

Register groups .. 138

Using the Stack window .. 140

Graphical stack display .. 140

Detecting stack overflows .. 141

Viewing the stack contents .. 141

Using the C-SPY® macro system .. 143

The macro system .. 143

The macro language ... 144

The macro file .. 144

Setup macro functions .. 145

Using C-SPY macros ... 145

Using the Macro Configuration dialog box 146

Registering and executing using setup macros and setup files 147

Executing macros using Quick Watch .. 148

Executing a macro by connecting it to a breakpoint 149

Analyzing your application ... 151

Function-level profiling .. 151

Using the profiler ... 151

Code coverage ... 154

Using Code Coverage .. 154
U430-5

xiii

xiv
Part 5. IAR C-SPY Simulator .. 157

Simulator-specific debugging ... 159

The IAR C-SPY Simulator introduction 159

Features .. 159

Selecting the simulator driver .. 159

Simulator Setup .. 160

Check for word access on odd address .. 160

Simulator-specific menus .. 160

Simulator menu .. 160

Using the trace system in the simulator 161

Trace window ... 162

Trace toolbar .. 163

Function Trace window ... 164

Trace Expressions window .. 164

Find In Trace window .. 165

Find in Trace dialog box .. 166

Memory access checking ... 167

Memory Access setup dialog box .. 168

Edit Memory Access dialog box .. 170

Using breakpoints ... 170

Data breakpoints .. 171

Immediate breakpoints ... 173

Breakpoint Usage dialog box ... 175

Simulating interrupts ... 177

The C-SPY interrupt simulation system 177

Interrupt characteristics .. 178

Interrupt simulation states .. 179

Using the interrupt simulation system 179

Target-adapting the interrupt simulation system 180

Interrupt Setup dialog box .. 180

Edit Interrupt dialog box .. 182

Forced interrupt window .. 183
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents
C-SPY system macros for interrupts .. 184

Interrupt Log window .. 185

Simulating a simple interrupt ... 186

Part 6. IAR C-SPY® FET debugger 189

Introduction to the IAR C-SPY® FET Debugger 191

The FET C-SPY Debugger .. 191

Differences between the C-SPY drivers .. 192

Hardware installation ... 193

MSP-FET430X110 .. 193

MSP-FET430Pxx0 ... 193

IAR J-Link or TI USB FET interface module 193

Firmware upgrade .. 194

Getting started .. 194

Running a demo application .. 195

C-SPY® FET-specific debugging .. 197

Options for debugging using the C-SPY FET debugger 197

Setup ... 198

Breakpoints .. 200

Emulator menu ... 201

Using breakpoints ... 203

Available breakpoints .. 204

Customizing the use of breakpoints ... 206

Range breakpoints .. 206

Conditional breakpoints ... 209

Advanced trigger breakpoints .. 213

Breakpoint Usage dialog box ... 216

Using state storage .. 216

State Storage Control window ... 218

State Storage Window .. 220

Using the sequencer .. 221

Sequencer Control window .. 223
U430-5

xv

xvi
Stepping .. 225

Programming flash ... 225

Single-stepping with active interrupts .. 225

C-SPY FET communication ... 225

Releasing JTAG ... 226

Parallel port designators ... 226

Troubleshooting ... 226

Design considerations for in-circuit programming 229

Bootstrap loader ... 229

Device signals ... 229

External power .. 230

Signal connections for in-system programming 230

MSP-FET430X110 .. 230

MSP-FET430Pxx0 (‘P120, ‘P140, ‘P410, ‘P440) 232

Part 7. Reference information ... 235

IAR Embedded Workbench® IDE reference 237

Windows ... 237

IAR Embedded Workbench IDE window 238

Workspace window .. 240

Editor window .. 248

Source Browser window .. 253

Breakpoints window .. 255

Build window ... 261

Find in Files window .. 262

Tool Output window .. 263

Debug Log window .. 264

Menus ... 264

File menu .. 265

Edit menu ... 267

View menu ... 275

Project menu .. 277
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents
Tools menu ... 286

Window menu .. 308

Help menu .. 309

C-SPY® Debugger reference ... 313

C-SPY windows .. 313

Editing in C-SPY windows .. 313

IAR C-SPY Debugger main window ... 314

Disassembly window ... 315

Memory window .. 318

Register window .. 321

Watch window ... 322

Locals window ... 323

Auto window .. 324

Live Watch window ... 324

Quick Watch window ... 325

Call Stack window ... 326

Terminal I/O window ... 328

Code Coverage window ... 329

Profiling window .. 330

Stack window ... 332

LCD window .. 335

C-SPY menus .. 336

Debug menu ... 337

General options .. 343

Target .. 343

Device ... 343

Floating-point .. 344

Position-independent code .. 344

Hardware multiplier .. 344

Assembler-only project .. 344

Output ... 345

Output file .. 345

Output directories ... 345
U430-5

xvii

xvi
Library Configuration ... 346

Library .. 346

Library file ... 346

Configuration file ... 347

Library Options ... 347

Printf formatter ... 347

Scanf formatter ... 348

Stack/Heap .. 348

Override default ... 348

Stack size .. 348

Heap size .. 348

MISRA C .. 349

Enable MISRA C .. 349

Log MISRA C settings .. 349

Set active MISRA C rules ... 349

Compiler options ... 351

Language .. 351

Language .. 351

Require prototypes ... 352

Language conformance .. 352

Plain 'char' is ... 353

Enable multibyte support ... 353

Enable IAR migration preprocessor extensions 353

Code ... 354

R4 utilization ... 354

R5 utilization ... 354

Reduce stack usage ... 354

20-bit context save on interrupt .. 355

Optimizations ... 355

Optimizations ... 355

Output ... 356

Module type ... 357

Object module name .. 357
U430-5

ii
MSP430 IAR Embedded Workbench® IDE
User Guide

Contents
Generate debug information ... 357

List ... 358

Output list file .. 358

Output assembler file ... 358

Preprocessor ... 359

Ignore standard include directories .. 359

Additional include directories .. 359

Preinclude file .. 360

Defined symbols .. 360

Preprocessor output to file ... 360

Diagnostics .. 360

Enable remarks ... 361

Suppress these diagnostics ... 361

Treat these as remarks .. 361

Treat these as warnings .. 362

Treat these as errors .. 362

Treat all warnings as errors .. 362

MISRA C .. 362

Override general MISRA C settings ... 363

Set active MISRA C rules ... 363

Extra Options ... 363

Use command line options ... 363

Assembler options ... 365

Language .. 365

User symbols are case sensitive ... 365

Enable multibyte support .. 365

Macro quote characters .. 366

Output ... 366

Generate debug information ... 367

List ... 367

Include header .. 367

Include listing ... 368

Include cross-reference .. 368
U430-5

xix

xx
Lines/page .. 368

Tab spacing .. 368

Preprocessor ... 369

Ignore standard include directories .. 369

Additional include directories ... 369

Defined symbols .. 370

Diagnostics .. 370

Max number of errors .. 371

Extra Options ... 371

Use command line options ... 371

Custom build options ... 373

Custom Tool Configuration ... 373

Build actions options .. 375

Build Actions Configuration .. 375

Pre-build command line ... 375

Post-build command line ... 376

Linker options .. 377

Output ... 377

Output file ... 377

Format .. 378

Extra Output .. 380

#define ... 381

Define symbol ... 381

Diagnostics .. 382

Always generate output .. 382

Segment overlap warnings ... 382

No global type checking .. 382

Range checks .. 383

Warnings/Errors ... 383

List ... 384

Generate linker listing .. 384
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents
Config ... 386

Linker command file ... 386

Override default program entry .. 386

Search paths ... 387

Raw binary image .. 387

Processing .. 388

Fill unused code memory ... 388

The checksum calculation .. 389

Extra Options ... 390

Use command line options ... 390

Library builder options .. 391

Output ... 391

Debugger options ... 393

Setup .. 393

Driver ... 393

Run to .. 394

Setup macros ... 394

Device description file .. 394

Extra Options ... 395

Use command line options ... 395

Plugins ... 396

C-SPY® macros reference .. 397

The macro language .. 397

Macro functions ... 397

Predefined system macro functions ... 397

Macro variables .. 398

Macro statements ... 399

Formatted output .. 400

Setup macro functions summary .. 402

C-SPY system macros summary ... 402

Description of C-SPY system macros .. 404
U430-5

xxi

xxi
Glossary .. 425

Index ... 439
U430-5

i
MSP430 IAR Embedded Workbench® IDE
User Guide

Tables
1: Typographic conventions used in this guide .. xl

2: File types ... 18

3: General settings for project1 ... 29

4: Compiler options for project1 ... 30

5: Compiler options for project2 ... 50

6: Project options for Embedded C++ tutorial .. 54

7: Interrupts dialog box ... 62

8: Breakpoints dialog box ... 63

9: XLINK options for a library project ... 68

10: Command shells .. 78

11: iarbuild.exe command line options ... 92

12: C-SPY assembler symbols expressions .. 124

13: Handling name conflicts between hardware registers and assembler labels 124

14: Project options for enabling profiling ... 151

15: Project options for enabling code coverage .. 154

16: Description of Simulator menu commands ... 161

17: Trace window columns ... 162

18: Trace toolbar commands ... 163

19: Toolbar buttons in the Trace Expressions window .. 165

20: Function buttons in the Memory Access Setup dialog box 169

21: Memory Access types ... 172

22: Breakpoint conditions ... 173

23: Memory Access types ... 174

24: Characteristics of a forced interrupt .. 183

25: Description of the Interrupt Log window .. 185

26: Timer interrupt settings ... 187

27: Simulator and FET differences ... 192

28: Project options for FET C example ... 195

29: Project options for FET assembler example ... 196

30: Emulator menu commands .. 202

31: Available hardware breakpoints .. 204
U430-5

xxiii

xxi
32: Range breakpoint start value types ... 207

33: Range breakpoint types ... 208

34: Range breakpoint access types .. 208

35: Conditional break at location types ... 210

36: Conditional breakpoint types .. 211

37: Conditional breakpoint condition operators .. 211

38: Conditional breakpoint access types ... 212

39: Conditional breakpoint condition types .. 212

40: Advanced triggers break at location types .. 213

41: Advanced trigger types ... 214

42: Advanced trigger condition operators ... 215

43: Columns in State Storage window .. 220

44: Sequencer settings - example .. 222

45: State Storage Control settings - example .. 222

46: IAR Embedded Workbench IDE menu bar ... 238

47: Workspace window context menu commands .. 242

48: Description of source code control commands ... 243

49: Description of source code control states .. 244

50: Description of commands on the editor window context menu 250

51: Editor keyboard commands for insertion point navigation 251

52: Editor keyboard commands for scrolling .. 252

53: Editor keyboard commands for selecting text ... 252

54: Information in Source Browser window ... 253

55: Source Browser window context menu commands .. 254

56: Breakpoints window context menu commands ... 255

57: Breakpoint conditions ... 258

58: Log breakpoint conditions ... 259

59: Location types ... 260

60: File menu commands .. 265

61: Edit menu commands .. 267

62: Find dialog box options ... 270

63: Replace dialog box options ... 270

64: Incremental Search function buttons ... 273

65: View menu commands .. 275
U430-5

v
MSP430 IAR Embedded Workbench® IDE
User Guide

Tables
66: Project menu commands ... 277

67: Argument variables ... 279

68: Configurations for project dialog box options .. 280

69: New Configuration dialog box options ... 281

70: Description of Create New Project dialog box ... 282

71: Project option categories ... 283

72: Description of the Batch Build dialog box .. 284

73: Description of the Edit Batch Build dialog box .. 285

74: Tools menu commands ... 286

75: External Editor options ... 287

76: Key Bindings page options ... 289

77: Editor page options ... 291

78: Editor Colors and Fonts page options ... 295

79: Project page options .. 296

80: Debugger page options .. 297

81: Register Filter options ... 299

82: Terminal I/O options ... 300

83: Configure Tools dialog box options .. 304

84: Command shells .. 305

85: Window menu commands ... 308

86: Help menu commands ... 309

87: Editing in C-SPY windows ... 313

88: C-SPY menu .. 314

89: Disassembly window operations ... 316

90: Disassembly context menu commands ... 317

91: Memory window operations ... 318

92: Commands on the memory window context menu ... 319

93: Fill dialog box options .. 320

94: Memory fill operations .. 320

95: Watch window context menu commands ... 323

96: Effects of display format setting on different types of expressions 323

97: Profiling window columns .. 332

98: Stack window columns ... 334

99: LCD window settings .. 336
U430-5

xxv

xxv
100: Debug menu commands .. 337

101: Log file options ... 340

102: Assembler list file options ... 368

103: XLINK range check options ... 383

104: XLINK list file options ... 384

105: XLINK list file format options .. 385

106: XLINK checksum algorithms ... 389

107: Examples of C-SPY macro variables .. 398

108: C-SPY setup macros ... 402

109: Summary of system macros .. 402

110: __cancelInterrupt return values ... 404

111: __disableInterrupts return values .. 405

112: __driverType return values ... 406

113: __enableInterrupts return values ... 406

114: __evaluate return values ... 407

115: __openFile return values ... 407

116: __readFile return values ... 409

117: __setAdvancedTriggerBreak return values ... 413

118: __setCodeBreak return values .. 414

119: __setConditionalBreak return values .. 415

120: __setDataBreak return values ... 417

121: __setRangeBreak return values .. 418

122: __setSimBreak return values .. 419

123: __sourcePosition return values ... 419
U430-5

i
MSP430 IAR Embedded Workbench® IDE
User Guide

Figures
1: Directory structure .. 15

2: Create New Project dialog box ... 26

3: Workspace window ... 27

4: New Workspace dialog box .. 27

5: Adding files to project1 ... 28

6: Setting general options .. 29

7: Setting compiler options ... 30

8: Compilation message .. 31

9: Workspace window after compilation .. 32

10: Setting the option Scan for Changed Files .. 33

11: XLINK options dialog box for project1 .. 34

12: The C-SPY Debugger main window ... 38

13: Stepping in C-SPY .. 39

14: Using Step Into in C-SPY ... 40

15: Inspecting variables in the Auto window .. 41

16: Watching variables in the Watch window .. 41

17: Setting breakpoints .. 42

18: Debugging in disassembly mode .. 43

19: Register window .. 44

20: Monitoring memory .. 44

21: Displaying memory contents as 16-bit units ... 45

22: Output from the I/O operations ... 46

23: Reaching program exit in C-SPY .. 46

24: Assembler settings for creating a list file .. 51

25: Setting a breakpoint in CPPtutor.cpp .. 54

26: Inspecting the function calls .. 55

27: Printing Fibonacci sequences .. 56

28: Specifying setup macro file ... 61

29: Inspecting the interrupt settings .. 63

30: Printing the Fibonacci values in the Terminal I/O window 65

31: IAR Embedded Workbench IDE window ... 74
U430-5

xxvii

xxv
32: Configure Tools dialog box .. 77

33: Customized Tools menu .. 78

34: Examples of workspaces and projects ... 80

35: Displaying a project in the Workspace window ... 84

36: Workspace window—an overview ... 85

37: General options ... 90

38: Editor window ... 96

39: Parentheses matching in editor window .. 99

40: Editor window status bar ... 99

41: Editor window code template menu .. 100

42: Specifying external command line editor ... 102

43: External editor DDE settings .. 103

44: IAR C-SPY Debugger and target systems .. 108

45: Viewing assembler variables in the Watch window ... 128

46: Breakpoint on a function call .. 130

47: Breakpoint Usage dialog box .. 133

48: Zones in C-SPY ... 135

49: Memory window ... 136

50: Memory Fill dialog box .. 137

51: Register window .. 138

52: Register Filter page ... 139

53: Stack window .. 140

54: Macro Configuration dialog box ... 147

55: Quick Watch window .. 149

56: Profiling window ... 152

57: Graphs in Profiling window .. 153

58: Function details window ... 153

59: Code Coverage window .. 155

60: Simulator menu ... 160

61: Trace window .. 162

62: Trace toolbar ... 163

63: Function Trace window ... 164

64: Trace Expressions window ... 164

65: Find In Trace window ... 165
U430-5

iii
MSP430 IAR Embedded Workbench® IDE
User Guide

Figures
66: Find in Trace dialog box ... 166

67: Memory Access Setup dialog box ... 168

68: Edit Memory Access dialog box ... 170

69: Data breakpoints dialog box .. 171

70: Immediate breakpoints page ... 174

71: Breakpoint Usage dialog box .. 175

72: Simulated interrupt configuration ... 178

73: Simulation states - example 1 ... 179

74: Simulation states - example 2 ... 179

75: Interrupt Setup dialog box ... 180

76: Edit Interrupt dialog box ... 182

77: Forced Interrupt window ... 183

78: Interrupt Log window ... 185

79: Communication overview ... 192

80: FET debugger setup options .. 198

81: FET debugger breakpoint options ... 200

82: Emulator menu .. 201

83: Range breakpoints dialog box ... 207

84: Conditional breakpoints dialog box .. 210

85: Advanced trigger dialog box ... 213

86: Breakpoint Usage dialog box .. 216

87: State Storage Control window .. 218

88: State Storage window .. 220

89: Sequencer Control window (advanced setup) ... 224

90: JTAG signal connection (MSP-FET430X110) ... 231

91: JTAG signal connection (MSP-FET430Pxx0) .. 233

92: IAR Embedded Workbench IDE window ... 238

93: IAR Embedded Workbench IDE toolbar .. 239

94: IAR Embedded Workbench IDE window status bar .. 240

95: Workspace window ... 240

96: Workspace window context menu .. 241

97: Source Code Control menu ... 243

98: Select Source Code Control Provider dialog box ... 245

99: Check In File dialog box ... 246
U430-5

xxix

xxx
100: Check Out File dialog box .. 247

101: Editor window ... 248

102: Editor window tab context menu .. 249

103: Editor window context menu .. 249

104: Source Browser window ... 253

105: Source Browser window context menu ... 254

106: Breakpoints window .. 255

107: Breakpoints window context menu ... 255

108: Code breakpoints page .. 257

109: Log breakpoints page .. 258

110: Enter Location dialog box ... 260

111: Build window (message window) ... 261

112: Build window context menu ... 261

113: Find in Files window (message window) .. 262

114: Find in Files window context menu .. 262

115: Tool Output window (message window) .. 263

116: Tool Output window context menu ... 263

117: Debug Log window (message window) .. 264

118: Debug Log window context menu .. 264

119: File menu ... 265

120: Edit menu .. 267

121: Find in Files dialog box ... 271

122: Incremental Search dialog box .. 273

123: Template dialog box .. 274

124: View menu .. 275

125: Project menu .. 277

126: Configurations for project dialog box ... 280

127: New Configuration dialog box .. 281

128: Create New Project dialog box ... 282

129: Batch Build dialog box .. 284

130: Edit Batch Build dialog box .. 285

131: Tools menu .. 286

132: External Editor page with command line settings ... 287

133: Common Fonts page ... 288
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Figures
134: Key Bindings page .. 289

135: Messages page ... 290

136: Editor page .. 291

137: Configure Auto Indent dialog box .. 293

138: Editor Setup Files page ... 294

139: Editor Colors and Fonts page .. 295

140: Projects page ... 296

141: Debugger page .. 297

142: Register Filter page ... 298

143: Terminal I/O page ... 299

144: Source Code Control page .. 300

145: Stack page ... 301

146: Configure Tools dialog box .. 303

147: Customized Tools menu .. 305

148: Filename Extensions dialog box ... 305

149: Filename Extension Overrides dialog box .. 306

150: Edit Filename Extensions dialog box .. 306

151: Configure Viewers dialog box .. 307

152: Edit Viewer Extensions dialog box ... 307

153: Window menu ... 308

154: Embedded Workbench Startup dialog box ... 311

155: C-SPY debug toolbar .. 315

156: C-SPY Disassembly window .. 316

157: Disassembly window context menu .. 317

158: Memory window ... 318

159: Memory window context menu .. 319

160: Fill dialog box ... 320

161: Register window .. 321

162: Watch window .. 322

163: Watch window context menu .. 322

164: Locals window .. 323

165: Auto window ... 324

166: Live Watch window .. 324

167: Quick Watch window .. 325
U430-5

xxxi

xxx
168: Call Stack window .. 326

169: Call Stack window context menu .. 327

170: Terminal I/O window .. 328

171: Ctrl codes menu ... 328

172: Change Input Mode dialog box ... 328

173: Code Coverage window .. 329

174: Code coverage context menu .. 330

175: Profiling window ... 331

176: Profiling context menu .. 331

177: Stack window .. 333

178: Stack window context menu ... 335

179: LCD window ... 335

180: LCD Settings dialog box ... 336

181: Debug menu .. 337

182: Autostep settings dialog box ... 338

183: Macro Configuration dialog box ... 339

184: Log File dialog box ... 340

185: Terminal I/O Log File dialog box ... 341

186: Target options .. 343

187: Output options ... 345

188: Library Configuration options ... 346

189: Library Options page ... 347

190: Stack/Heap page .. 348

191: MISRA C general options ... 349

192: Compiler language options ... 351

193: Compiler code options .. 354

194: Compiler optimizations options .. 355

195: Compiler output options .. 356

196: Compiler list file options ... 358

197: Compiler preprocessor options ... 359

198: Compiler diagnostics options .. 361

199: MISRA C compiler options .. 362

200: Extra Options page for the compiler ... 363

201: Assembler language options ... 365
U430-5

ii
MSP430 IAR Embedded Workbench® IDE
User Guide

Figures
202: Choosing macro quote characters ... 366

203: Assembler output options .. 366

204: Assembler list file options ... 367

205: Assembler preprocessor options ... 369

206: Assembler diagnostics options .. 370

207: Extra Options page for the assembler ... 371

208: Custom tool options .. 373

209: Build actions options ... 375

210: XLINK output file options .. 377

211: XLINK extra output file options ... 380

212: XLINK defined symbols options .. 381

213: XLINK diagnostics options ... 382

214: XLINK list file options ... 384

215: XLINK config options .. 386

216: XLINK processing options ... 388

217: Extra Options page for the linker .. 390

218: XAR output options .. 392

219: Generic C-SPY options ... 393

220: Extra Options page for the C-SPY debugger .. 395

221: C-SPY plugin options ... 396
U430-5

xxxiii

xxx
U430-5

iv
MSP430 IAR Embedded Workbench® IDE
User Guide

Preface
Welcome to the MSP430 IAR Embedded Workbench® IDE User Guide. The
purpose of this guide is to help you fully utilize the features in MSP430 IAR
Embedded Workbench with its integrated Windows development tools for
the MSP430 microcontroller. The IAR Embedded Workbench IDE is a very
powerful Integrated Development Environment that allows you to develop and
manage a complete embedded application project.

The user guide includes product overviews and reference information, as well
as tutorials that will help you get started. It also describes the processes of
editing, project managing, building, and debugging.

Who should read this guide
You should read this guide if you want to get the most out of the features and tools
available in the IAR Embedded Workbench IDE. In addition, you should have a working
knowledge of:

● The C or C++ programming language
● Application development for embedded systems
● The architecture and instruction set of the MSP430 microcontroller (refer to the

chip manufacturer's documentation)
● The operating system of your host computer.

Refer to the MSP430 IAR C/C++ Compiler Reference Guide, MSP430 IAR Assembler
Reference Guide, and IAR Linker and Library Tools Reference Guide for more
information about the other development tools incorporated in the IAR Embedded
Workbench IDE.

How to use this guide
If you are new to using this product, we suggest that you start by reading Part 1. Product
overview to give you an overview of the tools and the functions that the IAR Embedded
Workbench IDE can offer.
U430-5

xxxv

xxx

What this guide contains
If you already have had some experience using IAR Embedded Workbench, but need
refreshing on how to work with the IAR development tools, Part 2. Tutorials is a good
place to begin. The process of managing projects and building, as well as editing, can
be found in Part 3. Project management and building, page 71, whereas information
about how to use the C-SPY® Debugger can be found in Part 4. Debugging, page 105.

If you are an experienced user and need this guide only for reference information, see
the reference chapters in Part 7. Reference information and the online help system
available from the IAR Embedded Workbench Help menu.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR Systems user and reference guides.

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

Part 1. Product overview

This section provides a general overview of all the IAR development tools so that you
can become familiar with them:

● Product introduction provides a brief summary and lists the features offered in each
of the IAR Systems development tools—IAR Embedded Workbench® IDE, IAR
C/C++ Compiler, IAR Assembler, IAR XLINK Linker, IAR XAR Library Builder,
IAR XLIB Librarian, and IAR C-SPY Debugger—for the MSP430 microcontroller.

● Installed files describes the directory structure and the types of files it contains. The
chapter also includes an overview of the documentation supplied with the IAR
development tools.

Part 2. Tutorials

The tutorials give you hands-on training in order to help you get started with using the
tools:

● Creating an application project guides you through setting up a new project,
compiling your application, examining the list file, and linking your application.
The tutorial demonstrates a typical development cycle, which is continued with
debugging in the next chapter.

● Debugging using the IAR C-SPY® Debugger explores the basic facilities of the
debugger.

● Mixing C and assembler modules demonstrates how you can easily combine source
modules written in C with assembler modules. The chapter also demonstrates how
the compiler can be used for examining the calling convention.
U430-5

vi
MSP430 IAR Embedded Workbench® IDE
User Guide

Preface
● Using C++ shows how to create a C++ class, which creates two independent
objects. The application is then built and debugged.

● Simulating an interrupt shows how you can add an interrupt handler to the project
and how this interrupt can be simulated using C-SPY facilities for simulated
interrupts, breakpoints, and macros.

● Working with library modules demonstrates how to create library modules.

Part 3. Project management and building

This section describes the process of editing and building your application:

● The development environment introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for
customizing the environment to meet your requirements.

● Managing projects describes how you can create workspaces with multiple projects,
build configurations, groups, source files, and options that helps you handle
different versions of your applications.

● Building discusses the process of building your application.
● Editing contains detailed descriptions about the IAR Embedded Workbench editor,

how to use it, and the facilities related to its usage. The final section also contains
information about how to integrate an external editor of your choice.

Part 4. Debugging

This section gives conceptual information about C-SPY functionality and how to use it:

● The IAR C-SPY® Debugger introduces some of the concepts that are related to
debugging in general and to the IAR C-SPY Debugger in particular. It also
introduces you to the C-SPY environment and how to setup, start, and configure
C-SPY to reflect the target hardware.

● Executing your application describes how you initialize the IAR C-SPY Debugger,
the conceptual differences between source and disassembly mode debugging, the
facilities for executing your application, and finally, how you can handle terminal
input and output.

● Working with variables and expressions defines the syntax of the expressions and
variables used in C-SPY, as well as the limitations on variable information. The
chapter also demonstrates the different methods for monitoring variables and
expressions.

● Using breakpoints describes the breakpoint system and the different ways to define
breakpoints.

● Monitoring memory and registers shows how you can examine memory and
registers.

● Using the C-SPY® macro system describes the C-SPY macro system, its features,
for what purposes these features can be used, and how to use them.

● Analyzing your application presents facilities for analyzing your application.
U430-5

xxxvii

xxx

What this guide contains
Part 5. IAR C-SPY Simulator

● Simulator-specific debugging describes the functionality specific to the simulator.
● Simulating interrupts contains detailed information about the C-SPY interrupt

simulation system and how to configure the simulated interrupts to make them
reflect the interrupts of your target hardware.

Part 6. IAR C-SPY® FET debugger

● Introduction to the IAR C-SPY® FET Debugger introduces you to the C-SPY
Emulator Debugger. The chapter briefly shows the difference in functionality
provided by the different debugger systems.

● C-SPY® FET-specific debugging describes the additional options, menus, and
features provided by the C-SPY FET driver.

● Design considerations for in-circuit programming describes the design
considerations related to the bootstrap loader, device signals, and external power if
you want to use C-SPY with your own hardware.

Part 7. Reference information

● IAR Embedded Workbench® IDE reference contains detailed reference information
about the development environment, such as details about the graphical user
interface.

● C-SPY® Debugger reference provides detailed reference information about the
graphical user interface of the IAR C-SPY Debugger.

● General options specifies the target, output, library, heap, stack, and MISRA C
options.

● Compiler options specifies compiler options for language, code, output, list file,
preprocessor, diagnostics, and MISRA C.

● Assembler options describes the assembler options for language, output, list,
preprocessor, and diagnostics.

● Custom build options describes the options available for custom tool configuration.
● Build actions options describes the options available for pre-build and post-build

actions.
● Linker options describes the XLINK options for output, defining symbols,

diagnostics, list generation, setting up the include paths, input, and processing.
● Library builder options describes the XAR options available in the Embedded

Workbench.
● Debugger options gives reference information about generic C-SPY options.
● C-SPY® macros reference gives reference information about C-SPY macros, such

as a syntax description of the macro language, summaries of the available setup
macro functions, and pre-defined system macros. Finally, a description of each
system macro is provided.
U430-5

vii
MSP430 IAR Embedded Workbench® IDE
User Guide

Preface
Glossary

The glossary contains definitions of programming terms.

Other documentation
The complete set of IAR development tools for the MSP430 microcontroller are
described in a series of guides. For information about:

● Programming for the MSP430 IAR C/C++ Compiler, refer to the MSP430 IAR
C/C++ Compiler Reference Guide

● Programming for the MSP430 IAR Assembler, refer to the MSP430 IAR Assembler
Reference Guide

● Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the IAR Linker and Library Tools Reference Guide

● Using the IAR DLIB Library, refer to the DLIB Library Reference information,
available in the MSP430 IAR Embedded Workbench IDE online help system.

● Using the IAR CLIB Library, refer to the IAR C Library Functions Reference
Guide, available in the MSP430 IAR Embedded Workbench IDE online help
system.

● Porting application code and projects created with a previous version of the
MSP430 IAR Embedded Workbench IDE, refer to the MSP430 IAR Embedded
Workbench Migration Guide.

● Developing safety-critical applications using the MISRA C guidelines, refer to the
IAR Embedded Workbench® MISRA C Reference Guide.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books. Note that additional
documentation might be available on the Help menu depending on your product
installation.

Recommended web sites:

● The Texas Instruments web site, www.ti.com, contains information and news about
the MSP430 microcontrollers.

● The IAR Systems web site, www.iar.com, holds application notes and other
product information.

● Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, contains information about the Embedded C++
standard.
U430-5

xxxix

xl

Document conventions
Document conventions
This book uses the following typographic conventions:

Style Used for

computer Text that you type or that appears on the screen.

parameter A label representing the actual value you should type as part of a
command.

[option] An optional part of a command.

{option} A mandatory part of a command.

a|b|c Alternatives in a command.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

reference A cross-reference within this guide or to another guide.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Table 1: Typographic conventions used in this guide
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Part 1. Product overview
This part of the MSP430 IAR Embedded Workbench® IDE User Guide
includes the following chapters:

● Product introduction

● Installed files.
U430-5

1

2

U430-5

Product introduction
The IAR Embedded Workbench® IDE is a very powerful Integrated
Development Environment, that allows you to develop and manage complete
embedded application projects. It is a development platform, with all the
features you would expect to find in your everyday working place.

This chapter describes the IAR Embedded Workbench IDE and provides a
general overview of all the tools that are integrated in this product.

The IAR Embedded Workbench IDE
The IAR Embedded Workbench IDE is the framework where all necessary tools are
seamlessly integrated:

● The highly optimizing MSP430 IAR C/C++ Compiler
● The MSP430 IAR Assembler
● The versatile IAR XLINK Linker
● The IAR XAR Library Builder and the IAR XLIB Librarian
● A powerful editor
● A project manager
● A command line build utility
● IAR C-SPY® debugger, a state-of-the-art high-level language debugger.

IAR Embedded Workbench is available for a large number of microprocessors and
microcontrollers in the 8-, 16-, and 32-bit segments, allowing you to stay within a
well-known development environment also for your next project. It provides an
easy-to-learn and highly efficient development environment with maximum code
inheritance capabilities, comprehensive and specific target support. IAR Embedded
Workbench promotes a useful working methodology, and thus a significant reduction of
the development time can be achieved by using the IAR Systems tools. We call this
concept “Different Architectures. One Solution.”

If you want detailed information about supported target processors, contact your
software distributor or your IAR representative, or visit the IAR Systems web site
www.iar.com for information about recent product releases.
U430-5

Part 1. Product overview 3

4

The IAR Embedded Workbench IDE
AN EXTENSIBLE AND MODULAR ENVIRONMENT

Although the IAR Embedded Workbench IDE provides all the features required for a
successful project, we also recognize the need to integrate other tools. Therefore the IAR
Embedded Workbench IDE can be easily adapted to work with your favorite editor and
source code control system. The IAR XLINK Linker can produce a large number of
output formats, allowing for debugging on most third-party emulators. Support for
RTOS-aware debugging can also be added to the product.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

FEATURES

The IAR Embedded Workbench IDE is a flexible integrated development environment,
allowing you to develop applications for a variety of different target processors. It
provides a convenient Windows interface for rapid development and debugging.

Project management

The IAR Embedded Workbench IDE comes with functions that will help you to stay in
control of all project modules, for example, C or C++ source code files, assembler files,
include files, and other related modules. You create workspaces and let them contain one
or several projects. Files can be grouped, and options can be set on all levels—project,
group, or file. Changes are tracked so that a request for rebuild will retranslate all
required modules, making sure that no executable files contain out-of-date modules. The
following list shows some additional features:

● Project templates to create a project that can be built and executed out of the box for
a smooth development startup

● Hierarchical project representation
● Source browser with an hierarchical symbol presentation
● Options can be set globally, on groups of source files, or on individual source files
● The Make utility recompiles, reassembles, and links files only when necessary
● Text-based project files
● Custom Build utility to expand the standard tool chain in an easy way
● Command line build with the project file as input.

Source code control

Source code control (SCC)—or revision control—is useful for keeping track of different
versions of your source code. IAR Embedded Workbench can identify and access any
third-party source code control system that conforms to the SCC interface published by
Microsoft.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Product introduction
Window management

To give you full and convenient control of the placement of the windows, each window
is dockable and you can optionally organize the windows in tab groups. The system of
dockable windows also provides a space-saving way to keep many windows open at the
same time. It also makes it easy to rearrange the size of the windows.

The text editor

The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor, including unlimited undo/redo and
automatic completion. In addition, it provides functions specific to software
development, like coloring of keywords (C/C++, assembler, and user-defined), block
indent, and function navigation within source files. It also recognizes C language
elements like matching brackets. The following list shows some additional features:

● Context-sensitive help system that can display reference information for DLIB
library functions

● Syntax of C or C++ programs and assembler directives shown using text styles and
colors

● Powerful search and replace commands, including multi-file search
● Direct jump to context from error listing
● Multibyte character support
● Parenthesis matching
● Automatic indentation
● Bookmarks
● Unlimited undo and redo for each window.

DOCUMENTATION

The MSP430 IAR Embedded Workbench IDE is documented in the MSP430 IAR
Embedded Workbench® IDE User Guide (this guide). There is also help and hypertext
PDF versions of the user documentation available online.

IAR C-SPY Debugger
The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the IAR Systems compilers and assemblers, and
it is completely integrated in the IAR Embedded Workbench IDE, providing seamless
switching between development and debugging. This will give you possibilities such as:

● Editing while debugging. During a debug session, corrections can be made directly
into the same source code window that is used to control the debugging. Changes
will be included in the next project rebuild.
U430-5

Part 1. Product overview 5

6

IAR C-SPY Debugger
● Setting source code breakpoints before starting the debugger. Breakpoints in source
code will be associated with the same piece of source code even if additional code is
inserted.

The IAR C-SPY Debugger consists both of a general part which provides a basic set of
C-SPY features, and of a driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides a user
interface—special menus, windows, and dialog boxes—to the functions provided by the
target system, for instance, special breakpoints.

Contact your software distributor or IAR Systems representative for information about
available C-SPY drivers. You can also find information on the IAR website,
www.iar.com.

Depending on your product installation, IAR C-SPY Debugger is available with a
simulator driver and optional drivers for hardware debugger systems.

For a brief overview of the available C-SPY drivers, see IAR C-SPY Debugger systems,
page 8.

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire tool chain, the output provided by the compiler
and linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you. The IAR C-SPY Debugger offers the general features
described in this section.

Source and disassembly level debugging

The IAR C-SPY Debugger allows you to switch between source and disassembly
debugging as required, for both C or C++ and assembler source code.

Debugging the C or C++ source code provides the quickest and easiest way of verifying
the program logic of your application whereas disassembly debugging lets you focus on
the critical sections of your application, and provides you with precise control over the
hardware. In Mixed-Mode display, the debugger also displays the corresponding C/C++
source code interleaved with the disassembly listing.

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function calls—inside
expressions, as well as function calls being part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging C++
code, where numerous extra function calls are made, for example to object constructors.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Product introduction
The debug information also presents inlined functions as if a call was made, making the
source code of the inlined function available.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest. You
can set a code breakpoint to investigate whether your program logic is correct. You can
also set a data breakpoint, to investigate how and when the data changes. Finally, you
can add conditions and connect actions to your breakpoints.

Monitoring variables and expressions

When you work with variables and expressions you are presented with a wide choice of
facilities. Any variable and expression can be evaluated in one-shot views. You can
easily both monitor and log values of a defined set of expressions during a longer period
of time. You have instant control over local variables, and real-time data is displayed
non-intrusively. Finally, the last referred variables are displayed automatically.

Container awareness

When you run your application in the IAR C-SPY Debugger, you can view the elements
of library data types such as STL lists and vectors. This gives you a very good overview
and premium debugging opportunities when you work with C++ STL containers.

Call stack information

The MSP430 IAR C/C++ Compiler generates extensive call stack information. This
allows C-SPY to show, without any runtime penalty, the complete stack of function calls
wherever the program counter is. You can select any function in the call stack, and for
each function you get valid information for local variables and registers available.

Powerful macro system

The IAR C-SPY Debugger includes a powerful internal macro system, to allow you to
define complex sets of actions to be performed. C-SPY macros can be used solely or in
conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY Debugger features

This list shows some additional features:

● A modular and extensible architecture allowing third-party extensions to the
debugger, for example, real-time operating systems, peripheral simulation modules,
and emulator drivers
U430-5

Part 1. Product overview 7

8

IAR C-SPY Debugger systems
● Threaded execution keeps the IDE responsive while running the target application
● Automatic stepping
● Source browser provides easy navigation to functions, types and variables
● Extensive type recognition of variables
● Configurable registers (CPU and peripherals) and memory windows
● Dedicated Stack window
● Support for code coverage and function level profiling
● Optional terminal I/O emulation
● UBROF, Intel-extended, and Motorola input formats supported.

RTOS AWARENESS

The IAR C-SPY Debugger supports Real-time OS awareness debugging.

RTOS plugin modules can be provided by IAR, as well as by third-party suppliers.
Contact your software distributor or IAR representative, alternatively visit the IAR
Systems web site, for information about supported RTOS modules.

DOCUMENTATION

The IAR C-SPY Debugger is documented in the MSP430 IAR Embedded Workbench®
IDE User Guide (this guide). Generic debugger features are described in Part 4.
Debugging, whereas features specific to each debugger driver are described in Part 5.
IAR C-SPY Simulator, and Part 6. IAR C-SPY® FET debugger. There are also help and
hypertext PDF versions of the documentation available online.

IAR C-SPY Debugger systems
At the time of writing this guide, the IAR C-SPY Debugger for the MSP430
microcontroller is available with drivers for the following target systems:

● Simulator
● FET Debugger

Contact your software distributor or IAR representative for information about available
C-SPY drivers. You can also find information on the IAR Systems web site,
www.iar.com.

For further details about the concepts that are related to the IAR C-SPY Debugger, see
Debugger concepts, page 107. In the following sections you can find general
descriptions of the different drivers.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Product introduction
IAR C-SPY SIMULATOR

The C-SPY simulator driver simulates the functions of the target processor entirely in
software. With this driver, the program logic can be debugged long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

Features

In addition to the general features of the C-SPY Debugger the simulator driver also
provides:

● Instruction-level simulation
● Memory configuration and validation
● Interrupt simulation
● Peripheral simulation, using the C-SPY macro system in conjunction with

immediate breakpoints.

For additional information about the IAR C-SPY Simulator, refer to Part 5. IAR C-SPY
Simulator in this guide.

IAR C-SPY FET DEBUGGER

The IAR C-SPY Flash Emulation Tool Debugger is a JTAG debugger that supports all
Texas Instruments’ boards. It provides automatic flash download and takes advantage of
on-chip debug facilities.

The IAR C-SPY FET Debugger provides real-time debugging at a low cost.

Features

In addition to the general features of the IAR C-SPY Debugger, the FET Debugger
driver also provides:

● Execution in real time with full access to the microcontroller
● High-speed communication through a JTAG interface
● Zero memory footprint on target system
● Hardware breakpoints for both code and data
● Built-in flash downloader.

On devices with the Enhanced Emulation Module (EEM), you have access also to:

● State storage
● Sequencer
● Clock control

Note: Code coverage and live watch are not supported by the C-SPY FET Debugger.
Trace and data breakpoints are available if the device has support for it.
U430-5

Part 1. Product overview 9

10

IAR C/C++ Compiler
For additional information about the IAR C-SPY Emulator, refer to Part 6. IAR C-SPY®
FET debugger in this guide.

IAR C/C++ Compiler
The MSP430 IAR C/C++ Compiler is a state-of-the-art compiler that offers the standard
features of the C or C++ languages, plus many extensions designed to take advantage of
the MSP430-specific facilities.

The compiler is integrated with other IAR Systems software in the IAR Embedded
Workbench IDE.

FEATURES

The MSP430 IAR C/C++ Compiler provides the following features:

Code generation

● Generic and MSP430-specific optimization techniques produce very efficient
machine code

● Comprehensive output options, including relocatable object code, assembler source
code, and list files with optional assembler mnemonics

● The object code can be linked together with assembler routines
● Generation of extensive debug information.

Language facilities

● Support for the C and C++ programming languages
● Support for IAR Extended EC++ with features such as full template support,

namespace support, the cast operators static_cast, const_cast, and
reinterpret_cast, as well as the Standard Template Library (STL)

● Placement of classes in different memory types
● Conformance to the ISO/ANSI C standard for a free-standing environment
● Target-specific language extensions, such as special function types, extended

keywords, pragma directives, predefined symbols, intrinsic functions, absolute
allocation, and inline assembler

● Standard library of functions applicable to embedded systems
● IEEE-compatible floating-point arithmetic
● Interrupt functions can be written in C or C++.

Type checking

● Extensive type checking at compile time
● External references are type checked at link time
● Link-time inter-module consistency checking of the application.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Product introduction
RUNTIME ENVIRONMENT

The MSP430 IAR Embedded Workbench provides two sets of runtime libraries:

● The IAR DLIB Library, which supports ISO/ANSI C and C++. This library also
supports floating-point numbers in IEEE 754 format, multi-byte characters, and
locales.

● The IAR CLIB Library is a light-weight library, which is not fully compliant with
ISO/ANSI C. Neither does it fully support floating-point numbers in IEEE 754
format or C++.

There are several mechanisms available for customizing the runtime environment and
the runtime libraries. For both sets of runtime libraries, library source code is included.

DOCUMENTATION

The MSP430 IAR C/C++ Compiler is documented in the MSP430 IAR C/C++
Compiler Reference Guide.

IAR Assembler
The MSP430 IAR Assembler is integrated with other IAR Systems software for the
MSP430 microcontroller. It is a powerful relocating macro assembler (supporting the
Intel/Motorola style) with a versatile set of directives and expression operators. The
assembler features a built-in C language preprocessor and supports conditional
assembly.

The MSP430 IAR Assembler uses the same mnemonics and operand syntax as the Texas
Instruments MSP430 Assembler, which simplifies the migration of existing code. For
detailed information, see the MSP430 IAR Assembler Reference Guide.

FEATURES

The MSP430 IAR Assembler provides the following features:

● C preprocessor
● List file with extensive cross-reference output
● Number of symbols and program size limited only by available memory
● Support for complex expressions with external references
● Up to 65536 relocatable segments per module
● 255 significant characters in symbol names.

DOCUMENTATION

The MSP430 IAR Assembler is documented in the MSP430 IAR Assembler Reference
Guide.
U430-5

Part 1. Product overview 11

12

IAR XLINK Linker
IAR XLINK Linker
The IAR XLINK Linker links one or more relocatable object files produced by the
MSP430 IAR Assembler or MSP430 IAR C/C++ Compiler to produce machine code
for the MSP430 microcontroller. It is equally well suited for linking small, single-file,
absolute assembler applications as for linking large, relocatable, multi-module, C/C++,
or mixed C/C++ and assembler applications.

It can generate one out of more than 30 industry-standard loader formats, in addition to
the IAR Systems proprietary debug format used by the IAR C-SPY Debugger—UBROF
(Universal Binary Relocatable Object Format). An application can be made up of any
number of UBROF relocatable files, in any combination of assembler and C or C++
applications.

The final output produced by the IAR XLINK Linker is an absolute, target-executable
object file that can be downloaded to the MSP430 microcontroller or to a hardware
emulator. Optionally, the output file might or might not contain debug information
depending on the output format you choose.

The IAR XLINK Linker supports user libraries, and will load only those modules that
are actually needed by the application you are linking. Before linking, the IAR XLINK
Linker performs a full C-level type checking across all modules as well as a full
dependency resolution of all symbols in all input files, independent of input order. It also
checks for consistent compiler settings for all modules and makes sure that the correct
version and variant of the C or C++ runtime library is used.

FEATURES

● Full inter-module type checking
● Simple override of library modules
● Flexible segment commands allow detailed control of code and data placement
● Link-time symbol definition enables flexible configuration control
● Optional code checksum generation for runtime checking
● Removes unused code and data.

DOCUMENTATION

The IAR XLINK Linker is documented in the IAR Linker and Library Tools Reference
Guide.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Product introduction
IAR XAR Library Builder and IAR XLIB Librarian
A library is a single file that contains a number of relocatable object modules, each of
which can be loaded independently from other modules in the file as it is needed. The
IAR XAR Library Builder assists you to build libraries easily. In addition the IAR XLIB
Librarian enables you to manipulate the relocatable library object files produced by the
IAR Systems assembler and compiler.

A library file is no different from any other relocatable object file produced by the
assembler or compiler, except that it includes a number of modules of the LIBRARY
type. All C or C++ applications make use of libraries, and the MSP430 IAR C/C++
Compiler is supplied with a number of standard library files.

FEATURES

The IAR XAR Library Builder and IAR XLIB Librarian both provide the following
features:

● Modules can be combined into a library file
● Interactive or batch mode operation.

The IAR XLIB Librarian provides the following additional features:

● Modules can be listed, added, inserted, replaced, or removed
● Modules can be changed between program and library type
● Segments can be listed
● Symbols can be listed.

DOCUMENTATION

The IAR XLIB Librarian and the IAR XAR Library Builder are documented in the IAR
Linker and Library Tools Reference Guide, a PDF document available from the IAR
Embedded Workbench IDE Help menu.
U430-5

Part 1. Product overview 13

14

IAR XAR Library Builder and IAR XLIB Librarian
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Installed files
This chapter describes which directories are created during installation and
what file types are used. At the end of the chapter, there is a section that
describes what information you can find in the various guides and online
documentation.

Refer to the QuickStart Card and the Installation and Licensing Guide, which are
delivered with the product, for system requirements and information about
how to install and register the IAR Systems products.

Directory structure
The installation procedure creates several directories to contain the different types of
files used with the IAR Systems development tools. The following sections give a
description of the files contained by default in each directory.

ROOT DIRECTORY

The root directory created by the default installation procedure is the
x:\Program Files\IAR Systems\Embedded Workbench 4.n\ directory where x
is the drive where Microsoft Windows is installed and 4.n is the version number of the
IAR Embedded Workbench IDE.

Figure 1: Directory structure
U430-5

Part 1. Product overview 15

16

Directory structure
Note: The installation path can be different from the one shown above depending on
previously installed IAR products, and on your preferences.

THE 430 DIRECTORY

The 430 directory contains all product-specific subdirectories.

The 430\bin directory

The 430\bin subdirectory contains executable files for MSP430-specific components,
such as the MSP430 IAR C/C++ Compiler, the MSP430 IAR Assembler, and the
MSP430 IAR C-SPY® drivers.

The 430\config directory

The 430\config subdirectory contains files used for configuring the development
environment and projects, for example:

● Linker command files (*.xcl)
● Special function register description files (*.sfr)
● The C-SPY device description files (*.ddf)
● Syntax coloring configuration files (*.cfg)
● Project templates for both application and library projects (*.ewp), and for the

library projects, the corresponding library configuration files.

The 430\doc directory

The 430\doc subdirectory contains release notes with recent additional information
about the MSP430 tools. We recommend that you read all of these files. The directory
also contains online hypertext versions in hypertext PDF format of this user guide, and
of the MSP430 reference guides, as well as online help files (CHM format).

The 430\drivers directory

The 430\drivers directory contains hardware debugger drivers.

The 430\FET_examples directory

The 430\FET_examples directory contains FET debugger example files.

The 430\inc directory

The 430\inc subdirectory holds include files, such as the header files for the standard
C or C++ library. There are also specific header files defining special function registers
(SFRs); these files are used by both the compiler and the assembler.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Installed files
The 430\lib directory

The 430\lib subdirectory holds prebuilt libraries and the corresponding library
configuration files, used by the compiler.

The 430\plugins directory

The 430\plugins subdirectory contains executable files and description files for
components that can be loaded as plugin modules.

The 430\src directory

The 430\src subdirectory holds source files for some configurable library functions,
and application code examples. This directory also holds the library source code.

The 430\tutor directory

The 430\tutor subdirectory contains the files used for the tutorials in this guide.

THE COMMON DIRECTORY

The common directory contains subdirectories for components shared by all IAR
Embedded Workbench products.

The common\bin directory

The common\bin subdirectory contains executable files for components common to all
IAR Embedded Workbench products, such as the IAR XLINK Linker, the IAR XLIB
Librarian, the IAR XAR Library Builder, the editor and the graphical user interface
components. The executable file for the IAR Embedded Workbench IDE is also located
here.

The common\config directory

The common\config subdirectory contains files used by IAR Embedded Workbench
for holding settings in the development environment.

The common\doc directory

The common\doc subdirectory contains readme files with recent additional information
about the components common to all IAR Embedded Workbench products, such as the
linker and library tools. We recommend that you read these files. The directory also
contains an online version in PDF format of the IAR Linker and Library Tools Reference
Guide.
U430-5

Part 1. Product overview 17

18

File types
The common\plugins directory

The common\plugins subdirectory contains executable files and description files for
components that can be loaded as plugin modules.

The common\src directory

The common\src subdirectory contains source files for components common to all IAR
Embedded Workbench products, such as a sample reader of the IAR XLINK Linker
output format SIMPLE.

File types
The MSP430 versions of the IAR Systems development tools use the following default
filename extensions to identify the IAR-specific file types:

Ext. Type of file Output from Input to

a43 Target application XLINK EPROM, C-SPY, etc.

asm Assembler source code Text editor Assembler

c C source code Text editor Compiler

cfg Syntax coloring configuration Text editor IAR Embedded
Workbench

cpp Embedded C++ source code Text editor Compiler

d43 Target application with debug information XLINK C-SPY and other symbolic
debuggers

dbg Target application with debug information XLINK C-SPY and other symbolic
debuggers

dbgt Debugger desktop settings C-SPY C-SPY

ddf Device description file Text editor C-SPY

dep Dependency information IAR Embedded
Workbench

IAR Embedded
Workbench

dni Debugger initialization file C-SPY C-SPY

ewd Project settings for C-SPY IAR Embedded
Workbench

IAR Embedded
Workbench

ewp IAR Embedded Workbench project
(current version)

IAR Embedded
Workbench

IAR Embedded
Workbench

eww Workspace file IAR Embedded
Workbench

IAR Embedded
Workbench

Table 2: File types
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Installed files
You can override the default filename extension by including an explicit extension when
specifying a filename.

Files with the extensions ini and dni are created dynamically when you run the IAR
Embedded Workbench tools. These files, which contain information about your project
configuration and other settings, are located in a settings directory under your project
directory.

fmt Formatting information for the Locals and
Watch windows

IAR Embedded
Workbench

IAR Embedded
Workbench

h C/C++ or assembler header source Text editor Compiler or assembler
#include

i Preprocessed source Compiler Compiler

inc Assembler header source Text editor Assembler #include

lst List output Compiler and
assembler

–

mac C-SPY macro definition Text editor C-SPY

map List output XLINK –

pbd Source browse information IAR Embedded
Workbench

IAR Embedded
Workbench

pbi Source browse information IAR Embedded
Workbench

IAR Embedded
Workbench

pew IAR Embedded Workbench project (old
project format)

IAR Embedded
Workbench

IAR Embedded
Workbench

prj IAR Embedded Workbench project (old
project format)

IAR Embedded
Workbench

IAR Embedded
Workbench

r43 Object module Compiler and
assembler

XLINK, XAR, and XLIB

s43 MSP430 assembler source code Text editor MSP430 IAR Assembler

sfr Special function register definitions Text editor C-SPY

wsdt Workspace desktop settings IAR Embedded
Workbench

IAR Embedded
Workbench

xcl Extended command line Text editor Assembler, compiler,
XLINK

xlb Extended librarian batch command Text editor XLIB

Ext. Type of file Output from Input to

Table 2: File types (Continued)
U430-5

Part 1. Product overview 19

20

Documentation
Note: If you run the tools from the command line, the XLINK listings (map files) will
by default have the extension lst, which might overwrite the list file generated by the
compiler. Therefore, we recommend that you name XLINK map files explicitly, for
example project1.map.

Documentation
This section briefly describes the information that is available in the MSP430 user and
reference guides, in the online help, and on the Internet.

You can access the MSP430 online documentation from the Help menu in the IAR
Embedded Workbench IDE. Help is also available via the F1 key in the IAR Embedded
Workbench IDE.

We recommend that you read the file readme.htm for recent information that might not
be included in the user guides. It is located in the 430\doc directory.

THE USER AND REFERENCE GUIDES

The user and reference guides provided with IAR Embedded Workbench are as follows:

MSP430 IAR Embedded Workbench® IDE User Guide

This guide.

MSP430 IAR C/C++ Compiler Reference Guide

This guide provides reference information about the MSP430 IAR C/C++ Compiler.
You should refer to this guide for information about:

● How to configure the compiler to suit your target processor and application
requirements

● How to write efficient code for your target processor
● The assembler language interface and the calling convention
● The available data types
● The runtime libraries
● The IAR language extensions.

MSP430 IAR Assembler Reference Guide

This guide provides reference information about the MSP430 IAR Assembler, including
details of the assembler source format, and reference information about the assembler
operators, directives, mnemonics, and diagnostics.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Installed files
IAR Linker and Library Tools Reference Guide

This online PDF guide provides reference information about the IAR linker and library
tools:

● The IAR XLINK Linker reference sections provide information about XLINK
options, output formats, environment variables, and diagnostics.

● The IAR XAR Library Builder reference sections provide information about XAR
options and output.

● The IAR XLIB Librarian reference sections provide information about XLIB
commands, environment variables, and diagnostics.

DLIB Library Reference information

This online documentation in HTML format provides reference information about the
IAR DLIB library functions. It is available from the MSP430 IAR Embedded
Workbench® IDE online help system.

CLIB Library Reference Guide

This online guide in hypertext PDF format contains reference information about the IAR
CLIB Library. It is available from the MSP430 IAR Embedded Workbench® IDE online
help system.

IAR Embedded Workbench® MISRA C Reference Guide

This online guide in hypertext PDF format describes how IAR Systems has interpreted
and implemented the rules given in Guidelines for the Use of the C Language in Vehicle
Based Software to enforce measures for stricter safety in the ISO standard for the C
programming language [ISO/IEC 9899:1990].

ONLINE HELP

The context-sensitive online help contains reference information about the menus and
dialog boxes in the IAR Embedded Workbench IDE. There is also keyword reference
information for the DLIB library functions. To obtain reference information for a
function, select the function name in the editor window and press F1.

Note: If you select a function name in the editor window and press F1 while using the
CLIB library, you will get reference information for the DLIB library.

IAR ON THE WEB

The latest news from IAR Systems can be found at the web site www.iar.com, available
from the Help menu in the Embedded Workbench IDE. Visit it for information about:

● Product announcements
U430-5

Part 1. Product overview 21

http://www.iar.com

22

Documentation
● Updates and news about current versions
● Special offerings
● Evaluation copies of the IAR Systems products
● Technical Support, including technical notes
● Application notes
● Links to chip manufacturers and other interesting sites
● Distributors; the names and addresses of distributors in each country.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Part 2. Tutorials
This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

● Creating an application project

● Debugging using the IAR C-SPY® Debugger

● Mixing C and assembler modules

● Using C++

● Simulating an interrupt

● Working with library modules.
U430-5

23

24
U430-5

Creating an application
project
This chapter introduces you to the IAR Embedded Workbench® integrated
development environment (IDE). The tutorial demonstrates a typical
development cycle and shows how you use the compiler and the linker to
create a small application for the MSP430 microcontroller. For instance,
creating a workspace, setting up a project with C source files, and compiling
and linking your application.

The development cycle continues in the next chapter, see Debugging using the
IAR C-SPY® Debugger, page 37.

Setting up a new project
Using the IAR Embedded Workbench IDE, you can design advanced project models.
You create a workspace to which you add one or several projects. There are ready-made
project templates for both application and library projects. Each project can contain a
hierarchy of groups in which you collect your source files. For each project you can
define one or several build configurations. For more details about designing project
models, see the chapter Managing projects in this guide.

Because the application in this tutorial is a simple application with very few files, the
tutorial does not need an advanced project model.

We recommend that you create a specific directory where you can store all your project
files. In this tutorial we call the directory projects. You can find all the files needed
for the tutorials in the 430\tutor directory. Make a copy of the tutor directory in your
projects directory.

Before you can create your project you must first create a workspace.

CREATING A WORKSPACE WINDOW

The first step is to create a new workspace for the tutorial application. When you start
the IAR Embedded Workbench IDE for the first time, there is already a ready-made
workspace, which you can use for the tutorial projects. If you are using that workspace,
you can ignore the first step.
U430-5

Part 2. Tutorials 25

26

Setting up a new project
Choose File>New>Workspace. Now you are ready to create a project and add it to the
workspace.

CREATING THE NEW PROJECT

1 To create a new project, choose Project>Create New Project. The Create New
Project dialog box appears, which lets you base your new project on a project
template.

Figure 2: Create New Project dialog box

2 Make sure the Tool chain is set to MSP430, and click OK.

3 For this tutorial, select the project template Empty project, which simply creates an
empty project that uses default project settings.

4 In the standard Save As dialog box that appears, specify where you want to place your
project file, that is, in your newly created projects directory. Type project1 in the
File name box, and click Save to create the new project.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Creating an application project
The project will appear in the Workspace window.

Figure 3: Workspace window

By default two build configurations are created: Debug and Release. In this tutorial only
Debug will be used. You choose the build configuration from the drop-down menu at the
top of the window. The asterisk in the project name indicates that there are changes that
have not been saved.

A project file—with the filename extension ewp—will be created in the projects
directory, not immediately, but later on when you save the workspace. This file contains
information about your project-specific settings, such as build options.

5 Before you add any files to your project, you should save the workspace. Choose
File>Save Workspace and specify where you want to place your workspace file. In
this tutorial, you should place it in your newly created projects directory. Type
tutorials in the File name box, and click Save to create the new workspace.

Figure 4: New Workspace dialog box
U430-5

Part 2. Tutorials 27

28

Setting up a new project
A workspace file—with the filename extension eww—has now been created in the
projects directory. This file lists all projects that you will add to the workspace.
Information related to the current session, such as the placement of windows and
breakpoints is located in the files created in the projects\settings directory.

ADDING FILES TO THE PROJECT

This tutorial uses the source files Tutor.c and Utilities.c.

● The Tutor.c application is a simple program using only standard features of the C
language. It initializes an array with the ten first Fibonacci numbers and prints the
result to stdout.

● The Utilities.c application contains utility routines for the Fibonacci
calculations.

Creating several groups is a possibility for you to organize your source files logically
according to your project needs. However, because there are only two files in this project
there is no need for creating a group. For more information about how to create complex
project structures, see the chapter Managing projects.

1 In the Workspace window, select the destination to which you want to add a source file;
a group or, as in this case, directly to the project.

2 Choose Project>Add Files to open a standard browse dialog box. Locate the files
Tutor.c and Utilities.c, select them in the file selection list, and click Open to
add them to the project1 project.

Figure 5: Adding files to project1
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Creating an application project
SETTING PROJECT OPTIONS

Now you will set the project options. For application projects, options can be set on all
levels of nodes. First you will set the general options to suit the processor configuration
in this tutorial. Because these options must be the same for the whole build
configuration, they must be set on the project node.

1 Select the project folder icon project1 - Debug in the Workspace window and choose
Project>Options.

The Target options page in the General Options category is displayed.

Figure 6: Setting general options

Verify the following settings:

Then set up the compiler options for the project.

Page Setting

Target Device: msp430F149

Output Output file: Executable

Library Configuration Library: CLIB

Table 3: General settings for project1
U430-5

Part 2. Tutorials 29

30

Setting up a new project
2 Select C/C++ Compiler in the Category list to display the compiler option pages.

Figure 7: Setting compiler options

3 Verify the following settings:

4 Click OK to set the options you have specified.

Note: It is possible to customize the amount of information to be displayed in the Build
messages window. In this tutorial, the default setting is not used. Thus, the contents of
the Build messages window on your screen might differ from the screen shots.

The project is now ready to be built.

Page Setting

Optimizations Optimizations, Size: None (Best debug support)

Output Generate debug information

List Output list file
Assembler mnemonics

Table 4: Compiler options for project1
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Creating an application project
Compiling and linking the application
You can now compile and link the application. You should also create a compiler list file
and a linker map file and view both of them.

COMPILING THE SOURCE FILES

1 To compile the file Utilities.c, select it in the Workspace window.

2 Choose Project>Compile.

Alternatively, click the Compile button in the toolbar or choose the Compile command
from the context menu that appears when you right-click on the selected file in the
Workspace window.

The progress will be displayed in the Build messages window.

Figure 8: Compilation message

3 Compile the file Tutor.c in the same manner.

The IAR Embedded Workbench IDE has now created new directories in your project
directory. Because you are using the build configuration Debug, a Debug directory has
been created containing the directories List, Obj, and Exe:

● The List directory is the destination directory for the list files. The list files have
the extension lst.

● The Obj directory is the destination directory for the object files from the compiler
and the assembler. These files have the extension r43 and will be used as input to
the IAR XLINK Linker.

● The Exe directory is the destination directory for the executable file. It has the
extension d43 and will be used as input to the IAR C-SPY® Debugger. Note that
this directory will be empty until you have linked the object files.
U430-5

Part 2. Tutorials 31

32

Compiling and linking the application
Click on the plus signs in the Workspace window to expand the view. As you can see,
IAR Embedded Workbench has also created an output folder icon in the Workspace
window containing any generated output files. All included header files are displayed as
well, showing the dependencies between the files.

Figure 9: Workspace window after compilation

VIEWING THE LIST FILE

Now examine the compiler list file and notice how it is automatically updated when you,
as in this case, will investigate how different optimization levels affect the generated
code size.

1 Open the list file Utilities.lst by double-clicking it in the Workspace window.
Examine the list file, which contains the following information:

● The header shows the product version, information about when the file was created,
and the command line version of the compiler options that were used

● The body of the list file shows the assembler code and binary code generated for
each statement. It also shows how the variables are assigned to different segments

● The end of the list file shows the amount of stack, code, and data memory required,
and contains information about error and warning messages that might have been
generated.

Notice the amount of generated code at the end of the file and keep the file open.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Creating an application project
2 Choose Tools>Options to open the IDE Options dialog box and click the Editor tab.
Select the option Scan for Changed Files. This option turns on the automatic update
of any file open in an editor window, such as a list file. Click the OK button.

Figure 10: Setting the option Scan for Changed Files

3 Select the file Utilities.c in the Workspace window. Open the C/C++ Compiler
options dialog box by right-clicking on the selected file in the Workspace window.
Click the Optimizations tab and select the Override inherited settings option.
Choose High from the Optimizations drop-down list. Click OK.

Notice that the options override on the file node is indicated in the Workspace window.

4 Compile the file Utilities.c. Now you will notice two things. First, note the
automatic updating of the open list file due to the selected option Scan for Changed
Files. Second, look at the end of the list file and notice the effect on the code size due
to the increased optimization.

5 For this tutorial, the optimization level None should be used, so before linking the
application, restore the default optimization level. Open the C/C++ Compiler options
dialog box by right-clicking on the selected file in the Workspace window. Deselect the
Override inherited settings option and click OK. Recompile the file Utilities.c.
U430-5

Part 2. Tutorials 33

34

Compiling and linking the application
LINKING THE APPLICATION

Now you should set up the options for the IAR XLINK Linker.

1 Select the project folder icon project1 - Debug in the Workspace window and choose
Project>Options. Then select Linker in the Category list to display the XLINK
option pages.

Figure 11: XLINK options dialog box for project1

For this tutorial, default factory settings are used. However, pay attention to the choice
of output format and linker command file.

Output format

It is important to choose the output format that suits your purpose. You might want to
load it to a debugger—which means that you need output with debug information. In this
tutorial you will use the default output options suitable for the C-SPY
debugger—Debug information for C-SPY, With runtime control modules, and With
I/O emulation modules—which means that some low-level routines will be linked that
direct stdin and stdout to the Terminal I/O window in the C-SPY Debugger. You find
these options on the Output page.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Creating an application project
Alternatively, in your real application project, you might want to load the output to a
PROM programmer—in which case you need an output format without debug
information, such as Intel-hex or Motorola S-records.

Linker command file

In the linker command file, the XLINK command line options for segment control are
used for placing segments. It is important to be familiar with the linker command file
and placement of segments. You can read more about this in the MSP430 IAR C/C++
Compiler Reference Guide.

The linker command file templates supplied with the product can be used as is in the
simulator, but when using them for your target system you might have to adapt them to
your actual hardware memory layout. You can find supplied linker command files in the
config directory.

In this tutorial you will use the default linker command file, which you can see on the
Config page.

If you want to examine the linker command file, use a suitable text editor, such as the
IAR Embedded Workbench editor, or print a copy of the file, and verify that the
definitions match your requirements.

Linker map file

By default no linker map file is generated. To generate a linker map file, click the List
tab and select the options Generate linker listing, Segment map, and Module map.

2 Click OK to save the XLINK options.

Now you should link the object file, to generate code that can be debugged.

3 Choose Project>Make. The progress will as usual be displayed in the Build messages
window. The result of the linking is a code file project1.d43 with debug information
and a map file project1.map.

VIEWING THE MAP FILE

Examine the file project1.map to see how the segment definitions and code were
placed in memory. These are the main points of interest in a map file:

● The header includes the options used for linking.
● The CROSS REFERENCE section shows the address of the program entry.
● The RUNTIME MODEL section shows the runtime model attributes that are used.
● The MODULE MAP shows the files that are linked. For each file, information about the

modules that were loaded as part of your application, including segments and global
symbols declared within each segment, is displayed.
U430-5

Part 2. Tutorials 35

36

Compiling and linking the application
● The SEGMENTS IN ADDRESS ORDER section lists all the segments that constitute
your application.

The project1.d43 application is now ready to be run in the IAR C-SPY Debugger.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Debugging using the IAR
C-SPY® Debugger
This chapter continues the development cycle started in the previous chapter
and explores the basic features of the IAR C-SPY Debugger.

Note that, depending on what IAR product package you have installed, the IAR
C-SPY Debugger may or may not be included. The tutorials assume that you
are using the C-SPY Simulator.

Debugging the application
The project1.d43 application, created in the previous chapter, is now ready to be run
in the IAR C-SPY Debugger where you can watch variables, set breakpoints, view code
in disassembly mode, monitor registers and memory, and print the program output in the
Terminal I/O window.

STARTING THE DEBUGGER

Before starting the IAR C-SPY Debugger you must set a few C-SPY options.

1 Choose Project>Options and then the Debugger category. On the Setup page, make
sure that you have chosen Simulator from the Driver drop-down list and that Run to
main is selected. Click OK.

2 Choose Project>Debug. Alternatively, click the Debugger button in the toolbar. The
IAR C-SPY Debugger starts with the project1.d43 application loaded. In addition
to the windows already opened in the Embedded Workbench, a set of C-SPY-specific
windows are now available.

ORGANIZING THE WINDOWS

In the IAR Embedded Workbench IDE, you can dock windows at specific places, and
organize them in tab groups. You can also make a window floating, which means it is
always on top of other windows. If you change the size or position of a floating window,
other currently open windows are not affected.

The status bar, located at the bottom of the Embedded Workbench main window,
contains useful help about how to arrange windows. For further details, see Organizing
the windows on the screen, page 75.
U430-5

Part 2. Tutorials 37

38

Debugging the application
Make sure the following windows and window contents are open and visible on the
screen: the Workspace window with the active build configuration tutorials – project1,
the editor window with the source files Tutor.c and Utilities.c, and the Debug Log
window.

Figure 12: The C-SPY Debugger main window

INSPECTING SOURCE STATEMENTS

1 To inspect the source statements, double-click the file Tutor.c in the Workspace
window.

2 With the file Tutor.c displayed in the editor window, first step over with the
Debug>Step Over command.

Alternatively, click the Step Over button on the toolbar.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Debugging using the IAR C-SPY® Debugger
The current position should be the call to the init_fib function.

Figure 13: Stepping in C-SPY

3 Choose Debug>Step Into to step into the function init_fib.

Alternatively, click the Step Into button on the toolbar.

At source level, the Step Over and Step Into commands allow you to execute your
application a statement or instruction at a time. Step Into continues stepping inside
function or subroutine calls, whereas Step Over executes each function call in a single
step. For further details, see Step, page 118.

When Step Into is executed you will notice that the active window changes to
Utilities.c as the function init_fib is located in this file.
U430-5

Part 2. Tutorials 39

40

Debugging the application
4 Use the Step Into command until you reach the for loop.

Figure 14: Using Step Into in C-SPY

5 Use Step Over until you are back in the header of the for loop. You will notice that
the step points are on a function call level, not on a statement level.

You can also step on a statement level. Choose Debug>Next statement to execute one
statement at a time. Alternatively, click the Next statement button on the toolbar.

Notice how this command differs from the Step Over and the Step Into commands.

INSPECTING VARIABLES

C-SPY allows you to watch variables or expressions in the source code, so that you can
keep track of their values as you execute your application. You can look at a variable in
a number of ways; for example by pointing at it in the source window with the mouse
pointer, or by opening one of the Locals, Watch, Live Watch, or Auto windows. For
more information about inspecting variables, see the chapter Working with variables and
expressions.

Note: When optimization level None is used, all non-static variables will live during
their entire scope and thus, the variables are fully debuggable. When higher levels of
optimizations are used, variables might not be fully debuggable.

Using the Auto window

1 Choose View>Auto to open the Auto window.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Debugging using the IAR C-SPY® Debugger
The Auto window will show the current value of recently modified expressions.

Figure 15: Inspecting variables in the Auto window

2 Keep stepping to see how the values change.

Setting a watchpoint

Next you will use the Watch window to inspect variables.

3 Choose View>Watch to open the Watch window. Notice that it is by default grouped
together with the currently open Auto window; the windows are located as a tab group.

4 Set a watchpoint on the variable i using the following procedure: Click the dotted
rectangle in the Watch window. In the entry field that appears, type i and press the
Enter key.

You can also drag a variable from the editor window to the Watch window.

5 Select the root array in the init_fib function, then drag it to the Watch window.

The Watch window will show the current value of i and root. You can expand the root
array to watch it in more detail.

Figure 16: Watching variables in the Watch window
U430-5

Part 2. Tutorials 41

42

Debugging the application
6 Execute some more steps to see how the values of i and root change.

7 To remove a variable from the Watch window, select it and press Delete.

SETTING AND MONITORING BREAKPOINTS

The IAR C-SPY Debugger contains a powerful breakpoint system with many features.
For detailed information about the different breakpoints, see The breakpoint system,
page 129.

The most convenient way is usually to set breakpoints interactively, simply by
positioning the insertion point in or near a statement and then choosing the Toggle
Breakpoint command.

1 Set a breakpoint on the statement get_fib(i) using the following procedure: First,
click the Utilities.c tab in the editor window and click in the statement to position
the insertion point. Then choose Edit>Toggle Breakpoint.

Alternatively, click the Toggle Breakpoint button on the toolbar.

A breakpoint will be set at this statement. The statement will be highlighted and there
will be an X in the margin to show that there is a breakpoint there.

Figure 17: Setting breakpoints

To view all defined breakpoints, choose View>Breakpoints to open the Breakpoints
window. You can find information about the breakpoint execution in the Debug Log
window.

Executing up to a breakpoint

2 To execute your application until it reaches the breakpoint, choose Debug>Go.

Alternatively, click the Go button on the toolbar.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Debugging using the IAR C-SPY® Debugger
The application will execute up to the breakpoint you set. The Watch window will
display the value of the root expression and the Debug Log window will contain
information about the breakpoint.

3 Select the breakpoint and choose Edit>Toggle Breakpoint to remove the breakpoint.

DEBUGGING IN DISASSEMBLY MODE

Debugging with C-SPY is usually quicker and more straightforward in C/C++ source
mode. However, if you want to have full control over low-level routines, you can debug
in disassembly mode where each step corresponds to one assembler instruction. C-SPY
lets you switch freely between the two modes.

1 First reset your application by clicking the Reset button on the toolbar.

2 Choose View>Disassembly to open the Disassembly window, if it is not already
open.You will see the assembler code corresponding to the current C statement.

Figure 18: Debugging in disassembly mode

Try the different step commands also in the Disassembly window.
U430-5

Part 2. Tutorials 43

44

Debugging the application
MONITORING REGISTERS

The Register window lets you monitor and modify the contents of the processor
registers.

1 Choose View>Register to open the Register window.

Figure 19: Register window

2 Step Over to execute the next instructions, and watch how the values change in the
Register window.

3 Close the Register window.

MONITORING MEMORY

The Memory window lets you monitor selected areas of memory. In the following
example, the memory corresponding to the variable root will be monitored.

1 Choose View>Memory to open the Memory window.

2 Make the Utilities.c window active and select root. Then drag it from the C source
window to the Memory window.

The memory contents in the Memory window corresponding to root will be selected.

Figure 20: Monitoring memory
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Debugging using the IAR C-SPY® Debugger
3 To display the memory contents as 16-bit data units, choose the x2 Units command
from the drop-down arrow menu on the Memory window toolbar.

Figure 21: Displaying memory contents as 16-bit units

If not all of the memory units have been initialized by the init_fib function of the C
application yet, continue to step over and you will notice how the memory contents will
be updated.

You can change the memory contents by editing the values in the Memory window. Just
place the insertion point at the memory content that you want to edit and type the desired
value.

Close the Memory window.

VIEWING TERMINAL I/O

Sometimes you might need to debug constructions in your application that make use of
stdin and stdout without the possibility of having hardware support. C-SPY lets you
simulate stdin and stdout by using the Terminal I/O window.

Note: The Terminal I/O window is only available in C-SPY if you have linked your
project using the output option With I/O emulation modules. This means that some
low-level routines will be linked that direct stdin and stdout to the Terminal I/O
window, see Linking the application, page 34.
U430-5

Part 2. Tutorials 45

46

Debugging the application
1 Choose View>Terminal I/O to display the output from the I/O operations.

Figure 22: Output from the I/O operations

The contents of the window depends on how far you have executed the application.

REACHING PROGRAM EXIT

1 To complete the execution of your application, choose Debug>Go.

Alternatively, click the Go button on the toolbar.

As no more breakpoints are encountered, C-SPY reaches the end of the application and
a program exit reached message is printed in the Debug Log window.

Figure 23: Reaching program exit in C-SPY

All output from the application has now been displayed in the Terminal I/O window.

If you want to start again with the existing application, choose Debug>Reset, or click
the Reset button on the toolbar.

2 To exit from C-SPY, choose Debug>Stop Debugging. Alternatively, click the Stop
Debugging button on the toolbar. The Embedded Workbench workspace is displayed.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Debugging using the IAR C-SPY® Debugger
C-SPY also provides many other debugging facilities. Some of these—for example
macros and interrupt simulation—are described in the following tutorial chapters.

For further details about how to use C-SPY, see Part 4. Debugging. For reference
information about the features of C-SPY, see Part 7. Reference information and the
online help system.
U430-5

Part 2. Tutorials 47

48

Debugging the application
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Mixing C and assembler
modules
In some projects it may be necessary to write certain pieces of source code
in assembler language. The chapter first demonstrates how the compiler can
be helpful in examining the calling convention, which you need to be familiar
with when calling assembler modules from C/C++ modules or vice versa.
Furthermore, this chapter demonstrates how you can easily combine source
modules written in C with assembler modules, but the procedure is applicable
to projects containing source modules written in C++, too.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Examining the calling convention
When writing an assembler routine that will be called from a C routine, it is necessary
to be aware of the calling convention used by the compiler. By creating skeleton code in
C and letting the compiler produce an assembler output file from it, you can study the
produced assembler output file and find the details of the calling convention.

In this example you will make the compiler create an assembler output file from the file
Utilities.c.

1 Create a new project in the workspace tutorials used in previous tutorials, and name
the project project2.

2 Add the files Tutor.c and Utilities.c to the project.

To display an overview of the workspace, click the Overview tab available at the bottom
of the Workspace window. To view only the newly created project, click the project2
tab. For now, the project2 view should be visible.

3 To set options, choose Project>Options, and select the General Options category. On
the Target page, choose msp430F149 from the Device drop-down menu.

4 To set options on file level node, in the Workspace window, select the file
Utilities.c.

Choose Project>Options. You will notice that only the C/C++ Compiler and Custom
Build categories are available.
U430-5

Part 2. Tutorials 49

50

Adding an assembler module to the project
5 In the C/C++ Compiler category, select Override inherited settings and verify the
following settings:

Note: In this example it is necessary to use a low optimization level when compiling
the code to show local and global variable accesses. If a higher level of optimization is
used, the required references to local variables can be removed. The actual function
declaration is not changed by the optimization level.

6 Click OK and return to the Workspace window.

7 Compile the file Utilities.c. You can find the output file Utilities.s43 in the
subdirectory projects\debug\list.

8 To examine the calling convention and to see how the C or C++ code is represented in
assembler language, open the file Utilities.s43.

You can now study where and how parameters are passed, how to return to the program
location from where a function was called, and how to return a resulting value. You can
also see which registers an assembler-level routine must preserve.

To obtain the correct interface for your own application functions, you should create
skeleton code for each function that you need.

For more information about the calling convention used in the compiler, see the MSP430
IAR C/C++ Compiler Reference Guide.

Adding an assembler module to the project
This tutorial demonstrates how you can easily create a project containing both assembler
modules and C modules. You will also compile the project and view the assembler
output list file.

SETTING UP THE PROJECT

1 Modify project2 by removing the file Utilities.c and adding the file
Utilities.s43 instead..

Note: To view assembler files in the Add files dialog box, choose Project>Add Files
and choose Assembler Files from the Files of type drop-down list.

Page Option

Optimizations Size: None (Best debug support)

List Output assembler file
 Include source
 Include runtime information (deselected).

Table 5: Compiler options for project2
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Mixing C and assembler modules
2 Select the project level node in the Workspace window, choose Project>Options. Use
the default settings in the General Options, C/C++ Compiler, and Linker categories.
Select the Assembler category, click the List tab, and select the option Output list file.

Figure 24: Assembler settings for creating a list file

Click OK.

3 Select the file Utilities.s43 in the Workspace window and choose
Project>Compile to assemble it.

Assuming that the source file was assembled successfully, the file Utilities.r43 will
be created, containing the linkable object code.

Viewing the assembler list file

4 Open the list file by double-clicking the file Utilities.lst available in the Output
folder icon in the Workspace window.

The end of the file contains a summary of errors and warnings that were generated.

For further details of the list file format, see the MSP430 IAR Assembler Reference
Guide.

5 Choose Project>Make to relink project2.
U430-5

Part 2. Tutorials 51

52

Adding an assembler module to the project
6 Start C-SPY to run the project2.d43 application and see that it behaves like in the
previous tutorial.

7 Exit the debugger when you are done.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Using C++
In this chapter, C++ is used to create a C++ class. The class is then used for
creating two independent objects, and the application is built and debugged.
We also show an example of how to set a conditional breakpoint.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Note that, depending on what IAR product package you have installed,
support for C++ may or may not be included. This tutorial assumes that there
is support for C++.

Creating a C++ application
This tutorial will demonstrate how to use the MSP430 IAR Embedded Workbench C++
features. The tutorial consists of two files:

● Fibonacci.cpp creates a class fibonacci that can be used to extract a series of
Fibonacci numbers

● CPPtutor.cpp creates two objects, fib1 and fib2, from the class fibonacci
and extracts two sequences of Fibonacci numbers using the fibonacci class.

To demonstrate that the two objects are independent of each other, the numbers are
extracted at different speeds. A number is extracted from fib1 each turn in the loop
while a number is extracted from fib2 only every second turn.

The object fib1 is created using the default constructor while the definition of fib2
uses the constructor that takes an integer as its argument.

COMPILING AND LINKING THE C++ APPLICATION

1 In the workspace tutorials used in the previous chapters, create a new project,
project3.

2 Add the files Fibonacci.cpp and CPPtutor.cpp to project3.
U430-5

Part 2. Tutorials 53

54

Creating a C++ application
3 Choose Project>Options and make sure the following options are selected:

All you need to do to switch to the C++ programming language is to select the options
Normal DLIB (C/EC++ Library) and Embedded C++.

4 Choose Project>Make to compile and link your application.

Alternatively, click the Make button on the toolbar. The Make command compiles and
links those files that have been modified.

5 Choose Project>Debug to start the IAR C-SPY® Debugger.

SETTING A BREAKPOINT AND EXECUTING TO IT

1 Open the CPPtutor.cpp window if it is not already open.

2 To see how the object is constructed, set a breakpoint on the C++ object fib1 on the
following line:

fibonacci fib1;

Figure 25: Setting a breakpoint in CPPtutor.cpp

Category Page Option

General Options Target Device: msp430F149

Library Configuration Library: Normal DLIB

C/C++ Compiler Language Embedded C++

Table 6: Project options for Embedded C++ tutorial
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Using C++
3 Choose Debug>Go, or click the Go button on the toolbar.

The cursor should now be placed at the breakpoint.

4 To step into the constructor, choose Debug>Step Into or click the Step Into button in
the toolbar. Then click Step Out again.

5 Step Over until the line:

cout << fib1.next();

Step Into until you are in the function next in the file Fibonacci.cpp.

6 Use the Go to function button in the lower left corner of the editor window to find and
go to the function nth by double-clicking the function name. Set a breakpoint on the
function call nth(n-1)at the line

value = nth(n-1) + nth(n-2);

7 It can be interesting to backtrace the function calls a few levels down and to examine
the value of the parameter for each function call. By adding a condition to the
breakpoint, the break will not be triggered until the condition is true, and you will be
able to see each function call in the Call Stack window.

To open the Breakpoints window, choose View>Breakpoints. Select the breakpoint in
the Breakpoints window, right-click to open the context menu, and choose Edit to open
the Edit Breakpoints dialog box. Set the value in the Skip count text box to 4 and click
OK.

Close the dialog box.

Looking at the function calls

8 Choose Debug>Go to execute the application until the breakpoint condition is
fulfilled.

9 When C-SPY stops at the breakpoint, choose View>Call Stack to open the Call Stack
window.

Figure 26: Inspecting the function calls
U430-5

Part 2. Tutorials 55

56

Creating a C++ application
There are five instances of the function nth displayed on the call stack. Because the Call
Stack window displays the values of the function parameters, you can see the different
values of n in the different function instances.

You can also open the Register window to see how it is updated as you trace the function
calls by double-clicking on the function instances.

PRINTING THE FIBONACCI NUMBERS

1 Open the Terminal I/O window from the View menu.

2 Remove the breakpoints and run the application to the end and verify the Fibonacci
sequences being printed.

Figure 27: Printing Fibonacci sequences
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulating an interrupt
In this tutorial an interrupt handler for a serial port is added to the project.
The Fibonacci numbers will be read from an on-chip communication
peripheral device (USART0).

This tutorial will show how the MSP430 IAR C/C++ Compiler interrupt
keyword and the #pragma vector directive can be used. The tutorial will also
show how an interrupt can be simulated using the features that support
interrupts, breakpoints, and macros. Notice that this example does not
describe an exact simulation; the purpose is to illustrate a situation where
C-SPY® macros, breakpoints, and the interrupt system can be useful to
simulate hardware.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Note that interrupt simulation is possible only when you are using the IAR
C-SPY Simulator.

Adding an interrupt handler
This section will demonstrate how to write an interrupt in an easy way. It starts with a
brief description of the application used in this project, followed by a description of how
to set up the project.

THE APPLICATION—A BRIEF DESCRIPTION

The interrupt handler will read values from the serial communication port receive
register (USART0), U0RXBUF. It will then print the value. The main program enables
interrupts and starts printing periods (.) in the foreground process while waiting for
interrupts.
U430-5

Part 2. Tutorials 57

58

Setting up the simulation environment
WRITING AN INTERRUPT HANDLER

The following lines define the interrupt handler used in this tutorial (the complete source
code can be found in the file Interrupt.c supplied in the 430\tutor directory):

/* define the interrupt handler */
#pragma vector=USART0RX_VECTOR
__interrupt void uartRecieveHandler(void)

The #pragma vector directive is used for specifying the interrupt vector address—in
this case the interrupt vector for the USART0 receive interrupt—and the keyword
__interrupt is used for directing the compiler to use the calling convention needed
for an interrupt function.

For detailed information about the extended keywords and pragma directives used in
this tutorial, see the MSP430 IAR C/C++ Compiler Reference Guide.

SETTING UP THE PROJECT

1 Add a new project—project4—to the workspace tutorials used in previous
tutorials.

2 Add the files Utilities.c and Interrupt.c to it.

3 In the Workspace window, select the project level node, and choose
Project>Options. Select the General Options category, and click the Target tab.
Choose msp430F149 from the Core drop-down menu.

In addition, make sure the factory settings are used in the C/C++ Compiler and Linker
categories.

Next you will set up the simulation environment.

Setting up the simulation environment
The C-SPY interrupt system is based on the cycle counter. You can specify the amount
of cycles to pass before C-SPY generates an interrupt.

To simulate the input to USART0, values will be read from the file InputData.txt,
which contains the Fibonacci series. You will set an immediate read breakpoint on the
USART0 receive register, U0RXBUF, and connect a user-defined macro function to it (in
this example the Access macro function). The macro reads the Fibonacci values from
the text file.

Whenever an interrupt is generated, the interrupt routine will read U0RXBUF and the
breakpoint will be triggered, the Access macro function will be executed and the
Fibonacci values will be fed into the USART0 receive register.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulating an interrupt
The immediate read breakpoint will trigger the break before the processor reads the
U0RXBUF register, allowing the macro to store a new value in the register that is
immediately read by the instruction.

This section will demonstrate the steps involved in setting up the simulator for
simulating a serial port interrupt. The steps involved are:

● Defining a C-SPY setup file which will open the file InputData.txt and define
the Access macro function

● Specifying C-SPY options
● Building the project
● Starting the simulator
● Specifying the interrupt request
● Setting the breakpoint and associating the Access macro function to it.

Note: For a simple example of a system timer interrupt simulation, see Simulating a
simple interrupt, page 186.

DEFINING A C-SPY SETUP MACRO FILE

In C-SPY, you can define setup macros that will be registered during the C-SPY startup
sequence. In this tutorial you will use the C-SPY macro file SetupSimple.mac,
available in the 430\tutor directory. It is structured as follows:

First the setup macro function execUserSetup is defined, which is automatically
executed during C-SPY setup. Thus, it can be used to set up the simulation environment
automatically. A message is printed in the Log window to confirm that this macro has
been executed:

execUserSetup()
{
 __message "execUserSetup() called\n";

Then the file InputData.txt, which contains the Fibonacci series to be fed into
USART0, will be opened:

 _fileHandle = __openFile(
"$TOOLKIT_DIR$\\tutor\\InputData.txt", "r");
U430-5

Part 2. Tutorials 59

60

Setting up the simulation environment
After that, the macro function Access is defined. It will read the Fibonacci values from
the file InputData.txt, and assign them to the receive register address:

Access()
{
 __message "Access() called\n";
 __var _fibValue;
 if(0 == __readFile(_fileHandle, &_fibValue))
 {
 U0RXBUF = _fibValue;
 }
}

You will have to connect the Access macro to an immediate read breakpoint. However,
this will be done at a later stage in this tutorial.

Finally, the file contains two macro functions for managing correct file handling at reset
and exit.

For detailed information about macros, see the chapters Using the C-SPY® macro
system and C-SPY® macros reference.

Next you will specify the macro file and set the other C-SPY options needed.

SPECIFYING C-SPY OPTIONS

1 To select C-SPY options, choose Project>Options. In the Debugger category, click
the Setup tab.

2 Use the Use macro file browse button to specify the macro file to be used:

SetupSimple.mac

Alternatively, use an argument variable to specify the path:

$TOOLKIT_DIR$\tutor\SetupSimple.mac
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulating an interrupt
See Argument variables summary, page 279, for details.

Figure 28: Specifying setup macro file

3 Set the Device description file option to msp430F149.ddf. This file provides
interrupt definitions which are needed by the interrupt system.

4 Select Run to main and click OK. This will ensure that the debug session will start by
running to the main function.

The project is now ready to be built.

BUILDING THE PROJECT

1 Compile and link the project by choosing Project>Make.

Alternatively, click the Make button on the toolbar. The Make command compiles and
links those files that have been modified.

STARTING THE SIMULATOR

1 Start the IAR C-SPY Debugger to run the project4 project.

The Interrupt.c window is displayed (among other windows). Click in it to make it the
active window.
U430-5

Part 2. Tutorials 61

62

Setting up the simulation environment
2 Examine the Log window. Note that the macro file has been loaded and that the
execUserSetup function has been called.

SPECIFYING A SIMULATED INTERRUPT

Now you will specify your interrupt to make it simulate an interrupt every 2000 cycles.

1 Choose Simulator>Interrupt Setup to display the Interrupt Setup dialog box. Click
New to display the Edit Interrupt dialog box and make the following settings for your
interrupt:

Setting Value Description

Interrupt USART0RX_VECTOR Specifies which interrupt to use; the name is defined
in the ddf file.

Description As is The interrupt definition that the simulator uses to be
able to simulate the interrupt correctly.

First activation 4000 Specifies the first activation moment for the
interrupt. The interrupt is activated when the cycle
counter has passed this value.

Repeat Interval 2000 Specifies the repeat interval for the interrupt,
measured in clock cycles.

Hold time Infinite Hold time, not used here.

Probability % 100 Specifies probability. 100% specifies that the
interrupt will occur at the given frequency. Another
percentage might be used for simulating a more
random interrupt behavior.

Variance % 0 Time variance, not used here.

Table 7: Interrupts dialog box
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulating an interrupt
Figure 29: Inspecting the interrupt settings

During execution, C-SPY will wait until the cycle counter has passed the activation
time. When the current assembler instruction is executed, C-SPY will generate an
interrupt which is repeated approximately every 2000 cycles.

2 When you have specified the settings, click OK to close the Edit Interrupt dialog box,
and then click OK to close the Interrupt Setup dialog box.

For information about how you can use the system macro __orderInterrupt in a
C-SPY setup file to automate the procedure of defining the interrupt, see Using macros
for interrupts and breakpoints, page 65.

SETTING AN IMMEDIATE BREAKPOINT

By defining a macro and connecting it to an immediate breakpoint, you can make the
macro simulate the behavior of a hardware device, for instance an I/O port, as in this
tutorial. The immediate breakpoint will not halt the execution, only temporarily suspend
it to check the conditions and execute any connected macro.

In this example, the input to the USART0 is simulated by setting an immediate read
breakpoint on the U0RXBUF address and connecting the defined Access macro to it. The
macro will simulate the input to the USART0. These are the steps involved:

1 Choose View>Breakpoints to open the Breakpoints window, right-click to open the
context menu, choose New Breakpoint>Immediate to open the Immediate tab.

2 Add the following parameters for your breakpoint.

Setting Value Description

Break at U0RXBUF Receive buffer address.

Access Type Read The breakpoint type (Read or Write)

Table 8: Breakpoints dialog box
U430-5

Part 2. Tutorials 63

64

Simulating the interrupt
During execution, when C-SPY detects a read access from the U0RXBUF address, C-SPY
will temporarily suspend the simulation and execute the Access macro. The macro will
read a value from the file InputData.txt and write it to U0RXBUF. C-SPY will then
resume the simulation by reading the receive buffer value in U0RXBUF.

3 Click OK to close the breakpoints dialog box.

For information about how you can use the system macro __setSimBreak in a C-SPY
setup file to automate the breakpoint setting, see Using macros for interrupts and
breakpoints, page 65.

Simulating the interrupt
In this section you will execute your application and simulate the serial port interrupt.

EXECUTING THE APPLICATION

1 Step through the application and stop when it reaches the while loop, where the
application waits for input.

2 In the Interrupt.c source window, locate the function uartReciveHandler.

3 Place the insertion point on the ++callCount; statement in this function and set a
breakpoint by choosing Edit>Toggle Breakpoint, or click the Toggle Breakpoint
button on the toolbar. Alternatively, use the context menu.

If you want to inspect the details of the breakpoint, choose Edit>Breakpoints.

4 Open the Terminal I/O window and run your application by choosing Debug>Go or
clicking the Go button on the toolbar.

The application should stop in the interrupt function.

5 Click Go again in order to see the next number being printed in the Terminal I/O
window.

Because the main program has an upper limit on the Fibonacci value counter, the tutorial
application will soon reach the exit label and stop.

Action Access() The macro connected to the breakpoint.

Setting Value Description

Table 8: Breakpoints dialog box (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulating an interrupt
The Terminal I/O window will display the Fibonacci series.

Figure 30: Printing the Fibonacci values in the Terminal I/O window

Using macros for interrupts and breakpoints
To automate the setting of breakpoints and the procedure of defining interrupts, the
system macros __setSimBreak and __orderInterrupt, respectively, can be
executed by the setup macro execUserSetup.

The file SetupAdvanced.mac is extended with system macro calls for setting the
breakpoint and specifying the interrupt:

SimulationSetup()
{...
 _interruptID = __orderInterrupt("USART0RX_VECTOR", 4000,
 2000, 0, 1, 0, 100);

 if(-1 == _interruptID)
 {
 __message "ERROR: failed to order interrupt";
 }

 _breakID = __setSimBreak("U0RXBUF", "R", "Access()");

}

By replacing the file SetupSimple.mac, used in the previous tutorial, with the file
SetupAdvanced.mac, setting the breakpoint and defining the interrupt will be
automatically performed at C-SPY startup. Thus, you do not need to start the simulation
by manually filling in the values in the Interrupts and Breakpoints dialog boxes.
U430-5

Part 2. Tutorials 65

66

Using macros for interrupts and breakpoints
Note: Before you load the file SetupAdvanced.mac you should remove the
previously defined breakpoint and interrupt.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Working with library
modules
This tutorial demonstrates how to create library modules and how you can
combine an application project with a library project.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Using libraries
If you are working on a large project you will soon accumulate a collection of useful
routines that are used by several of your applications. To avoid having to assemble a
routine each time the routine is needed, you can store such routines as object files, that
is, assembled but not linked.

A collection of routines in a single object file is referred to as a library. It is
recommended that you use library files to create collections of related routines, such as
a device driver.

Use the IAR XAR Library Builder to build libraries. The IAR XLIB Librarian lets you
manipulate libraries. It allows you to:

● Change modules from PROGRAM to LIBRARY type, and vice versa
● Add or remove modules from a library file
● List module names, entry names, etc.

The Main.s43 program

The Main.s43 program uses a routine called r_shift to right-shift the contents of the
register R4 the number of times of the value stored in register R5. The result is returned
in R4. The EXTERN directive declares r_shift as an external symbol, to be resolved at
link time.

A copy of the program is provided in the 430\tutor directory.
U430-5

Part 2. Tutorials 67

68

Using libraries
The library routines

The two library routines will form a separately assembled library. It consists of the
r_shift routine called by main, and a corresponding l_shift routine, both of which
operate on the contents of the registers A and B and return the result in A. The file
containing these library routines is called Shifts.s43, and a copy is provided with the
product.

The routines are defined as library modules by the MODULE directive, which instructs the
IAR XLINK Linker to include the modules only if they are referenced by another
module.

The PUBLIC directive makes the r_shift and l_shift entry addresses public to other
modules.

For detailed information about the MODULE and PUBLIC directives, see the MSP430 IAR
Assembler Reference Guide.

CREATING A NEW PROJECT

1 In the workspace tutorials used in previous chapters, add a new project called
project5.

2 Add the file Main.s43 to the new project.

3 To set options, choose Project>Options. Select the General Options category and
click the Library Configuration tab. Choose None from the Library drop-down list,
which means that a standard C/C++ library will not be linked.

The default options are used for the other option categories.

4 To assemble the file Main.s43, choose Project>Compile.

You can also click the Compile button on the toolbar.

CREATING A LIBRARY PROJECT

Now you are ready to create a library project.

1 In the same workspace tutorials, add a new project called tutor_library.

2 Add the file Shift.s43 to the project.

3 To set options, choose Project>Options. In the General Options category, verify the
following settings:

Page Option

Output Output file: Library

Table 9: XLINK options for a library project
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Working with library modules
Note that Library Builder appears in the list of categories, which means that the IAR
XAR Library Builder is added to the build tool chain. It is not necessary to set any
XAR-specific options for this tutorial.

Click OK.

4 Choose Project>Make.

The library output file tutor_library.r43 has now been created.

USING THE LIBRARY IN YOUR APPLICATION PROJECT

You can now add your library containing the shift routine to project5.

1 In the Workspace window, click the project5 tab. Choose Project>Add Files and add
the file tutor_library.r43 located in the projects\Debug\Exe directory. Click
Open.

2 Click Make to build your project.

3 You have now combined a library with an executable project, and the application is
ready to be executed. For information about how to manipulate the library, see the IAR
Linker and Library Tools Reference Guide.

Library Configuration Library: None

Page Option

Table 9: XLINK options for a library project (Continued)
U430-5

Part 2. Tutorials 69

70

Using libraries
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Part 3. Project
management and building
This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

● The development environment

● Managing projects

● Building

● Editing.
U430-5

71

72
U430-5

The development
environment
This chapter introduces you to the IAR Embedded Workbench® development
environment (IDE). The chapter also demonstrates how you can customize
the environment to suit your requirements.

The IAR Embedded Workbench IDE
The IAR Embedded Workbench IDE is the framework where all necessary tools are
seamlessly integrated: a C/C++ compiler, an assembler, the IAR XLINK Linker, the
IAR XAR Library Builder, the IAR XLIB Librarian, an editor, a project manager with
Make utility, and the IAR C-SPY® Debugger, a high-level language debugger.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.
U430-5

Part 3. Project management and building 73

74

The IAR Embedded Workbench IDE
This illustration shows the IAR Embedded Workbench IDE window with different
components.

Figure 31: IAR Embedded Workbench IDE window

The window might look different depending on what additional tools you are using.

RUNNING THE IAR EMBEDDED WORKBENCH IDE

Click the Start button on the taskbar and choose All Programs>IAR Systems>IAR
Embedded Workbench for MSP430 V3>IAR Embedded Workbench.

The file IarIdePm.exe is located in the common\bin directory under your IAR
installation, in case you want to start the program from the command line or from within
Windows Explorer.

Toolbar
Menu bar

Workspace
window

Messages
windows

Editor
window

Status bar
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

The development environment
Double-clicking the workspace filename

The workspace file has the filename extension eww. If you double-click a workspace
filename, the IAR Embedded Workbench IDE starts. If you have several versions of IAR
Embedded Workbench installed, the workspace file will be opened by the most recently
used version of your IAR Embedded Workbench that uses that file type.

EXITING

To exit the IAR Embedded Workbench IDE, choose File>Exit. You will be asked
whether you want to save any changes to editor windows, the projects, and the
workspace before closing them.

Customizing the environment
The IAR Embedded Workbench IDE is a highly customizable environment. This section
demonstrates how you can work with and organize the windows on the screen, the
possibilities for customizing the IDE, and how you can set up the environment to
communicate with external tools.

ORGANIZING THE WINDOWS ON THE SCREEN

In the IAR Embedded Workbench IDE, you can position the windows and arrange a
layout according to your preferences. You can dock windows at specific places, and
organize them in tab groups. You can also make a window floating, which means it is
always on top of other windows. If you change the size or position of a floating window,
other currently open windows are not affected.

Each time you open a previously saved workspace, the same windows are open, and they
have the same sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved.
In addition to the information saved for the workspace, information about all open
debugger-specific windows is also saved.

Using docked versus floating windows

Each window that you open has a default location, which depends on other currently
open windows. To give you full and convenient control of window placement, each
window can either be docked or floating.
U430-5

Part 3. Project management and building 75

76

Customizing the environment
A docked window is locked to a specific area in the Embedded Workbench main
window, which you can decide. To keep many windows open at the same time, you can
organize the windows in tab groups. This means one area of the screen is used for several
concurrently open windows. The system also makes it easy to rearrange the size of the
windows. If you rearrange the size of one docked window, the sizes of any other docked
windows are adjusted accordingly.

A floating window is always on top of other windows. Its location and size does not
affect other currently open windows. You can move a floating window to any place on
your screen, also outside of the IAR Embedded Workbench IDE main window.

Note: The editor window is always docked. When you open the editor window, its
placement is decided automatically depending on other currently open windows. For
more information about how to work with the editor window, see Using the IAR
Embedded Workbench editor, page 95.

Organizing windows

To place a window as a separate window, drag it next to another open window.

To place a window in the same tab group as another open window, drag the window you
want to locate to the middle of the area and drop the window.

To make a window floating, double-click on the window’s title bar.

The status bar, located at the bottom of the IAR Embedded Workbench IDE main
window, contains useful help about how to arrange windows.

CUSTOMIZING THE IDE

To customize the IDE, choose Tools>Options to get access to a vide variety of
commands for:

● Configuring the editor
● Configuring the editor colors and fonts
● Configuring the project build command
● Organizing the windows in C-SPY
● Using an external editor
● Changing common fonts
● Changing key bindings
● Configuring the amount of output to the Messages window.

In addition, you can increase the number of recognized filename extensions. By default,
each tool in the build tool chain accepts a set of standard filename extensions. If you
have source files with a different filename extension, you can modify the set of accepted
filename extensions. Choose Tools>Filename Extensions to get access to the necessary
commands.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

The development environment
For reference information about the commands for customizing the IDE, see Tools
menu, page 286. You can also find further information related to customizing the editor
in the section Customizing the editor environment, page 101. For further information
about customizations related to C-SPY, see Part 4. Debugging.

COMMUNICATING WITH EXTERNAL TOOLS

The Tools menu is a configurable menu to which you can add external tools for
convenient access to these tools from within the IAR Embedded Workbench IDE. For
this reason, the menu might look different depending on which tools you have
preconfigured to appear as menu commands.

To add an external tool to the menu, choose Tools>Configure Tools to open the
Configure Tools dialog box.

Figure 32: Configure Tools dialog box

For reference information about this dialog box, see Configure Tools dialog box, page
303.
U430-5

Part 3. Project management and building 77

78

Customizing the environment
After you have entered the appropriate information and clicked OK, the menu command
you have specified is displayed on the Tools menu.

Figure 33: Customized Tools menu

Note: If you intend to add an external tool to the standard build tool chain, see
Extending the tool chain, page 93.

Adding command line commands

Command line commands and calls to batch files must be run from a command shell.
You can add command line commands to the Tools menu and execute them from there.

1 To add commands to the Tools menu, you must specify an appropriate command shell.

Type one of the following command shells in the Command text box:

2 Specify the command line command or batch file name in the Argument text box.

The Argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /C option terminates the shell after execution, to allow the IAR Embedded
Workbench IDE to detect when the tool has finished.

Example

To add the command Backup to the Tools menu to make a copy of the entire project
directory to a network drive, you would specify Command either as command.cmd or
as cmd.exe depending on your host environment, and Argument as:

/C copy c:\project*.* F:

Alternatively, to use a variable for the argument to allow relocatable paths:

/C copy $PROJ_DIR$*.* F:

System Command shell

Windows 98/Me command.com

Windows NT/2000/XP cmd.exe (recommended) or command.com

Table 10: Command shells
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Managing projects
This chapter discusses the project model used by the IAR Embedded
Workbench IDE. It covers how projects are organized and how you can specify
workspaces with multiple projects, build configurations, groups, source files,
and options that help you handle different versions of your applications. The
chapter also describes the steps involved in interacting with an external
third-party source code control system.

The project model
In a large-scale development project, with hundreds of files, you must be able to
organize the files in a structure that is easily navigated and maintained by perhaps
several engineers involved.

The IAR Embedded Workbench IDE is a flexible environment for developing projects
also with a number of different target processors in the same project, and a selection of
tools for each target processor.

HOW PROJECTS ARE ORGANIZED

The IAR Embedded Workbench IDE has been designed to suit the way that software
development projects are typically organized. For example, perhaps you need to develop
related versions of an application for different versions of the target hardware, and you
might also want to include debugging routines into the early versions, but not in the final
application.

Versions of your applications for different target hardware will often have source files
in common, and you might want to be able to maintain only one unique copy of these
files, so that improvements are automatically carried through to each version of the
application. Perhaps you also have source files that differ between different versions of
the application, such as those dealing with hardware-dependent aspects of the
application.

The IAR Embedded Workbench IDE allows you to organize projects in a hierarchical
tree structure showing the logical structure at a glance. In the following sections the
different levels of the hierarchy are described.
U430-5

Part 3. Project management and building 79

80

The project model
Projects and workspaces

Typically you create a project which contains the source files needed for your embedded
systems application. If you have several related projects, you can access and work with
them simultaneously. To achieve this, you can organize related projects in workspaces.

Each workspace you define can contain one or more projects, and each project must be
part of at least one workspace.

Consider this example: two related applications—for instance A and B—will be
developed, requiring one development team each (team A and B). Because the two
applications are related, parts of the source code can be shared between the applications.
The following project model can be applied:

● Three projects—one for each application, and one for the common source code
● Two workspaces—one for team A and one for team B.

It is both convenient and efficient to collect the common sources in a library project
(compiled but not linked object code), to avoid having to compile it unnecessarily.

Figure 34: Examples of workspaces and projects

Workspace for team A

■ Project for application A

■ Project for utility library

Workspace for team B

■ Project for application B

■ Project for utility library

Development team A

Project for application A

Appl.
A

Development team B

Project for application B

Appl.
B

Library project for

Utility
library

common sources
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Managing projects
For an example where a library project has been combined with an application project,
see the chapter Working with library modules in Part 2. Tutorials.

Projects and build configurations

Often, you need to build several versions of your project. The Embedded Workbench
lets you define multiple build configurations for each project. In a simple case, you
might need just two, called Debug and Release, where the only differences are the
options used for optimization, debug information, and output format. In the Release
configuration, the preprocessor symbol NDEBUG is defined, which means the application
will not contain any asserts.

Additional build configurations can be useful, for instance, if you intend to use the
application on different target devices. The application is the same, but hardware-related
parts of the code differ. Thus, depending on which target device you intend to build for,
appropriate source files can be excluded from the build configuration. The following
build configurations might fulfil these requirements for Project A:

● Project A - Device 1:Release
● Project A - Device 1:Debug
● Project A - Device 2:Release
● Project A - Device 2:Debug

Groups

Normally, projects contain hundreds of files that are logically related. You can define
each project to contain one or more groups, in which you can collect related source files.
You can also define multiple levels of subgroups to achieve a logical hierarchy. By
default, each group is present in all build configurations of the project, but you can also
specify a group to be excluded from a particular build configuration.

Source files

Source files can be located directly under the project node or in a hierarchy of groups.
The latter is convenient if the amount of files makes the project difficult to survey. By
default, each file is present in all build configurations of the project, but you can also
specify a file to be excluded from a particular build configuration.

Only the files that are part of a build configuration will actually be built and linked into
the output code.

Once a project has been successfully built, all include files and output files are displayed
in the structure below the source file that included or generated them.
U430-5

Part 3. Project management and building 81

82

The project model
Note: The settings for a build configuration can affect which include files that will be
used during compilation of a source file. This means that the set of include files
associated with the source file after compilation can differ between the build
configurations.

CREATING AND MANAGING WORKSPACES

This section describes the overall procedure for creating the workspace, projects,
groups, files, and build configurations. The File menu provides the commands for
creating workspaces. The Project menu provides commands for creating projects,
adding files to a project, creating groups, specifying project options, and running the
IAR Systems development tools on the current projects.

For reference information about these menus, menu commands, and dialog boxes, see
the chapter IAR Embedded Workbench® IDE reference.

The steps involved for creating and managing a workspace and its contents are:

● Creating a workspace.

An empty Workspace window appears, which is the place where you can view your
projects, groups, and files.

● Adding new or existing projects to the workspace.

When creating a new project, you can base it on a template project with
preconfigured project settings. There are template projects available for C
applications, C++ applications, assembler applications, and library projects.

● Creating groups.

A group can be added either to the project’s top node or to another group within the
project.

● Adding files to the project.

A file can be added either to the project’s top node or to a group within the project.

● Creating new build configurations.

By default, each project you add to a workspace will have two build configurations
called Debug and Release.

You can base a new configuration on an already existing configuration. Alternatively,
you can choose to create a default build configuration.

Note that you do not have to use the same tool chain for the new build configuration
as for other build configurations in the same project.

● Excluding groups and files from a build configuration.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Managing projects
Note that the icon indicating the excluded group or file will change to white in the
Workspace window.

● Removing items from a project.

For a detailed example, see Creating an application project, page 25.

Note: It might not be necessary for you to perform all of these steps.

Drag and drop

You can easily drag individual source files and project files from the Windows file
explorer to the Workspace window. Source files dropped on a group will be added to that
group. Source files dropped outside the project tree—on the Workspace window
background—will be added to the active project.

Source file paths

The IAR Embedded Workbench IDE supports relative source file paths to a certain
degree.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IAR Embedded Workbench IDE will use a path relative to the project
file when accessing the source file.

Navigating project files
There are two main different ways to navigate your project files: using the Workspace
window or the Source Browser window. The Workspace window displays an
hierarchical view of the source files, dependency files, and output files and how they are
logically grouped. The Source Browser window, on the other hand, displays information
about the build configuration that is currently active in the Workspace window. For that
configuration, the Source Browser window displays a hierarchical view of all globally
defined symbols, such as variables, functions, and type definitions. For classes,
information about any base classes is also displayed.
U430-5

Part 3. Project management and building 83

84

Navigating project files
VIEWING THE WORKSPACE

The Workspace window is where you access your projects and files during the
application development.

1 Choose which project you want to view by clicking its tab at the bottom of the
Workspace window.

Figure 35: Displaying a project in the Workspace window

For each file that has been built, an Output folder icon appears, containing generated
files, such as object files and list files. The latter is generated only if the list file option
is enabled. There is also an Output folder related to the project node that contains
generated files related to the whole project, such as the executable file and the linker
map file (if the list file option is enabled).

Also, any included header files will appear, showing dependencies at a glance.

2 To display the project with a different build configuration, choose that build
configuration from the drop-down list at the top of the Workspace window.

The project and build configuration you have selected are displayed highlighted in the
Workspace window. It is the project and build configuration that is selected from the
drop-down list that will be built when you build your application.

Configuration
drop-down

menu

Indicator for
option overrides

on file node

Tabs for
choosing
workspace
display

Indicator for
errors detected

during build
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Managing projects
3 To display an overview of all projects in the workspace, click the Overview tab at the
bottom of the Workspace window.

An overview of all project members is displayed.

Figure 36: Workspace window—an overview

The current selection in the Build Configuration drop-down list is also highlighted
when an overview of the workspace is displayed.

DISPLAYING BROWSE INFORMATION

To display browse information in the Source Browser window, choose
Tools>Options>Project and select the option Generate browse information.

To open the Source Browser window, choose View>Source Browser. The Source
Browser window is by default docked with the Workspace window. Source browse
information is displayed for the active build configuration. For reference information,
see Source Browser window, page 253.

Note that you can choose a file filter and a type filter from the context menu that appears
when you right-click in the top pane of the window.

To see the definition of a global symbol or a function, there are three alternative methods
that you can use:

● In the Source Browser window, right-click on a symbol, or function, and choose the
Go to definition command from the context menu that appears

● In the Source Browser window, double-click on a row
● In the editor window, right-click on a symbol, or function, and choose the Go to

definition command from the context menu that appears.

The definition of the symbol or function is displayed in the editor window.
U430-5

Part 3. Project management and building 85

86

Source code control
The source browse information is continuously updated in the background. While you
are editing source files, or when you open a new project, there will be a short delay
before the information is up-to-date.

Source code control
IAR Embedded Workbench can identify and access any installed third-party source code
control (SCC) systems that conform to the SCC interface published by Microsoft
corporation. From within the IDE you can connect an IAR Embedded Workbench
project to an external SCC project, and perform some of the most commonly used
operations.

To connect your IAR Embedded Workbench project to a source code control system you
should be familiar with the source code control client application you are using. Note
that some of the windows and dialog boxes that appear when you work with source code
control in IAR Embedded Workbench originate from the SCC system and is not
described in the documentation from IAR Systems. For information about details in the
client application, refer to the documentation supplied with that application.

Note: Different SCC systems use very different terminology even for some of the most
basic concepts involved. It is important to keep this in mind when reading the
description below.

INTERACTING WITH SOURCE CODE CONTROL SYSTEMS

In any SCC system, you use a client application to maintain a central archive. In this
archive you keep the working copies of the files of your project. The SCC integration in
IAR Embedded Workbench allows you to conveniently perform a few of the most
common SCC operations directly from within the IDE. However, several tasks must still
be performed in the client application.

To connect an IAR Embedded Workbench project to a source code control system, you
should:

● In the SCC client application, set up an SCC project
● In IAR Embedded Workbench, connect your project to the SCC project.

Setting up an SCC project in the SCC client application

Use your SCC client tools to set up a working directory for the files in your IAR
Embedded Workbench project that you want to control using your SCC system. The
files can be placed in one or more nested subdirectories, all located under a common
root. Specifically, all the source files must reside in the same directory as the ewp project
file, or nested in subdirectories of this directory.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Managing projects
For information about the steps involved, refer to the documentation supplied with the
SCC client application.

Connecting projects in IAR Embedded Workbench

In IAR Embedded Workbench, connect your application project to the SCC project.

1 In the Workspace window, select the project for which you have created an SCC
project. From the Project menu, choose Source Code Control>Add Project To
Source Control. This command is also available from the context menu that appears
when you right-click in the Workspace window.

Note: The commands on the Source Code Control submenu are available when there
is at least one SCC client application available.

2 If you have source code control systems from different vendors installed, a dialog box
will appear to let you choose which system you want to connect to.

3 An SCC-specific dialog box will appear where you can navigate to the proper SCC
project that you have set up.

Viewing the SCC states

When your IAR Embedded Workbench project has been connected to the SCC project,
a column that contains status information for source code control will appear in the
Workspace window. Different icons will be displayed depending on whether:

● a file is checked out to you
● a file is checked out to someone else
● a file is checked in
● a file has been modified
● there is a new version of a file in the archive.

There are also icons for some combinations of these states. Note that the interpretation
of these states depends on the SCC client application you are using. For reference
information about the icons and the different states they represent, see Source code
control states, page 244.

For reference information about the commands available for accessing the SCC system,
see Source Code Control menu, page 243.

Configuring the source code control system

To customize the source code control system, choose Tools>Options and click the
Source Code Control tab. For reference information about the available commands, see
Terminal I/O page, page 299.
U430-5

Part 3. Project management and building 87

88

Source code control
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Building
This chapter briefly discusses the process of building your application, and
describes how you can extend the chain of build tools with tools from
third-party suppliers.

Building your application
The building process consists of the following steps:

● Setting project options
● Building the project
● Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This
gives you the possibility to perform several builds in one operation.

In addition to use the IAR Embedded Workbench IDE for building projects, it is also
possible to use the command line utility iarbuild.exe for building projects.

For examples of building application and library projects, see Part 2. Tutorials in this
guide. For further information about building library projects, see the MSP430 IAR
C/C++ Compiler Reference Guide.

SETTING OPTIONS

To specify how your application should be built, you must define one or several build
configurations. Every build configuration has its own settings, which are independent of
the other configurations. All settings are indicated in a separate column in the
Workspace window.

For example, a configuration that is used for debugging would not be highly optimized,
and would produce output that suits the debugging. Conversely, a configuration for
building the final application would be highly optimized, and produce output that suits
a flash or PROM programmer.

For each build configuration, you can set options on the project level, group level, and
file level. Many options can only be set on the project level because they affect the entire
build configuration. Examples of such options are General Options (for example,
Device and Output file), linker settings, and debug settings. Other options, such as
compiler and assembler options, that you set on project level are default for the entire
build configuration.
U430-5

Part 3. Project management and building 89

90

Building your application
It is possible to override project level settings by selecting the required item, for instance
a specific group of files, and selecting the option Override inherited settings. The new
settings will affect all members of that group, that is, files and any groups of files. To
restore all settings to the default factory settings, click the Factory Settings button.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

Using the Options dialog box

The Options dialog box—available by choosing Project>Options—provides options
for the building tools. You set these options for the selected item in the Workspace
window. Options in the General Options, Linker, and Debugger categories can only
be set for the entire build configuration, and not for individual groups and files.
However, the options in the other categories can be set for the entire build configuration,
a group of files, or an individual file.

Figure 37: General options

The Category list allows you to select which building tool to set options for. The tools
available in the Category list depends on which tools are included in your product. If
you select Library as output file on the Output page, Linker will be replaced by
Library Builder in the category list. When you select a category, one or more pages
containing options for that component are displayed.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Building
Click the tab corresponding to the type of options you want to view or change. To restore
all settings to the default factory settings, click the Factory Settings button, which is
available for all categories except General Options and Custom Build. Note that there
are two sets of factory settings available: Debug and Release. Which one that will be
used depends on your build configuration; see New Configuration dialog box, page 281.

For information about each option and how to set options, see the chapters General
options, Compiler options, Assembler options, Linker options, Library builder options,
Custom build options, and Debugger options in Part 7. Reference information in this
guide. For information about options specific to the debugger driver you are using, see
the part of this book that corresponds to your driver.

Note: If you add to your project a source file with a non-recognized filename extension,
you cannot set options on that source file. However, you can add support for additional
filename extensions. For reference information, see Filename Extensions dialog box,
page 305.

BUILDING A PROJECT

You have access to the build commands both from the Project menu and from the
context menu that appears if you right-click an item in the Workspace window.

The three build commands Make, Compile, and Rebuild All run in the background, so
you can continue editing or working with the IAR Embedded Workbench IDE while
your project is being built.

For further reference information, see Project menu, page 277.

BUILDING MULTIPLE CONFIGURATIONS IN A BATCH

Use the batch build feature when you want to build more than one configuration at once.
A batch is an ordered list of build configurations. The Batch Build dialog
box—available from the Project menu—lets you create, modify, and build batches of
configurations.

For workspaces that contain several configurations it is convenient to define one or
several different batches. Instead of building the entire workspace, you can build only
the appropriate build configurations, for instance Release or Debug configurations.

For detailed information about the Batch Build dialog box, see Batch Build dialog box,
page 284.
U430-5

Part 3. Project management and building 91

92

Building your application
CORRECTING ERRORS FOUND DURING BUILD

The compiler, assembler, and debugger are fully integrated with the development
environment. So if there are errors in your source code, you can jump directly to the
correct position in the appropriate source file by double-clicking the error message in
the error listing in the Build message window, or selecting the error and pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the
project, you can directly start debugging the resulting code at the source level.

To specify the level of output to the Build message window, choose Tools>Options to
open the IDE Options dialog box. Click the Messages tab and select the level of output
in the Show build messages drop-down list.

For reference information about the Build messages window, see Build window, page
261.

BUILDING FROM THE COMMAND LINE

It is possible to build the project from the command line by using the IAR Command
Line Build Utility (iarbuild.exe) located in the common\bin directory. As input you
use the project file, and the invocation syntax is:

iarbuild project.ewp [-clean|-build|-make] <configuration>
[-log errors|warnings|info|all]

Parameter Description

project.ewp Your IAR Embedded Workbench IDE project file.

-clean Removes any intermediate files.

-build Rebuilds and relinks all files in the current build configuration.

-make Brings the current build configuration up to date by compiling,
assembling, and linking only the files that have changed since the last
build.

configuration The name of the configuration you want to build, which can either be
one of the predefined configurations Debug or Release, or a name that
you define yourself. For more information about build configurations, see
Projects and build configurations, page 81.

-log errors Displays build error messages.

-log warnings Displays build warning and error messages.

-log info Displays build warning messages and messages issued by the #pragma
message preprocessor directive.

-log all Displays all messages generated from the build, for example compiler
sign-on information and the full command line.

Table 11: iarbuild.exe command line options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Building
If you run the application from a command shell without specifying a project file, you
will get a sign-on message describing available parameters and their syntax.

Extending the tool chain
IAR Embedded Workbench provides a feature—Custom Build—which lets you extend
the standard tool chain. This feature is used for executing external tools (not provided
by IAR). You can make these tools execute each time specific files in your project have
changed.

By specifying custom build options, on the Custom tool configuration page, the build
commands treat the external tool and its associated files in the same way as the standard
tools within the IAR Embedded Workbench IDE and their associated files. The relation
between the external tool and its input files and generated output files is similar to the
relation between the C/C++ Compiler, c files, h files, and r43 files. See Custom build
options, page 373, for details about available custom build options.

You specify filename extensions of the files used as input to the external tool. If the input
file has changed since you last built your project, the external tool is executed; just as
the compiler executes if a c file has changed. In the same way, any changes in additional
input files (for instance include files) are detected.

You must specify the name of the external tool. You can also specify any necessary
command line options needed by the external tool, as well as the name of the output files
generated by the external tool. Note that it is possible to use argument variables for
substituting file paths.

For some of the file information, you can use argument variables.

It is possible to specify custom build options to any level in the project tree. The options
you specify are inherited by any sublevel in the project tree.

TOOLS THAT CAN BE ADDED TO THE TOOL CHAIN

Some examples of external tools, or types of tools, that you can add to the IAR
Embedded Workbench tool chain are:

● Tools that generate files from a specification, such as Lex and YACC
● Tools that convert binary files—for example files that contain bitmap images or

audio data—to a table of data in an assembler or C source file. This data can then be
compiled and linked together with the rest of your application.

ADDING AN EXTERNAL TOOL

The following example demonstrates how to add the tool Flex to the tool chain. The
same procedure can be used also for other tools.
U430-5

Part 3. Project management and building 93

94

Extending the tool chain
In the example, Flex takes the file foo.lex as input. The two files foo.c and foo.h
are generated as output.

1 Add the file you want to work with to your project, for example foo.lex.

2 Select this file in the Workspace window and choose Project>Options. Select Custom
Build from the list of categories.

3 In the Filename extensions field, type the filename extension .lex. Remember to
specify the leading period (.).

4 In the Command line field, type the command line for executing the external tool, for
example

flex $FILE_PATH$ -o$FILE_BPATH$.c

During the build process, this command line will be expanded to:

flex foo.lex -ofoo.c

Note the usage of argument variables. For further details of these variables, see
Argument variables summary, page 279.

Take special note of the use of $FILE_BNAME$ which gives the base name of the input
file, in this example appended with the c extension to provide a C source file in the same
directory as the input file foo.lex.

5 In the Output files field, describe the output files that are relevant for the build. In this
example, the tool Flex would generate two files—one source file and one header file.
The text in the Output files text box for these two files would look like this:

$FILE_BPATH$.c
$FILE_BPATH$.h

6 If there are any additional files used by the external tool during the build, these should
be added in the Additional input files field: for instance:

$TOOLKIT_DIR$\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer
be the same and the need for a rebuild is detected.

7 Click OK.

8 To build your application, choose Project>Make.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Editing
This chapter describes in detail how to use the IAR Embedded Workbench
editor. The final section describes how to customize the editor and how to
use an external editor of your choice.

Using the IAR Embedded Workbench editor
The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor. In addition, it provides features
specific to software development. It also recognizes C or C++ language elements.

EDITING A FILE

The editor window is where you write, view, and modify your source code. You can
open one or several text files, either from the File menu, or by double-clicking a file in
the Workspace window. If you open several files, they are organized in a tab group. You
can have several editor windows open at the same time.
U430-5

Part 3. Project management and building 95

96

Using the IAR Embedded Workbench editor
Click the tab for the file that you want to display. All open files are also available from
the drop-down menu at the upper right corner of the editor window.

Figure 38: Editor window

The name of the open source file is displayed on the tab. If a file is read-only, a padlock
is visible at the bottom left corner of the editor window. If a file has been modified after
it was last saved, an asterisk appears on the tab after the filename, for example
Utilities.c *.

The commands on the Window menu allow you to split the editor window into panes.
On the Window menu you also find commands for opening multiple editor windows, as
well as commands for moving files between different editor windows. For reference
information about each command on the menu, see Window menu, page 308. For
reference information about the editor window, see Editor window, page 248.

Accessing reference information for DLIB library functions

When you need to know the syntax for any C or Embedded C++ library function, select
the function name in the editor window and press F1. The library documentation for the
selected function appears in a help window.

Splitter
control

Bookmark

Title bar

Splitter control Go to function

with modification
indicator

File drop-down
menu
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Editing
Using and customizing editor commands and shortcut keys

The Edit menu provides commands for editing and searching in editor windows. For
instance, unlimited undo/redo by using the Edit>Undo and Edit>Redo commands,
respectively. You can also find some of these commands on the context menu that
appears when you right-click in the editor window. For reference information about each
command, see Edit menu, page 267.

There are also editor shortcut keys for:

● moving the insertion point
● scrolling text
● selecting text.

For detailed information about these shortcut keys, see Editor key summary, page 251.

To change the default shortcut key bindings, choose Tools>Options, and click the Key
Bindings tab. For further details, see Key Bindings page, page 289.

Splitting the editor window into panes

You can split the editor window horizontally or vertically into multiple panes, to allow
you to look at different parts of the same source file at once, or move text between two
different panes.

To split the window, double-click the appropriate splitter bar, or drag it to the middle of
the window. Alternatively, you can split a window into panes using the Window>Split
command.

To revert to a single pane, double-click the splitter control or drag it back to the end of
the scroll bar.

Dragging and dropping of text

You can easily move text within an editor window or between different editor windows.
Select the text and drag it to the new location.

Syntax coloring

The IAR Embedded Workbench editor automatically recognizes the syntax of:

● C and C++ keywords
● C and C++ comments
● Assembler directives, comments, and mnemonics
● Preprocessor directives
● Strings.

The different parts of source code are displayed in different text styles.
U430-5

Part 3. Project management and building 97

98

Using the IAR Embedded Workbench editor
To change these styles, choose Tools>Options, and click the Editor Colors and Fonts
tab in the IDE Options dialog box. For additional information, see Editor Colors and
Fonts page, page 295.

In addition, you can define your own set of keywords that should be syntax-colored
automatically:

1 In a text file, list all the keywords that you want to be automatically syntax-colored.
Separate each keyword with either a space or a new line.

2 Choose Tools>Options and click the Editor Setup Files tab.

3 Select the Use Custom Keyword File option and specify your newly created text file.
A browse button is available for your convenience.

4 Click the Edit Colors and Fonts tab and choose User Keyword from the Syntax
Coloring list. Specify the font, color, and type style of your choice. For additional
information, see Editor Colors and Fonts page, page 295.

5 In the editor window, type any of the keywords you listed in your keyword file; see
how the keyword is syntax-colored according to your specification.

Automatic text indentation

The text editor can perform different kinds of indentation. For assembler source files and
normal text files, the editor automatically indents a line to match the previous line. If
you want to indent a number of lines, select the lines and press the Tab key. Press
Shift-Tab to move a whole block of lines to the left.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++
source code. This is performed whenever you:

● Press the Return key
● Type any of the special characters {, }, :, and #
● Have selected one or several lines, and choose the Edit>Auto Indent command.

To enable or disable the indentation:

1 Choose Tools>Options

2 Click the Editor tab

3 Select or deselect the Auto indent option.

To customize the C/C++ automatic indentation, click the Configure button.

For additional information, see Configure Auto Indent dialog box, page 292.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Editing
Matching brackets and parentheses

When the insertion point is located next to a parenthesis, the matching parenthesis is
highlighted with a light gray color:

Figure 39: Parentheses matching in editor window

The highlight remains in place as long as the insertion point is located next to the
parenthesis.

To select all text between the brackets surrounding the insertion point, choose
Edit>Match Brackets. Every time you choose Match Brackets after that, the selection
will increase to the next hierarchic pair of brackets.

Note: Both of these functions—automatic matching of corresponding parentheses and
selection of text between brackets—apply to (), [], and {}.

Displaying status information

As you are editing, the status bar—available by choosing View>Status Bar— shows
the current line and column number containing the insertion point, and the Caps Lock,
Num Lock, and Overwrite status:

Figure 40: Editor window status bar

USING AND ADDING CODE TEMPLATES

Code templates is a method for conveniently inserting frequently used source code
sequences, for example for loops and if statements. The code templates are defined in
a normal text file. By default, there are a few example templates provided. In addition,
you can easily add your own code templates.

Enabling code templates

By default, code templates are enabled. To enable and disable the use of code templates:

1 Choose Tools>Options.

2 Go to the Editor Setup Files page.

3 Select or deselect the Use Code Templates option.
U430-5

Part 3. Project management and building 99

100

Using the IAR Embedded Workbench editor
4 In the text field, specify which template file you want to use; either the default file or
one of your own template files. A browse button is available for your convenience.

Inserting a code template in your source code

To insert a code template in your source code, place the insertion point at the location
where you want the template to be inserted and choose Edit>Insert Template. This
command displays a list in the editor window from which you can choose a code
template.

Figure 41: Editor window code template menu

If the code template you choose requires any type of field input, as in the for loop
example which needs an end value and a count variable, an input dialog box appears.

Adding your own code templates

The source code templates are defined in a normal text file. The original template file
CodeTemplates.txt is located in the common\config installation directory. The first
time you use IAR Embedded Workbench, the original template file is copied to a
directory for local settings, and this is the file that will be used by default if code
templates are enabled. To use your own template file, follow the procedure described in
Enabling code templates, page 99.

To open the template file and define your own code templates, choose Edit>Code
Templates>Edit Templates.

The syntax for defining templates is described in the default template file.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Editing
NAVIGATING IN AND BETWEEN FILES

The editor provides several functions for easy navigation within the files and between
different files:

● Switching between source and header files

If the insertion point is located on an #include line, you can choose the Open
"header.h" command from the context menu, which opens the header file in an
editor window. You can also choose the command Open Header/Source File, which
opens the header or source file that corresponds to the current file, or activates it if it
is already open. This command is available if the insertion point is located on any
line except an #include line.

● Function navigation

Click the Go to function button in the bottom left corner in an editor window to list
all functions defined in the source file displayed in the window. You can then choose
to go directly to one of the functions by double-clicking it in the list.

● Adding bookmarks

Use the Edit>Toggle Bookmark command to add and remove bookmarks. To
switch between the marked locations, choose Edit>Go to Bookmark.

SEARCHING

There are several standard search functions available in the editor:

● Quick search text box
● Find dialog box
● Replace dialog box
● Find in files dialog box
● Incremental Search dialog box.

To use the Quick search text box on the toolbar, type the text you want to search for and
press Enter. Press Esc to cancel the search. This is a quick method for searching for text
in the active editor window.

To use the Find, Replace, Find in Files, and Incremental Search functions, choose the
corresponding command from the Edit menu. For reference information about each
search function, see Edit menu, page 267.

Customizing the editor environment
The IAR Embedded Workbench IDE editor can be configured on the IDE Options
pages Editor and Editor Colors and Fonts. Choose Tools>Options to access the
pages.
U430-5

Part 3. Project management and building 101

102

Customizing the editor environment
For details about these pages, see Tools menu, page 286.

USING AN EXTERNAL EDITOR

The External Editor page—available by choosing Tools>Options—lets you specify
an external editor of your choice.

1 Select the option Use External Editor.

2 An external editor can be called in one of two ways, using the Type drop-down menu.

Command Line calls the external editor by passing command line parameters.

DDE calls the external editor by using DDE (Windows Dynamic Data Exchange).

3 If you use the command line, specify the command line to pass to the editor, that is, the
name of the editor and its path, for instance:

C:\WINNT\NOTEPAD.EXE.

You can send an argument to the external editor by typing the argument in the
Arguments field. For example, type $FILE_PATH$ to start the editor with the active file
(in editor, project, or Messages window).

Figure 42: Specifying external command line editor

4 If you use DDE, specify the editor’s DDE service name in the Service field. In the
Command field, specify a sequence of command strings to send to the editor.

The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Editing
The command strings should be entered as:

DDE-Topic CommandString
DDE-Topic CommandString

as in the following example, which applies to Codewright®:

Figure 43: External editor DDE settings

The command strings used in this example will open the external editor with a dedicated
file activated. The cursor will be located on the current line as defined in the context
from where the file is open, for instance when searching for a string in a file, or when
double-clicking an error message in the Message window.

5 Click OK.

When you open a file by double-clicking it in the Workspace window, the file will be
opened by the external editor.

Variables can be used in the arguments. For more information about the argument
variables that are available, see Argument variables summary, page 279.
U430-5

Part 3. Project management and building 103

104

Customizing the editor environment
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Part 4. Debugging
This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

● The IAR C-SPY® Debugger

● Executing your application

● Working with variables and expressions

● Using breakpoints

● Monitoring memory and registers

● Using the C-SPY® macro system

● Analyzing your application.
U430-5

105

106
U430-5

The IAR C-SPY®
Debugger
This chapter introduces you to the IAR C-SPY Debugger. First some of the
concepts are introduced that are related to debugging in general and to the
IAR C-SPY Debugger in particular. Then the debugger environment is
presented, followed by a description of how to setup, start, and finally adapt
C-SPY to target hardware.

Debugger concepts
This section introduces some of the concepts that are related to debugging in general and
to the IAR C-SPY Debugger in particular. This section does not contain specific
conceptual information related to the functionality of the IAR C-SPY Debugger.
Instead, such information can be found in each chapter of this part of the guide. The IAR
Systems user documentation uses the following terms when referring to these concepts.

IAR C-SPY DEBUGGER AND TARGET SYSTEMS

The IAR C-SPY Debugger can be used for debugging either a software target system or
a hardware target system.
U430-5

Part 4. Debugging 107

108

Debugger concepts
Figure 44, IAR C-SPY Debugger and target systems, shows an overview of C-SPY and
possible target systems.

Figure 44: IAR C-SPY Debugger and target systems

DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

USER APPLICATION

A user application is the software you have developed and which you want to debug
using the IAR C-SPY Debugger.

Embedded
Workbench C-SPY

Simulator
driver

ROM-monitor
driver

Emulator
driver

IAR C-SPY DEBUGGER TARGET SYSTEM

Target hardware

JTAG

emulator
Target

hardware

A
pp

li
ca

ti
on

 S
of

tw
ar

e

= Provided by IAR

ROM-
monitor

Simulator
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

The IAR C-SPY® Debugger
IAR C-SPY DEBUGGER SYSTEMS

The IAR C-SPY Debugger consists of both a general part which provides a basic set of
C-SPY features, and a driver. The C-SPY driver is the part that provides communication
with and control of the target system. The driver also provides the user
interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints. There are three main types of C-SPY drivers:

● Simulator driver
● ROM-monitor driver
● Emulator driver

If you have more than one C-SPY driver installed on your computer you can switch
between them by choosing the appropriate driver from within the IAR Embedded
Workbench IDE.

For an overview of the general features of IAR C-SPY Debugger, see IAR C-SPY
Debugger, page 5. In that chapter you can also find an overview of the functionality
provided by each driver. Contact your software distributor or IAR representative for
information about available C-SPY drivers. You can also find information on the IAR
Systems website, www.iar.com.

ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

It is possible to use a third-party debugger together with the IAR Systems tool chain as
long as the third-party debugger can read any of the output formats provided by XLINK,
such as UBROF, ELF/DWARF, COFF, Intel-extended, Motorola, or any other available
format. For information about which format to use with third-party debuggers, see the
user documentation supplied with that tool.

The C-SPY environment
AN INTEGRATED ENVIRONMENT

The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the MSP430 IAR C/C++ Compiler and MSP430
IAR Assembler, and is completely integrated in the IAR Embedded Workbench IDE,
providing development and debugging within the same application.
U430-5

Part 4. Debugging 109

110

Setting up the IAR C-SPY Debugger
All windows that are open in the Embedded Workbench workspace will stay open when
you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows will be
opened.

You can modify your source code in an editor window during the debug session, but
changes will not take effect until you exit from the debugger and rebuild your
application.

The integration also makes it possible to set breakpoints in the text editor at any point
during the development cycle. It is also possible to inspect and modify breakpoint
definitions also when the debugger is not running. Breakpoints are highlighted in the
editor windows and breakpoint definitions flow with the text as you edit. Your debug
settings, such as watch properties, window layouts, and register groups will remain
between your debug sessions.

In addition to the features available in the IAR Embedded Workbench IDE, the debugger
environment consists of a set of C-SPY-specific items, such as a debugging toolbar,
menus, windows, and dialog boxes.

Reference information about each item specific to C-SPY can be found in the chapter
C-SPY® Debugger reference, page 313.

For specific information about a C-SPY driver, see the part of the book corresponding
to the driver.

Setting up the IAR C-SPY Debugger
Before you start the IAR C-SPY Debugger you should set options to set up the debugger
system. These options are available on the Setup page of the Debugger category,
available with the Project>Options command. On the Plugins page you can find
options for loading plug-in modules.

In addition to the options for setting up the debugger system, you can also set
debugger-specific IDE options. These options are available with the Tools>Options
command. For further information about these options, see Debugger page, page 297.

For information about how to configure the debugger to reflect the target hardware, see
Adapting C-SPY to target hardware, page 113.

CHOOSING A DEBUG DRIVER

Before starting C-SPY, you must choose a driver for the debugger system from the
Driver drop-down list on the Setup page. If you choose a driver for a hardware
debugger system, you also need to set hardware-specific options. For information about
these options, see the chapter C-SPY® FET-specific debugging and Part 7. Reference
information.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

The IAR C-SPY® Debugger
Note: You can only choose a driver you have installed on your computer.

EXECUTING FROM RESET

Using the Run to option, you can specify a location you want C-SPY to run to when you
start the debugger as well as after each reset. C-SPY will place a breakpoint at this
location and all code up to this point will be executed prior to stopping at the location.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will then contain the regular
hardware reset address at each reset.

If there are no breakpoints available when C-SPY starts, a warning message appears
notifying you that single stepping will be required and that this is time consuming. You
can then continue execution in single step mode or stop at the first instruction. If you
choose to stop at the first instruction, the debugger starts executing with the PC (program
counter) at the default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where
breakpoints are not limited.

USING A SETUP MACRO FILE

A setup macro file is a standard macro file that you choose to load automatically when
C-SPY starts. You can define the setup macro file to perform actions according to your
needs, by using setup macro functions and system macros. Thus, by loading a setup
macro file you can initialize C-SPY to perform actions automatically.

To register a setup macro file, select Use macro file and type the path and name of your
setup macro file, for example Setup.mac. If you do not type a filename extension, the
extension mac is assumed. A browse button is available for your convenience.

For detailed information about setup macro files and functions, see The macro file, page
144. For an example about how to use a setup macro file, see the chapter Simulating an
interrupt in Part 2. Tutorials.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY handles several of the target-specific adaptations by using device description
files. They contain device-specific information about for example, definitions of
peripheral units and CPU registers, and groups of these.
U430-5

Part 4. Debugging 111

112

Starting the IAR C-SPY Debugger
If you want to use the device-specific information provided in the device description file
during your debug session, you must select the appropriate device description file.
Device description files are provided in the 430\config directory and they have the
filename extension ddf.

By default, a suitable device description file is always selected. To load a different
device description file, you must, before you start the C-SPY debugger, choose
Project>Options and select the Debugger category. On the Setup page, enable the use
of a description file and select a file using the Device description file browse button.

For more information about device description files, see Adapting C-SPY to target
hardware, page 113. For an example about how to use a setup macro file, see Simulating
an interrupt in Part 2. Tutorials.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules that are to be loaded and
made available during debug sessions. Plugin modules can be provided by IAR, as well
as by third-party suppliers. Contact your software distributor or IAR representative, or
visit the IAR Systems web site, for information about available modules.

For information about how to load plugin modules, see Plugins, page 396.

The IAR C-SPY RTOS awareness plugin modules

Provided that there is one or more real-time operating systems plugin modules
supported for the IAR Embedded Workbench version you are using, you can load one
for use with the IAR C-SPY Debugger. C-SPY RTOS awareness plugin modules give
you a high level of control and visibility over an application built on top of a real-time
operating system. It displays RTOS-specific items like task lists, queues, semaphores,
mailboxes and various RTOS system variables. Task-specific breakpoints and
task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own set of windows and buttons when a debug session is
started (provided that the RTOS is linked with the application). For information about
other RTOS awareness plugin modules, refer to the manufacturer of the plugin module.

Starting the IAR C-SPY Debugger
When you have setup the debugger, you can start it.

To start the IAR C-SPY Debugger and load the current project, click the Debug button.
Alternatively, choose the Project>Debug command.

For information about how to execute your application and how to use the C-SPY
features, see the remaining chapters in Part 4. Debugging.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

The IAR C-SPY® Debugger
Executable files built outside of the Embedded Workbench

It is also possible to load C-SPY with a project that was built outside the Embedded
Workbench, for example projects built on the command line. To be able to set C-SPY
options for the externally built project, you must create a project within the Embedded
Workbench.

To load an externally built executable file, you must first create a project for it in your
workspace. Choose Project>Create New Project, and specify a project name. To add
the executable file to the project, choose Project>Add Files and make sure to choose
All Files in the Files of type drop-down list. Locate the executable file (filename
extension d43). To start the executable file, select the project in the Workspace window
and click the Debug button. The project can be reused whenever you rebuild your
executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

REDIRECTING DEBUGGER OUTPUT TO A FILE

The Debug Log window—available from the View menu—displays debugger output,
such as diagnostic messages and trace information. It can sometimes be convenient to
log the information to a file where it can be easily inspected. The Log Files dialog
box—available from the Debug menu—allows you to log output from C-SPY to a file.
The two main advantages are:

● The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

● The file provides history about how you have controlled the execution, for instance,
what breakpoints have been triggered etc.

The information printed in the file is by default the same as the information listed in the
Log window. However, you can choose what you want to log in the file: errors,
warnings, system information, user messages, or all of these. For reference information
about the Log File options, see Log File dialog box, page 340.

Adapting C-SPY to target hardware
This section describes how to configure the debugger to reflect the target hardware. The
C-SPY device description file and its contents is described.

DEVICE DESCRIPTION FILE

C-SPY handles several of the target-specific adaptations by using device description
files provided with the product. They contain device-specific information such as:
U430-5

Part 4. Debugging 113

114

Adapting C-SPY to target hardware
● Memory information for device-specific memory zones
● Definitions of memory-mapped peripheral units, device-specific CPU registers, and

groups of these
● Definitions for interrupt simulation in the simulator.

You can find device description files for each MSP430 device in the 430\config
directory.

For information about how to load a device description file, see Selecting a device
description file, page 111.

Memory zones

Memory information for device-specific memory zones are defined in the device
description files. By default there is only one address zone in the debugger, Memory. If
you load a device description file, additional zones that adhere better to the specific
device memory layout are defined.

If your hardware does not have the same memory layout as any of the predefined device
description files, you can define customized zones by adding them to the file. For further
details about customizing the file, see Modifying a device description file, page 115.

For information about memory zones, see Memory addressing, page 135.

Registers

For each device there is a hardwired group of CPU registers. Their contents can be
displayed and edited in the Register window. Additional registers are defined in a
specific register definition file—with the filename extension sfr—which is included
from the register section of the device description file. These registers are the
device-specific memory-mapped control and status registers for the peripheral units on
the MSP430 microcontrollers.

Due to the large amount of registers it is inconvenient to list all registers concurrently in
the Register window. Instead the registers are divided into logical register groups. By
default there is one register group in the MSP430 debugger, namely CPU Registers.

For details about how to work with the Register window, view different register groups,
and how to configure your own register groups to better suit the use of registers in your
application, see the section Working with registers, page 138.

Interrupts

Device description files also contain a section that defines all device-specific interrupts,
which makes it possible to simulate these interrupts in the C-SPY Simulator. You can
read more about how to do this in Simulating interrupts, page 177.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

The IAR C-SPY® Debugger
Modifying a device description file

There is normally no need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. The syntax of the
device descriptions is described in the files. Note, however, that the format of these
descriptions might be updated in future upgrade versions of the product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file.
U430-5

Part 4. Debugging 115

116

Adapting C-SPY to target hardware
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Executing your application
The IAR C-SPY® Debugger provides a flexible range of facilities for executing
your application during debugging. This chapter contains information about:

● The conceptual differences between source mode and disassembly mode
debugging

● Executing your application

● The call stack

● Handling terminal input and output.

Source and disassembly mode debugging
The IAR C-SPY Debugger allows you to switch seamlessly between source mode and
disassembly mode debugging as required.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control over the hardware. You can open a disassembly
window which displays a mnemonic assembler listing of your application based on
actual memory contents rather than source code, and lets you execute the application
exactly one instruction at a time. In Mixed-Mode display, the debugger also displays the
corresponding C/C++ source code interleaved with the disassembly listing.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

For an example of a debug session both in C source mode and disassembly mode, see
Debugging the application, page 37.
U430-5

Part 4. Debugging 117

118

Executing
Executing
The IAR C-SPY Debugger provides a flexible range of features for executing your
application. You can find commands for executing on the Debug menu as well as on the
toolbar.

STEP

C-SPY allows more stepping precision than most other debuggers in that it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, as well as at each function call.
That is, source code locations where you might consider whether to execute a step into
or a step over command. Because the step points are located not only at each statement
but also at each function call, the step functionality allows a finer granularity than just
stepping on statements. There are four different step commands:

● Step Into
● Step Over
● Next Statement
● Step Out

Consider this example and assume that the previous step has taken you to the f(i)
function call (highlighted):

int f(int n)
{
 value = f(n-1) + f(n-2) + f(n-3);
 return value;
}
...
f(i);
value ++;

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine, f(n-1):

int f(int n)
{
 value = f(n-1) + f(n-2) + f(n-3);
 return value;
}
...
f(i);
value ++;

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Executing your application
The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the f(n-2) function
call, which is not a statement on its own but part of the same statement as f(n-1). Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

int f(int n)
{
 value = f(n-1) + f(n-2) + f(n-3);
 return value;
}
...
f(i);
value ++;

The Next Statement command executes directly to the next statement return value,
allowing faster stepping:

int f(int n)
{
 value = f(n-1) + f(n-2) + f(n-3);
 return value;
}
...
f(i);
value ++;

When inside the function, you have the choice of stepping out of it before reaching the
function exit, by using the Step Out command. This will take you directly to the
statement immediately after the function call:

int f(int n)
{
 value = f(n-1) + f(n-2) f(n-3);
 return value;
 ...
}
...
f(i);
value ++;

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for Embedded C++, which tends to have many implicit
function calls, such as constructors, destructors, assignment operators, and other
user-defined operators.
U430-5

Part 4. Debugging 119

120

Executing
This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, it is also possible to step only on statements, which means faster
stepping.

GO

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

RUN TO CURSOR

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source with a green color.

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

USING BREAKPOINTS TO STOP

You can set breakpoints in the application to stop at locations of particular interest.
These locations can be either at code sections where you want to investigate whether
your program logic is correct, or at data accesses to investigate when and how the data
is changed. Depending on which debugger system you are using you might also have
access to additional types of breakpoints. For instance, if you are using C-SPY
Simulator there is a special kind of breakpoint to facilitate simulation of simple
hardware devices. See the chapter Simulator-specific debugging for further details.

For a more advanced simulation, you can stop under certain conditions, which you
specify. It is also possible to connect a C-SPY macro to the breakpoint. The macro can
be defined to perform actions, which for instance can simulate specific hardware
behavior.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Executing your application
All these possibilities provide you with a flexible tool for investigating the status of, for
example, variables and registers at different stages during the application execution.

For detailed information about the breakpoint system and how to use the different
breakpoint types, see the chapter Using breakpoints.

USING THE BREAK BUTTON TO STOP

While your application is executing, the Break button on the debug toolbar is
highlighted in red. You can stop the application execution by clicking the Break button,
alternatively by choosing the Debug>Break command.

STOP AT PROGRAM EXIT

Typically, the execution of an embedded application is not intended to end, which means
that the application will not make use of a traditional exit. However, there are situations
where a controlled exit is necessary, such as during debug sessions. You can link your
application with a special library that contains an exit label. A breakpoint will be
automatically set on that label to stop execution when it gets there. Before you start
C-SPY, choose Project>Options, and select the Linker category. On the Output page,
select the option With runtime control modules (-r).

Call stack information
The MSP430 IAR C/C++ Compiler generates extensive backtrace information. This
allows C-SPY to show, without any runtime penalty, the complete call chain at any time.
Typically, this is useful for two purposes:

● Determining in what context the current function has been called
● Tracing the origin of incorrect values in variables and incorrect values in

parameters, thus locating the function in the call chain where the problem occurred.

The Call Stack window—available from the View menu—shows a list of function calls,
with the current function at the top. When you inspect a function in the call chain, by
double-clicking on any function call frame, the contents of all affected windows will be
updated to display the state of that particular call frame. This includes the editor, Locals,
Register, Watch and Disassembly windows. A function would normally not make use of
all registers, so these registers might have undefined states and be displayed as dashes
(---). For reference information about the Call Stack window, see Call Stack window,
page 326.

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.
U430-5

Part 4. Debugging 121

122

Terminal input and output
For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command—available on the Debug menu, or alternatively on the
context menu—to execute to that function.

Assembler source code does not automatically contain any backtrace information. To be
able to see the call chain also for your assembler modules, you can add the appropriate
CFI assembler directives to the source code. For further information, see the MSP430
IAR Assembler Reference Guide.

Terminal input and output
Sometimes you might need to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window—available on the View menu—lets you enter input to your application, and
display output from it.

This facility can be useful in two different contexts:

● If your application uses stdin and stdout
● For producing debug trace printouts.

To use this window, you need to link your application with the option With I/O
emulation modules. C-SPY will then direct stdin, stdout, and stderr to this
window.

For reference information, see Terminal I/O window, page 328.

Directing stdin and stdout to a file

You can also direct stdin and stdout directly to a file. You can then open the file in
another tool, for instance an editor, to navigate and search within the file for particularly
interesting parts. The Terminal I/O Log Files dialog box—available by choosing
Debug>Logging—allows you to select a destination log file, and to log terminal I/O
input and output from C-SPY to this file.

For reference information, see Terminal I/O Log File dialog box, page 341.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Working with variables
and expressions
This chapter defines the variables and expressions used in C-SPY®. It also
demonstrates the different methods for examining variables and expressions.

C-SPY expressions
C-SPY lets you examine the C variables, C expressions, and assembler symbols that you
have defined in your application code. In addition, C-SPY allows you to define C-SPY
macro variables and macro functions and use them when evaluating expressions.
Expressions that are built with these components are called C-SPY expressions and
there are several methods for monitoring these in C-SPY.

C-SPY expressions can include any type of C expression, except function calls. The
following types of symbols can be used in expressions:

● C/C++ symbols
● Assembler symbols (register names and assembler labels)
● C-SPY macro functions
● C-SPY macro variables

Examples of valid C-SPY expressions are:

i + j
i = 42
#asm_label
#R2
#PC
my_macro_func(19)

C SYMBOLS

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions. C symbols can be referenced by their
names.

Using sizeof

According to the ISO/ANSI C standard, there are two syntactical forms of sizeof:

sizeof(type)
sizeof expr
U430-5

Part 4. Debugging 123

124

C-SPY expressions
The former is for types and the latter for expressions.

In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

ASSEMBLER SYMBOLS

Assembler symbols can be assembler labels or register names. That is, general purpose
registers, such as R4–R15, and special purpose registers, such as the program counter
and the status register. If a device description file is used, all memory-mapped peripheral
units, such as I/O ports, can also be used as assembler symbols in the same way as the
CPU registers. See Device description file, page 113.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes ` (ASCII character 0x60). For example:

Which processor-specific symbols are available by default can be seen in the Register
window, using the CPU Registers register group. See Register groups, page 138.

MACRO FUNCTIONS

Macro functions consist of C-SPY variable definitions and macro statements which are
executed when the macro is called.

For details of C-SPY macro functions and how to use them, see The macro language,
page 144.

MACRO VARIABLES

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assigns both its value and type.

Example What it does

#pc++ Increments the value of the program counter.

myptr = #label7 Sets myptr to the integral address of label7 within its zone.

Table 12: C-SPY assembler symbols expressions

Example What it does

#pc Refers to the program counter.

#`pc` Refers to the assembler label pc.

Table 13: Handling name conflicts between hardware registers and assembler labels
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Working with variables and expressions
For details of C-SPY macro variables and how to use them, see The macro language,
page 397.

Limitations on variable information
The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

EFFECTS OF OPTIMIZATIONS

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. Depending on your project settings, a high level of
optimization results in smaller or faster code, but also in increased compile time.
Debugging might be more difficult because it will be less clear how the generated
code relates to the source code. Typically, using a high optimization level can affect
the code in a way that will not allow you to view a value of a variable as expected.

Consider this example:

foo()
{
 int i = 42;
 ...
 x = bar(i); //Not until here the value of i is known to C-SPY
 ...
}

From the point where the variable i is declared until it is actually used there is no need
for the compiler to waste stack or register space on it. The compiler can optimize the
code, which means C-SPY will not be able to display the value until it is actually used.
If you try to view a value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.
U430-5

Part 4. Debugging 125

126

Viewing variables and expressions
Viewing variables and expressions
There are several methods for looking at variables and calculating their values:

● Tooltip watch provides the simplest way of viewing the value of a variable or more
complex expressions. Just point at the variable with the pointer. The value will be
displayed next to the variable.

● The Auto window—available from the View menu—automatically displays a
useful selection of variables and expressions in, or near, the current statement.

● The Locals window—available from the View menu—automatically displays the
local variables, that is, auto variables and function parameters for the active
function.

● The Watch window—available from the View menu—allows you to monitor the
values of C-SPY expressions and variables.

● The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in
the expressions must be statically located, such as global variables.

● The Quick Watch window, see Using the Quick Watch window, page 126.
● The Trace system, see Using the trace system, page 127.

For reference information about the different windows, see C-SPY windows, page 313.

WORKING WITH THE WINDOWS

All the windows are easy to use. You can add, modify, and remove expressions, and
change the display format.

A context menu containing useful commands is available in all windows if you
right-click in each window. Convenient drag-and-drop between windows is supported,
except for in the Locals window and the Quick Watch window where it is not applicable.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click in the Value field and
modify its content. To remove an expression, select it and press the Delete key.

Using the Quick Watch window

The Quick Watch window—available from the View menu—lets you watch the value
of a variable or expression and evaluate expressions.

The Quick Watch window is different from the Watch window in the following ways:

● The Quick Watch window offers a fast method for inspecting and evaluating
expressions. Right-click on the expression you want to examine and choose Quick
Watch from the context menu that appears. The expression will automatically
appear in the Quick Watch window.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Working with variables and expressions
● In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be
necessary, but for expressions with side effects, such as assignments and C-SPY
macro functions, it allows you to perform evaluations under controlled conditions.

USING THE TRACE SYSTEM

A trace is a recorded sequence of events in the target system, typically executed machine
instructions. Depending on what C-SPY driver you are using, additional types of trace
data can be recorded. For example, read and write accesses to memory, as well as the
values of C-SPY expressions.

By using the trace system, you can trace the program flow up to a specific state, for
instance an application crash, and use the trace information to locate the origin of the
problem. Trace information can be useful for locating programming errors that have
irregular symptoms and occur sporadically. Trace information can also be useful as test
documentation. You can save the trace information to a file to be analyzed later.

The trace system is only supported by the simulator driver and not by the FET debugger
driver. For detailed information about the trace system and the components provided by
the simulator, see Simulator-specific debugging, page 159.

The Trace window and its browse mode

The type of information that is displayed in the Trace window depends on the C-SPY
driver you are using. The different trace data is displayed in separate columns, but the
Trace column is always available regardless of what driver you are using. The
corresponding source code can also be shown.

You can follow the execution history by simply looking and scrolling in the Trace
window. Alternatively, you can enter browse mode. To enter browse mode, double-click
an item in the Trace window, or click the Browse toolbar button. The selected item turns
yellow and the source and disassembly windows will highlight the corresponding
location. You can now move around in the Trace window by using the up and down
arrow keys, or by scrolling and clicking; the source and Disassembly windows will be
updated to show the corresponding location. Double-click again to leave browse mode.

Searching in the trace data

You can perform advanced searches in the recorded trace data. You specify the search
criteria in the Find in Trace dialog box and view the result in the Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.
U430-5

Part 4. Debugging 127

128

Viewing variables and expressions
VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY treats, by default, all data located at assembler labels as
variables of type int. However, in the Watch, Quick Watch, and Live Watch windows,
you can select a different interpretation to better suit the declaration of the variables.

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

Figure 45: Viewing assembler variables in the Watch window

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Using breakpoints
This chapter describes the breakpoint system and different ways to create and
monitor breakpoints.

The breakpoint system
The C-SPY® breakpoint system lets you set various kinds of breakpoints in the
application you are debugging, allowing you to stop at locations of particular interest.
You can set a breakpoint at a code location to investigate whether your program logic is
correct, or to get trace printouts. In addition to code breakpoints, and depending on what
C-SPY driver you are using, additional breakpoint types might be available. For
example, you might be able to set a data breakpoint, to investigate how and when the
data changes. If you are using the simulator driver you can also set immediate
breakpoints.

All your breakpoints are listed in the Breakpoints window where you can conveniently
monitor, enable, and disable them.

For a more advanced simulation, you can stop under certain conditions, which you
specify. It is also possible to let the breakpoint trigger a side effect, for instance
executing a C-SPY macro function, without stopping the execution. The macro function
can be defined to perform a wide variety of actions, for instance, simulating hardware
behavior.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions. C-SPY provides different ways of defining
breakpoints.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

Defining breakpoints
The breakpoints you define will appear in the Breakpoints window. From this window
you can conveniently view all breakpoints, enable and disable breakpoints, and open a
dialog box for defining new breakpoints. For more details, see Breakpoints window,
page 255.

Breakpoints are set with a higher precision than single lines, in analogy with the step
mechanism; for more details about the step precision, see Step, page 118.
U430-5

Part 4. Debugging 129

130

Defining breakpoints
You can set a breakpoint in several different ways: using the Toggle Breakpoint
command, from the Memory window, from a dialog box, or using predefined system
macros. The different methods allow different levels of complexity and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available, either in the editor window, the Disassembly window, or both:

● Double-click in the gray left-side margin of the editor window
● Place the insertion point in the C source statement or assembler instruction where

you want the breakpoint, and click the Toggle Breakpoint button in the toolbar
● Choose Edit>Toggle Breakpoint
● Right-click and choose Toggle Breakpoint from the context menu.

The breakpoint is marked with a red X in the left margin of the editor window:

Figure 46: Breakpoint on a function call

If the red X does not appear, make sure the option Show bookmarks is selected, see
Editor page, page 291.

SETTING A BREAKPOINT IN THE MEMORY WINDOW

For information about how to set breakpoints using the Memory window, see Setting a
breakpoint in the Memory window, page 137.

DEFINING BREAKPOINTS USING THE DIALOG BOX

The advantage of using the dialog box is that it provides you with a graphical interface
where you can interactively fine tune the characteristics of the breakpoints. You can set
the options and quickly test whether the breakpoint works according to your intentions.

To define a new breakpoint:

1 Choose View>Breakpoints to open the Breakpoints window.

2 In the Breakpoints window, right-click to open the context menu.

3 On the context menu, choose New Breakpoint.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Using breakpoints
4 On the submenu, choose the breakpoint type you want to set. Depending on the C-SPY
driver you are using, different breakpoint types might be available.

To modify an existing breakpoint:

1 Choose View>Breakpoints to open the Breakpoints window.

2 In the Breakpoints window, select the breakpoint you want to modify and right-click to
open the context menu.

3 On the context menu, choose Edit.

A breakpoint dialog box appears. Specify the breakpoint settings and click OK. The
breakpoint will be displayed in the Breakpoints window.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

For reference information about code and log breakpoints, see Code breakpoints dialog
box, page 256 and Log breakpoints dialog box, page 258, respectively. For details about
any additional breakpoint types, see the driver-specific documentation.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, it is useful to put a breakpoint on the first line of the function with a condition
that is true only when the parameter is 0. The breakpoint will then not be triggered until
the problematic situation actually occurs.

Performing a task with or without stopping execution

You can perform a task when a breakpoint is triggered with or without stopping the
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed.

If you instead want to perform a task without stopping the execution, you can set a
condition which returns 0 (false). When the breakpoint is triggered, the condition will
be evaluated and since it is not true execution will continue.

Consider the following example where the C-SPY macro function performs a simple
task:

__var my_counter;

count()
{
 my_counter += 1;
U430-5

Part 4. Debugging 131

132

Viewing all breakpoints
 return 0;
}

To use this function as a condition for the breakpoint, type count() in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

DEFINING BREAKPOINTS USING SYSTEM MACROS

You can define breakpoints not only by using the Breakpoints dialog box but also by
using built-in C-SPY system macros. When you use macros for defining breakpoints,
the breakpoint characteristics are specified as function parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file by using
built-in system macros and execute the file at C-SPY startup. The breakpoints will then
be set automatically each time you start C-SPY. Another advantage is that the debug
session will be documented, and that several engineers involved in the development
project can share the macro files.

If you use system macros for setting breakpoints it is still possible to view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros will be removed when
you exit the debug session.

The following breakpoint macros are available:

__setCodeBreak
__setDataBreak
__setSimBreak
__clearBreak

For details of each breakpoint macro, see the chapter C-SPY® macros reference.

Defining breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Registering and executing using setup macros and setup files,
page 147.

Viewing all breakpoints
To view breakpoints, you can use the Breakpoints window and the Breakpoints Usage
dialog box.

For information about the Breakpoints window, see Breakpoints window, page 255.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Using breakpoints
USING THE BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from C-SPY driver-specific menus, for
example the Simulator menu—lists all active breakpoints.

Figure 47: Breakpoint Usage dialog box

The Breakpoint Usage dialog box lists all breakpoints currently set in the target system,
both the ones you have defined and the ones used internally by C-SPY. For each
breakpoint in the list, the address and access type are shown. Each breakpoint can also
be expanded to show its originator. The format of the items in this dialog box depends
on which C-SPY driver you are using.

The dialog box gives a low-level view of all breakpoints, related but not identical to the
list of breakpoints shown in the Breakpoints dialog box.

Exceeding the number of available low-level breakpoints will cause the debugger to
single step. This will significantly reduce the execution speed. Therefore, in a debugger
system with a limited amount of breakpoints, the Breakpoint Usage dialog box can be
useful for:

● Identifying all consumers of breakpoints
● Checking that the number of active breakpoints is supported by the target system
● Configuring the debugger to utilize the available breakpoints in a better way, if

possible.

For information about the available number of breakpoints in the debugger system you
are using and how to use the available breakpoints in a better way, see the section about
breakpoints in the part of this book that corresponds to the debugger system you are
using.
U430-5

Part 4. Debugging 133

134

Viewing all breakpoints
Breakpoint consumers

There are several consumers of breakpoints in a debugger system.

User breakpoints—the breakpoints you define by using the Breakpoints dialog box or
by toggling breakpoints in the editor window—often consume one low-level breakpoint
each, but this can vary greatly. Some user breakpoints consume several low-level
breakpoints and conversely, several user breakpoints can share one low-level
breakpoint. User breakpoints are displayed in the same way both in the Breakpoint
Usage dialog box and in the Breakpoints dialog box, for example Data @[R]
callCount.

C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

● the C-SPY option Run to has been selected, and any step command is used. These
are temporary breakpoints which are only set when the debugger system is running.
This means that they are not visible in the Breakpoint Usage window.

● the linker options With I/O emulation modules has been selected.

These types of breakpoint consumers are displayed in the Breakpoint Usage dialog
box, for example, C-SPY Terminal I/O & libsupport module.

In addition, C-SPY plugin modules, for example modules for real-time operating
systems, can consume additional breakpoints.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Monitoring memory and
registers
This chapter describes how to use the features available in the IAR C-SPY®
Debugger for examining memory and registers:

● The Memory window

● The Register window

● Predefined and user-defined register groups

● The Stack window.

Memory addressing
In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. The MSP430
architecture has only one zone, Memory, which covers the whole MSP430 memory
range. If you load a device description file, additional zones that adhere better to the
specific device memory layout are defined.

Figure 48: Zones in C-SPY

 SFR

 Default zone Memory Additional zones for MSP430F149

0xFFFF

0x0200

0x0000

0xFFFF

0x0000

RAM

0x1100

0x0A00

 Flash

U430-5

Part 4. Debugging 135

136

Using the Memory window
Memory zones are used in several contexts, perhaps most importantly in the Memory
and Disassembly windows. The Zone box in these windows allows you to choose which
memory zone to display.

Memory zones are defined in the device description files. For further information, see
Device description file, page 113.

Using the Memory window
The Memory window—available from the View menu—gives an up-to-date display of
a specified area of memory and allows you to edit it. You can open several instances of
this window, which is very convenient if you want to monitor different memory or
register areas.

Figure 49: Memory window

The window consists of three columns. The left-most part displays the addresses
currently being viewed. The middle part of the window displays the memory contents
in the format you have chosen. Finally, the right-most part displays the memory contents
in ASCII format. You can edit the contents of the Memory window, both in the
hexadecimal part and the ASCII part of the window.

You can easily view the memory contents for a specific variable by dragging the variable
to the Memory window. The memory area where the variable is located will appear.

Memory window operations

At the top of the window there are commands for navigation and configuration. These
commands are also available on the context menu that appears when you right-click in
the Memory window. In addition, commands for editing, opening the Fill dialog box,
and setting breakpoints are available.

Go to memory
address

Zone display
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Monitoring memory and registers
For reference information about each command, see Memory window, page 318.

Memory Fill

The Fill dialog box allows you to fill a specified area of memory with a value.

Figure 50: Memory Fill dialog box

For reference information about the dialog box, see Fill dialog box, page 320.

Setting a breakpoint in the Memory window

It is possible to set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted; you can see, edit, and remove it by using the
Breakpoints window, which is available from the View menu. The breakpoints you set
in this window will be triggered for both read and write access. All breakpoints defined
in the Memory window are preserved between debug sessions.

Note: Setting different types of breakpoints in the Memory window is only supported
if the driver you use supports these types of breakpoints.
U430-5

Part 4. Debugging 137

138

Working with registers
Working with registers
The Register window—available from the View menu—gives an up-to-date display of
the contents of the processor registers, and allows you to edit them.

Figure 51: Register window

Every time C-SPY stops, a value that has changed since the last stop is highlighted. To
edit the contents of a register, click it, and modify the value. Some registers are
expandable, which means that the register contains interesting bits or subgroups of bits.

You can change the display format by changing the Base setting on the Register Filter
page—available by choosing Tools>Options.

REGISTER GROUPS

Due to the large amount of registers—memory-mapped peripheral unit registers and
CPU registers—it is inconvenient to list all registers concurrently in the Register
window. Instead you can divide registers into register groups. By default there is only
one register group in the debugger: CPU Registers.

In addition to the CPU Registers there are additional register groups predefined in the
device description files—available in the 430\config directory—that make all SFR
registers available in the register window. The device description file contains a section
that defines the special function registers and their groups.

You can select which register group to display in the Register window using the
drop-down list. You can conveniently keep track of different register groups
simultaneously, as you can open several instances of the Register window.

Enabling predefined register groups

To use any of the predefined register groups, select a device description file that suits
your device, see Selecting a device description file, page 111.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Monitoring memory and registers
The available register groups will be listed on the Register Filter page available if you
choose the Tools>Options command when C-SPY is running.

Defining application-specific groups

In addition to the predefined register groups, you can design your own register groups
that better suit the use of registers in your application.

To define new register groups, choose Tools>Options and click the Register Filter tab.
This page is only available when the IAR C-SPY Debugger is running.

Figure 52: Register Filter page

For reference information about this dialog box, see Register Filter page, page 298.
U430-5

Part 4. Debugging 139

140

Using the Stack window
Using the Stack window
The Stack window is a memory window that displays the contents of the stack. In
addition, some integrity checks of the stack can be performed to detect and warn about
problems with stack overflow. For example, the Stack window is useful for determining
the optimal size of the stack.

Before you can open the Stack window you must make sure it is enabled; Choose
Project>Options>Debugger>Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open
several Stack windows, each showing a different stack—if several stacks are
available—or the same stack with different display settings.

Figure 53: Stack window

For detailed reference information about the Stack window, and the method used for
computing the stack usage and its limitations, see Stack window, page 332. For reference
information about the options specific to the window, see Stack page, page 301.

GRAPHICAL STACK DISPLAY

At the top of the window, a stack bar displays the state of the stack graphically. To view
the stack bar you must make sure it is enabled: choose Tools>Options>Stack and select
the option Enable stack checks.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. A green line represents the current value of
the stack pointer. The part of the stack memory that has been used during execution is
displayed in a dark-gray color, and the unused part in a light-gray color. The graphical
stack bar turns red when the stack usage exceeds a threshold that you can specify.

Current stack
pointer

Unused stack memory,
in light gray

Current stack
pointer Used stack memory,

in dark gray
Stack view

The graphical stack bar
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Monitoring memory and registers
Place the mouse pointer over the stack bar to get tool tip information about stack usage.

DETECTING STACK OVERFLOWS

If you have selected the option Enable stack checks, available by choosing
Tools>Options>Stack, you have also enabled the functionality needed to detect stack
overflows. This means that C-SPY can issue warnings for stack overflow when the
application stops executing. Warnings are issued either when the stack usage exceeds a
threshold that you can specify, or when the stack pointer is outside the stack memory
range.

VIEWING THE STACK CONTENTS

The main part of the Stack window displays the contents of the stack, which can be
useful in many contexts. Some examples are:

● Investigating the stack usage when assembler modules are called from C modules
and vice versa

● Investigating whether the correct elements are located on the stack
● Investigating whether the stack is restored properly.
U430-5

Part 4. Debugging 141

142

Using the Stack window
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Using the C-SPY® macro
system
The IAR C-SPY Debugger includes a comprehensive macro system which
allows you to automate the debugging process and to simulate peripheral
devices. Macros can be used in conjunction with complex breakpoints and
interrupt simulation to perform a wide variety of tasks.

This chapter describes the macro system, its features, for what purpose these
features can be used, and how to use them.

The macro system
C-SPY macros can be used solely or in conjunction with complex breakpoints and
interrupt simulation to perform a wide variety of tasks. Some examples where macros
can be useful:

● Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

● Hardware configuring, such as initializing hardware registers.
● Developing small debug utility functions, for instance calculating the stack depth.
● Simulating peripheral devices, see the chapter Simulating interrupts. This only

applies if you are using the simulator driver.

The macro system has several features:

● The similarity between the macro language and the C language, which lets you
write your own macro functions.

● Predefined system macros which perform useful tasks such as opening and closing
files, setting breakpoints and defining simulated interrupts.

● Reserved setup macro functions which can be used for defining at which stage the
macro function should be executed. You define the function yourself, in a setup
macro file.

● The option of collecting your macro functions in one or several macro files.
● A dialog box where you can view, register, and edit your macro functions and files.

Alternatively, you can register and execute your macro files and functions using
either the setup functionality or system macros.
U430-5

Part 4. Debugging 143

144

The macro system
Many C-SPY tasks can be performed either by using a dialog box or by using macro
functions. The advantage of using a dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the task you want
to perform, for instance setting a breakpoint. You can add parameters and quickly test
whether the breakpoint works according to your intentions.

Macros, on the other hand, are useful when you already have specified your breakpoints
so that they fully meet your requirements. You can set up your simulator environment
automatically by writing a macro file and executing it, for instance when you start
C-SPY. Another advantage is that the debug session will be documented, and if there are
several engineers involved in the development project you can share the macro files
within the group.

THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return values. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. For a
detailed description of the macro language components, see The macro language, page
397.

Example

Consider this example of a macro function which illustrates the different components of
the macro language:

CheckLatest(value)
{
 oldvalue;
 if (oldvalue != value)
 {
 __message "Message: Changed from ", oldvalue, " to ", value;
 oldvalue = value;
 }
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

THE MACRO FILE

You collect your macro variables and functions in one or several macro files. To define
a macro variable or macro function, first create a text file containing the definition. You
can use any suitable text editor, such as the editor supplied with IAR Embedded
Workbench. Save the file with a suitable name using the filename extension mac.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Using the C-SPY® macro system
Setup macro file

It is possible to load a macro file at C-SPY startup; such a file is called a setup macro
file. This is especially convenient if you want to make C-SPY perform actions before
you load your application software, for instance to initialize some CPU registers or
memory-mapped peripheral units. Other reasons might be if you want to automate the
initialization of C-SPY, or if you want to register multiple setup macro files. An example
of a C-SPY setup macro file SetupSimple.mac can be found in the 430\tutor
directory.

For information about how to load a setup macro file, see Registering and executing
using setup macros and setup files, page 147. For an example of how to use setup macro
files, see the chapter Simulating an interrupt in Part 2. Tutorials.

SETUP MACRO FUNCTIONS

The setup macro functions are reserved macro function names that will be called by
C-SPY at specific stages during execution. The stages to choose between are:

● After communication with the target system has been established but before
downloading the application software

● Once after your application software has been downloaded
● Each time the reset command is issued
● Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register
a macro function with the name of a setup macro function. For instance, if you want to
clear a specific memory area before you load your application software, the macro setup
function execUserPreload is suitable. This function is also suitable if you want to
initialize some CPU registers or memory mapped peripheral units before you load your
application software. For detailed information about each setup macro function, see
Setup macro functions summary, page 402.

As with any macro function, you collect your setup macro functions in a macro file.
Because many of the setup macro functions execute before main is reached, you should
define these functions in a setup macro file.

Using C-SPY macros
If you decide to use C-SPY macros, you first need to create a macro file in which you
define your macro functions. C-SPY needs to know that you intend to use your defined
macro functions, and thus you must register (load) your macro file. During the debug
session you might need to list all available macro functions as well as execute them.
U430-5

Part 4. Debugging 145

146

Using C-SPY macros
To list the registered macro functions, you can use the Macro Configuration dialog
box. There are various ways to both register and execute macro functions:

● You can register a macro interactively by using the Macro Configuration dialog
box.

● You can register and execute macro functions at the C-SPY startup sequence by
defining setup macro functions in a setup macro file.

● A file containing macro function definitions can be registered using the system
macro __registerMacroFile. This means that you can dynamically select
which macro files to register, depending on the runtime conditions. Using the
system macro also lets you register multiple files at the same moment. For details
about the system macro, see __registerMacroFile, page 412.

● The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions.

● A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro will be executed.

USING THE MACRO CONFIGURATION DIALOG BOX

The Macro Configuration dialog box—available by choosing Debug>Macros—lets
you list, register, and edit your macro files and functions. The dialog box offers you an
interactive interface for registering your macro functions which is convenient when you
develop macro functions and continuously want to load and test them.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Using the C-SPY® macro system
Macro functions that have been registered using the dialog box will be deactivated when
you exit the debug session, and will not automatically be registered at the next debug
session.

Figure 54: Macro Configuration dialog box

For reference information about this dialog box, see Macro Configuration dialog box,
page 338.

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence,
especially if you have several ready-made macro functions. C-SPY can then execute the
macros before main is reached. You achieve this by specifying a macro file which you
load before starting the debugger. Your macro functions will be automatically registered
each time you start the C-SPY Debugger.

If you define the macro functions by using the setup macro function names you can
define exactly at which stage you want the macro function to be executed.
U430-5

Part 4. Debugging 147

148

Using C-SPY macros
Follow these steps:

1 Create a new text file where you can define your macro function.

For example:

execUserSetup()
{
 ...
 __registerMacroFile(MyMacroUtils.mac);
 __registerMacroFile(MyDeviceSimulation.mac);

}

This macro function registers the macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the
execUserSetup function name, it will be executed directly after your application has
been downloaded.

2 Save the file using the filename extension mac.

3 Before you start C-SPY, choose Project>Options and click the Setup tab in the
Debugger category. Select the check box Use Setup file and choose the macro file you
just created.

The interrupt macro will now be loaded during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window—available from the View menu—lets you watch the value
of any variables or expressions and evaluate them. For macros, the Quick Watch window
is especially useful because it is a method which lets you dynamically choose when to
execute a macro function.

Consider the following simple macro function which checks the status of a watchdog
timer interrupt enable bit:

WDTstatus()
{
 if (#IE1 & 0x01 != 0) /* Checks the status of WDTIE */
 return "Timer enabled"; /* C-SPY macro string used */
 else
 return "Timer disabled"; /* C-SPY macro string used */
}

1 Save the macro function using the filename extension mac. Keep the file open.

2 To register the macro file, choose Debug>Macros. The Macro Configuration dialog
box appears. Locate the file, click Add and then Register. The macro function appears
in the list of registered macros.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Using the C-SPY® macro system
3 In the macro file editor window, select the macro function name WDTstatus.
Right-click, and choose Quick Watch from the context menu that appears.

Figure 55: Quick Watch window

The macro will automatically be displayed in the Quick Watch window.

Click Close to close the window.

EXECUTING A MACRO BY CONNECTING IT TO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed at the time
when the breakpoint is triggered. The advantage is that you can stop the execution at
locations of particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers changes. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

For an example of how to create a log macro and connect it to a breakpoint, follow these
steps:

1 Assume this skeleton of a C function in your application source code:

int fact(int x)
{
 ...
}

2 Create a simple log macro function like this example:

logfact()
{
 __message "fact(" ,x, ")";
}

The __message statement will log messages to the Log window.

Save the macro function in a macro file, with the filename extension mac.
U430-5

Part 4. Debugging 149

150

Using C-SPY macros
3 Before you can execute the macro it must be registered. Open the Macro
Configuration dialog box—available by choosing Debug>Macros—and add your
macro file to the list Selected Macro Files. Click Register and your macro function
will appear in the list Registered Macros. Close the dialog box.

4 Next, you should toggle a code breakpoint—using the Toggle Breakpoint button—on
the first statement within the function fact in your application source code. Open the
Breakpoint dialog box—available by choosing Edit>Breakpoints—your breakpoint
will appear in the list of breakpoints at the bottom of the dialog box. Select the
breakpoint.

5 Connect the log macro function to the breakpoint by typing the name of the macro
function, logfact(), in the Action field and clicking Apply. Close the dialog box.

6 Now you can execute your application source code. When the breakpoint has been
triggered, the macro function will be executed. You can see the result in the Log
window.

You can easily enhance the log macro function by, for instance, using the __fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 400.

For a complete example where a serial port input buffer is simulated using the method
of connecting a macro to a breakpoint, see the chapter Simulating an interrupt in Part 2.
Tutorials.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Analyzing your application
It is important to locate an application’s bottle-necks and to verify that all parts
of an application have been tested. This chapter presents facilities available in
the IAR C-SPY® Debugger for analyzing your application so that you can
efficiently spend time and effort on optimizations.

Code coverage is only supported by the IAR C-SPY Simulator.

Function-level profiling
The profiler will help you find the functions where most time is spent during execution,
for a given stimulus. Those functions are the parts you should focus on when spending
time and effort on optimizing your code. A simple method of optimizing a function is to
compile it using speed optimization. Alternatively, you can move the function into
memory which uses the most efficient addressing mode. For detailed information about
efficient memory usage, see the MSP430 IAR C/C++ Compiler Reference Guide.

The Profiling window displays profiling information, that is, timing information for the
functions in an application. Profiling must be turned on explicitly using a button on the
window’s toolbar, and will stay active until it is turned off.

The profiler measures the time between the entry and return of a function. This means
that time consumed in a function is not added until the function returns or another
function is called. You will only notice this if you are stepping into a function.

For reference information about the Profiling window, see Profiling window, page 330.

USING THE PROFILER

Before you can use the Profiling window, you must build your application using the
following options:

1 After you have built your application and started C-SPY, choose View>Profiling to
open the window, and click the Activate button to turn on the profiler.

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Format>Debug information for C-SPY

Debugger Plugins>Profiling

Table 14: Project options for enabling profiling
U430-5

Part 4. Debugging 151

152

Function-level profiling
2 Click the Clear button, alternatively use the context menu available by right-clicking in
the window, when you want to start a new sampling.

3 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button.

Figure 56: Profiling window

Profiling information is displayed in the window.

Viewing the figures

Clicking on a column header sorts the complete list according to that column.

A dimmed item in the list indicates that the function has been called by a function which
does not contain source code (compiled without debug information). When a function
is called by functions that do not have their source code available, such as library
functions, no measurement in time is made.

There is always an item in the list called Outside main. This is time that cannot be placed
in any of the functions in the list. That is, code compiled without debug information, for
instance, all startup and exit code, and C/C++ library code.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Analyzing your application
Clicking the Graph button toggles the percentage columns to be displayed either as
numbers or as bar charts.

Figure 57: Graphs in Profiling window

Clicking the Show details button displays more detailed information about the function
selected in the list. A window is opened showing information about callers and callees
for the selected function:

Figure 58: Function details window

Producing reports

To produce a report, right-click in the window and choose the Save As command on the
context menu. The contents of the Profiling window will be saved to a file.
U430-5

Part 4. Debugging 153

154

Code coverage
Code coverage
The code coverage functionality helps you verify whether all parts of your code have
been executed. This is useful when you design your test procedure to make sure that all
parts of the code have been executed. It also helps you identify parts of your code that
are not reachable.

USING CODE COVERAGE

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code have been executed at least
once since the start of the analysis. The compiler generates detailed stepping
information in the form of step points at each statement, as well as at each function call.
The report includes information about all modules and functions. It reports the amount
of all step points, in percentage, that have been executed and lists all step points that have
not been executed up to the point where the application has been stopped. The coverage
will continue until turned off.

For reference information about the Code Coverage window, see Code Coverage
window, page 329.

Before using the Code Coverage window you must build your application using the
following options:

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Format>Debug information for C-SPY

Debugger Plugins>Code Coverage

Table 15: Project options for enabling code coverage
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Analyzing your application
After you have built your application and started C-SPY, choose View>Code Coverage
to open the Code Coverage window and click Activate to switch on the code coverage
analyzer. The following window will be displayed:

Figure 59: Code Coverage window

Viewing the figures

The code coverage information is displayed in a tree structure, showing the program,
module, function and step point levels. The plus sign and minus sign icons allow you to
expand and collapse the structure.

The following icons are used to give you an overview of the current status on all levels:

● A red diamond signifies that 0% of the code has been executed
● A green diamond signifies that 100% of the code has been executed
● A red and green diamond signifies that some of the code has been executed
● A yellow diamond signifies a step point that has not been executed.

The percentage displayed at the end of every program, module and function line shows
the amount of code that has been covered so far, that is, the number of executed step
points divided with the total number of step points.

For step point lines, the information displayed is the column number range and the row
number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:row.

A step point is considered to be executed when one of its instructions has been executed.
When a step point has been executed, it is removed from the window.
U430-5

Part 4. Debugging 155

156

Code coverage
Double-clicking a step point or a function in the Code Coverage window displays that
step point or function as the current position in the source window, which becomes the
active window. Double-clicking a module on the program level expands or collapses the
tree structure.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window needs to be refreshed because the displayed information is
no longer up to date. To update the information, use the Refresh command.

What parts of the code are displayed?

The window displays only statements that have been compiled with debug information.
Thus, startup code, exit code and library code will not be displayed in the window.
Furthermore, coverage information for statements in inlined functions will not be
displayed. Only the statement containing the inlined function call will be marked as
executed.

Producing reports

To produce a report, right-click in the window and choose the Save As command on the
context menu. The contents of the Code Coverage window will be saved to a file.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Part 5. IAR C-SPY
Simulator
This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

● Simulator-specific debugging

● Simulating interrupts.
U430-5

157

158
U430-5

Simulator-specific
debugging
In addition to the general C-SPY® features, the C-SPY Simulator provides
some simulator-specific features, which are described in this chapter.

You will get reference information, as well as information about driver-specific
characteristics, such as memory access checking and breakpoints.

The IAR C-SPY Simulator introduction
The IAR C-SPY Simulator simulates the functions of the target processor entirely in
software, which means the program logic can be debugged long before any hardware is
available. As no hardware is required, it is also the most cost-effective solution for many
applications.

FEATURES

In addition to the general features listed in the chapter Product introduction, the IAR
C-SPY Simulator also provides:

● Instruction-accurate simulated execution
● Memory configuration and validation
● Interrupt simulation
● Immediate breakpoints with resume functionality
● Peripheral simulation (using the C-SPY macro system).

SELECTING THE SIMULATOR DRIVER

Before starting the IAR C-SPY Debugger you must choose the simulator driver. In the
IAR Embedded Workbench IDE, choose Project>Options and click the Setup tab in
the Debugger category. Choose Simulator from the Driver drop-down list.

To set simulator-specific options, choose Simulator from the Category list.

Note: You can only choose a driver you have installed on your computer.
U430-5

Part 5. IAR C-SPY Simulator 159

160

Simulator-specific menus
SIMULATOR SETUP

The simulator Setup options specify the simulator-specific options.

CHECK FOR WORD ACCESS ON ODD ADDRESS

Use this option to make the simulator issue a warning if there is a word access to an odd
address.

Simulator-specific menus
When you use the simulator driver, the Simulator menu is added in the menu bar.

SIMULATOR MENU

Figure 60: Simulator menu
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
The Simulator menu contains the following commands:

Using the trace system in the simulator
In the C-SPY simulator, a trace is a recorded sequence of executed machine instructions.
In addition, you can record the values of C-SPY expressions by selecting the expressions
in the Trace Expressions window. The Function Trace window only shows trace data
corresponding to calls to and returns from functions, whereas the Trace window displays
all instructions.

For more detailed information about using the common features in the trace system, see
Using the trace system, page 127.

Menu command Description

Interrupt Setup Displays a dialog box to allow you to configure C-SPY interrupt
simulation; see Interrupt Setup dialog box, page 180.

Forced Interrupts Displays a window from which you can trigger an interrupt; see Forced
interrupt window, page 183.

Interrupt Log Displays a window which shows the status of all defined interrupts; see
Interrupt Log window, page 185.

Memory Access Setup Displays a dialog box to simulate memory access checking by specifying
memory areas with different access types; see Memory Access setup dialog
box, page 168.

Trace Opens the Trace window with the recorded trace data; see Trace window,
page 162.

Function Trace Opens the Function Trace window with the trace data for which
functions were called or returned from; see Function Trace window, page
164.

Breakpoint Usage Displays the Breakpoint Usage dialog box which lists all active
breakpoints; see Breakpoint Usage dialog box, page 175.

Table 16: Description of Simulator menu commands
U430-5

Part 5. IAR C-SPY Simulator 161

162

Using the trace system in the simulator
TRACE WINDOW

The Trace window—available from the Simulator menu—displays a recorded
sequence of executed machine instructions. In addition, the window can display trace
data for expressions.

Figure 61: Trace window

C-SPY generates trace information based on the location of the program counter.

The Trace window contains the following columns:

For more information about using the trace system, see Using the trace system, page
127.

Trace window column Description

A serial number for each row in the trace buffer. Simplifies the
navigation within the buffer.

Trace The recorded sequence of executed machine instructions.
Optionally, the corresponding source code can also be displayed.

Expression Each expression you have defined to be displayed appears in a
separate column. Each entry in the expression column displays the
value after executing the instruction on the same row. You specify
the expressions for which you want to record trace information in
the Trace Expressions window; see Trace Expressions window, page
164.

Table 17: Trace window columns
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
TRACE TOOLBAR

The Trace toolbar is available in the Trace window and in the Function trace window:

Figure 62: Trace toolbar

The following function buttons are available on the toolbar:

Toolbar button Description

Enable/Disable Enables and disables tracing. This button is not available in the
Function trace window.

Clear trace data Clears the trace buffer. Both the Trace window and the Function
trace window are cleared.

Toggle Source Toggles the Trace column between showing only disassembly or
disassembly together with corresponding source code.

Browse Toggles browse mode on and off for a selected item in the Trace
column. For more information about browse mode, see The Trace
window and its browse mode, page 127.

Find Opens the Find In Trace dialog box where you can perform a
search; see Find in Trace dialog box, page 166.

Save Opens a standard Save dialog box where you can save the
recorded trace information to a text file, with tab-separated
columns.

Edit settings This button is not enabled in the C-SPY simulator.

Edit Expressions Opens the Trace Expressions window; see Trace Expressions
window, page 164.

Table 18: Trace toolbar commands

Clear trace data

Find
Edit expression

Enable/Disable

Browse

Toggle source

Save Function trace
U430-5

Part 5. IAR C-SPY Simulator 163

164

Using the trace system in the simulator
FUNCTION TRACE WINDOW

The Function Trace window—available from the Simulator menu—displays a subset
of the trace data displayed in the Trace window. Instead of displaying all rows, the
Function Trace window only shows trace data corresponding to calls to and returns from
functions.

Figure 63: Function Trace window

For information about the toolbar, see Trace toolbar, page 163.

For more information about using the trace system, see Using the trace system, page
127.

TRACE EXPRESSIONS WINDOW

In the Trace Expressions window—available from the Trace window toolbar—you can
specify specific expressions for which you want to record trace information.

Figure 64: Trace Expressions window

In the Expression column, you specify any expression you want to be recorded. You can
specify any expression that can be evaluated, such as variables and registers.

The Format column shows which display format is used for each expression.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
Each row in this window will appear as an extra column in the Trace window.

For more information about using the trace system, see Using the trace system, page
127.

Use the toolbar buttons to change the order between the expressions:

FIND IN TRACE WINDOW

The Find In Trace window—available from the View>Messages menu—displays the
result of searches in the trace data.

Figure 65: Find In Trace window

The Find in Trace window looks like the Trace window, showing the same columns and
data, but only those rows that match the specified search criteria. Double-clicking an
item in the Find in Trace window brings up the same item in the Trace window.

You specify the search criteria in the Find In Trace dialog box. For information about
how to open this dialog box, see Find in Trace dialog box, page 166.

For more information about using the trace system, see Using the trace system, page
127.

Toolbar button Description

Arrow up Moves the selected row up

Arrow down Moves the selected row down

Table 19: Toolbar buttons in the Trace Expressions window
U430-5

Part 5. IAR C-SPY Simulator 165

166

Using the trace system in the simulator
FIND IN TRACE DIALOG BOX

Use the Find in Trace dialog box—available by choosing Edit>Find and
Replace>Find or from the Trace window toolbar—to specify the search criteria for
advanced searches in the trace data. Note that the Edit>Find and Replace>Find
command is context-dependent. It displays the Find in Trace dialog box if the Trace
window is the current window or the Find dialog box if the editor window is the current
window.

Figure 66: Find in Trace dialog box

The search results are displayed in the Find In Trace window—available by choosing
the View>Messages command, see Find In Trace window, page 165.

In the Find in Trace dialog box, you specify the search criteria with the following
settings:

Text search

A text field where you type the string you want to search for. Use the following options
to fine-tune the search:

Match Case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

Only search in one
column

Searches only in the column you selected from the drop-down menu.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
Address Range

Use the text fields to specify an address range. The trace data within the address range
is displayed. If you also have specied a text string in the Text search field, the text string
will be searched for within the address range.

For more information about using the trace system, see Using the trace system, page
127.

Memory access checking
C-SPY can simulate different memory access types of the target hardware and detect
illegal accesses, for example a read access to write-only memory. If a memory access
occurs that does not agree with the access type specified for the specific memory area,
C-SPY will regard this as an illegal access. The purpose of memory access checking is
to help you to identify any memory access violations.

The memory areas can either be the zones predefined in the device description file, or
memory areas based on the segment information available in the debug file. In addition
to these, you can define your own memory areas. The access type can be read and write,
read only, or write only. It is not possible to map two different access types to the same
memory area. You can choose between checking access type violation or checking
accesses to unspecified ranges. Any violations are logged in the Debug Log window.
You can also choose to have the execution halted.

Choose Simulator>Memory Access Setup to open the Memory Access Setup dialog
box.
U430-5

Part 5. IAR C-SPY Simulator 167

168

Memory access checking
MEMORY ACCESS SETUP DIALOG BOX

The Memory Access Setup dialog box—available from the Simulator menu—lists all
defined memory areas, where each column in the list specifies the properties of the area.
In other words, the dialog box displays the memory access setup that will be used during
the simulation.

Figure 67: Memory Access Setup dialog box

Note: If you enable both the Use ranges based on and the Use manual ranges option,
memory accesses will be checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 170.

Use ranges based on

Use the Use ranges based on option to choose any of the predefined alternatives for the
memory access setup. You can choose between:

● Device description file, which means the properties will be loaded from the device
description file

● Debug file segment information, which means the properties will be based on the
segment information available in the debug file. This information is only available
while debugging. The advantage of using this option, is that the simulator can catch
memory accesses outside the linked application.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
Use manual ranges

Use the Use manual ranges option to specify your own ranges manually via the Edit
Memory Access dialog box. To open this dialog box, choose New to specify a new
memory range, or select a memory zone and choose Edit to modify it. For more details,
see Edit Memory Access dialog box, page 170.

The ranges you define manually are saved between debug sessions.

Memory access checking

Use the Check for options to specify what to check for. Choose between:

● Access type violation
● Access to unspecified ranges.

Use the Action options to specify the action to be performed if there is an access
violation. Choose between:

● Log violations
● Log and stop execution.

Any violations are logged in the Debug Log window.

Buttons

The Memory Access Setup dialog box contains the following buttons:

Note: Except for the OK and Cancel buttons, buttons are only available when the
option Use manual ranges is selected.

Button Description

OK Standard OK.

Cancel Standard Cancel.

New Opens the Edit Memory Access dialog box, where you can specify a
new memory range and attach an access type to it; see Edit Memory
Access dialog box, page 170.

Edit Opens the Edit Memory Access dialog box, where you can edit the
selected memory area. See Edit Memory Access dialog box, page 170.

Delete Deletes the selected memory area definition.

Delete All Deletes all defined memory area definitions.

Table 20: Function buttons in the Memory Access Setup dialog box
U430-5

Part 5. IAR C-SPY Simulator 169

170

Using breakpoints
EDIT MEMORY ACCESS DIALOG BOX

In the Edit Memory Access dialog box—available from the Memory Access Setup
dialog box—you can specify the memory ranges, and assign an access type to each
memory range, for which you want to detect illegal accesses during the simulation.

Figure 68: Edit Memory Access dialog box

For each memory range you can define the following properties:

Memory range

Use these settings to define the memory area for which you want to check the memory
accesses:

Access type

Use one of these options to assign an access type to the memory range; the access type
can be one of Read and write, Read only, or Write only. It is not possible to assign two
different access types to the same memory area.

Using breakpoints
Using the C-SPY Simulator, you can set an unlimited amount of breakpoints. For code
and data breakpoints you can define a size attribute, that is, you can set the breakpoint
on a range. You can also set immediate breakpoints.

Zone The memory zone; see Memory addressing, page 135.

Start address The start address for the address range, in hexadecimal notation.

End address The end address for the address range, in hexadecimal notation.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
For information about the breakpoint system, see the chapter Using breakpoints in this
guide. For detailed information about code breakpoints, see Code breakpoints dialog
box, page 256.

DATA BREAKPOINTS

Data breakpoints are triggered when data is accessed at the specified location. Data
breakpoints are primarily useful for variables that have a fixed address in memory. If you
set a breakpoint on an accessible local variable, the breakpoint will be set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. The execution will usually stop directly after the instruction that
accessed the data has been executed.

You can set a data breakpoint in three different ways; by using:

● A dialog box, see Data breakpoints dialog box, page 171
● A system macro, see __setDataBreak, page 416
● The Memory window, see Setting a breakpoint in the Memory window, page 137.

Data breakpoints dialog box

The options for setting data breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Data to set a new breakpoint. Alternatively, to modify an existing
breakpoint, select a breakpoint in the Breakpoint window and choose Edit on the
context menu.

The Data breakpoints dialog box appears.

Figure 69: Data breakpoints dialog box
U430-5

Part 5. IAR C-SPY Simulator 171

172

Using breakpoints
Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 260.

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Note: Data breakpoints never stop execution within a single instruction. They are
recorded and reported after the instruction is executed. (Immediate breakpoints do not
stop execution at all, they only suspend it temporarily. See Immediate breakpoints, page
173.)

Size

Optionally, you can specify a size—in practice, a range of locations. Each read and write
access to the specified memory range will trigger the breakpoint. For data breakpoints,
this can be useful if you want the breakpoint to be triggered on accesses to data
structures, such as arrays, structs, and unions.

There are two different ways the size can be specified:

● Auto, the size will automatically be based on the type of expression the breakpoint
is set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes

● Manual, you specify the size of the breakpoint manually in the Size text box.

Action

You can optionally connect an action to a breakpoint. You specify an expression, for
instance a C-SPY macro function, which is evaluated when the breakpoint is triggered
and the condition is true.

Memory Access type Description

Read/Write Read or write from location (not available for immediate breakpoints).

Read Read from location.

Write Write to location.

Table 21: Memory Access types
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
Conditions

You can specify simple and complex conditions.

IMMEDIATE BREAKPOINTS

In addition to generic breakpoints, the C-SPY Simulator lets you set immediate
breakpoints, which will halt instruction execution only temporarily. This allows a
C-SPY macro function to be called when the processor is about to read data from a
location or immediately after it has written data. Instruction execution will resume after
the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

The two different methods of setting an immediate breakpoint are by using:

● A dialog box, see Immediate breakpoints dialog box, page 173
● A system macro, see __setSimBreak, page 419.

Immediate breakpoints dialog box

The options for setting immediate breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Immediate to set a new breakpoint. Alternatively, to modify an
existing breakpoint, select a breakpoint in the Breakpoint window and choose Edit on
the context menu.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.

Condition true The breakpoint is triggered if the value of the expression is true.

Condition changed The breakpoint is triggered if the value of the expression has changed
since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 22: Breakpoint conditions
U430-5

Part 5. IAR C-SPY Simulator 173

174

Using breakpoints
The Immediate breakpoints dialog box appears.

Figure 70: Immediate breakpoints page

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 260.

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Note: Immediate breakpoints do not stop execution at all; they only suspend it
temporarily. See Using breakpoints, page 170.

Action

You should connect an action to the breakpoint. Specify an expression, for instance a
C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.

Memory Access type Description

Read Read from location.

Write Write to location.

Table 23: Memory Access types
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulator-specific debugging
BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from the Simulator menu—lists all
active breakpoints.

Figure 71: Breakpoint Usage dialog box

In addition to listing all breakpoints that you have defined, this dialog box also lists the
internal breakpoints that the debugger is using.

For each breakpoint in the list the address and access type are shown. Each breakpoint
in the list can also be expanded to show its originator.

For more information, see Viewing all breakpoints, page 132.
U430-5

Part 5. IAR C-SPY Simulator 175

176

Using breakpoints
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
By being able to simulate interrupts, you can debug the program logic long
before any hardware is available. This chapter contains detailed information
about the C-SPY® interrupt simulation system and how to configure the
simulated interrupts to make them reflect the interrupts of your target
hardware. Finally, reference information about each interrupt system macro is
provided.

For information about the interrupt-specific facilities useful when writing
interrupt service routines, see the MSP430 IAR C/C++ Compiler Reference
Guide.

The C-SPY interrupt simulation system
The IAR C-SPY Simulator includes an interrupt simulation system that allows you to
simulate the execution of interrupts during debugging. It is possible to configure the
interrupt simulation system so that it resembles your hardware interrupt system. By
using simulated interrupts in conjunction with C-SPY macros and breakpoints, you can
compose a complex simulation of, for instance, interrupt-driven peripheral devices.
Having simulated interrupts also lets you test the logic of your interrupt service routines.

The interrupt system has the following features:

● Simulated interrupt support for the MSP430 microcontroller
● Single-occasion or periodical interrupts based on the cycle counter
● Predefined interrupts for different devices
● Configuration of hold time, probability, and timing variation
● State information for locating timing problems
● Two interfaces for configuring the simulated interrupts—a dialog box and a C-SPY

system macro—that is, one interactive and one automating interface
● Activation of interrupts either instantly or based on parameters you define
● A log window which continuously displays the status for each defined interrupt.

The interrupt system is activated by default, but if it is not required it can be turned off
to speed up the simulation. You can turn the interrupt system on or off as required either
in the Interrupt Setup dialog box, or by using a system macro. Defined interrupts will
be preserved until you remove them. All interrupts you define using the Interrupt
Setup dialog box are preserved between debug sessions.
U430-5

Part 5. IAR C-SPY Simulator 177

178

The C-SPY interrupt simulation system
INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, and a variance.

Figure 72: Simulated interrupt configuration

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options
probability—the probability, in percent, that the interrupt will actually appear in a
period—and variance—a time variation range as a percentage of the repeat interval.
These options make it possible to randomize the interrupt simulation. You can also
specify a hold time which describes how long the interrupt remains pending until
removed if it has not been processed. If the hold time is set to infinite, the corresponding
pending bit will be set until the interrupt is acknowledged or removed.

H H H

R±V

Act - First activation time
R - Repeat interval
H - Hold time
V - Variance

Act±V0
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that can be used for locating
timing problems in your application. The Interrupt Setup dialog box displays the
available status information. The interrupt activation signal can exist in one of the states
Idle or Pending. For an interrupt, the following states can be displayed: Executing,
Removed, or Expired.

For a repeatable interrupt that has a specified repeat time which is longer than the
execution time, the status information at different times can look like this:

Figure 73: Simulation states - example 1

If the interrupt repeat interval is shorter than the execution time, and the interrupt is
re-entrant (or non-maskable), the status information at different times can look like this:

Figure 74: Simulation states - example 2

In this case, the execution time of the interrupt handler is too long compared to the repeat
time, which might indicate that you should rewrite your interrupt handler and make it
shorter, or that you should specify a longer repeat time for the interrupt simulation
system.

Using the interrupt simulation system
The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using, and know how to use:

● The Forced Interrupt window
● The Interrupts and Interrupt Setup dialog boxes

A B C D EInterrupt
activation
signal

Hold time

Execution time for
interrupt handler

Time Status

A Idle

B

C

D

Pending

Idle (1 executing)

Idle (1 executing)

E Idle

A B C DInterrupt
activation
signal

Hold time

Execution time for
interrupt handler (1)

Time Status

A Idle

B

C

D

Executing

Idle (1 executing)

Executing (1 executing)Execution time for
interrupt handler (2)
U430-5

Part 5. IAR C-SPY Simulator 179

180

Using the interrupt simulation system
● The C-SPY system macros for interrupts
● The Interrupt Log window.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To be able to perform these actions for various derivatives, the interrupt system must
have detailed information about each available interrupt. Except for default settings, this
information is provided in the device description files.You can find preconfigured ddf
files in the 430\config directory. The default settings will be used if no device
description file has been specified.

1 To load a device description file before you start C-SPY, choose Project>Options and
click the Setup tab of the Debugger category.

2 Choose a device description file that suits your target.

Note: In case you do not find a preconfigured device description file that resembles
your device, you can define one according to your needs. For details of device
description files, see Device description file, page 113.

INTERRUPT SETUP DIALOG BOX

The Interrupt Setup dialog box—available by choosing Simulator>Interrupt
Setup—lists all defined interrupts.

Figure 75: Interrupt Setup dialog box
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
The option Enable interrupt simulation enables or disables interrupt simulation. If the
interrupt simulation is disabled, the definitions remain but no interrupts will be
generated. You can also enable and disable installed interrupts individually by using the
check box to the left of the interrupt name in the list of installed interrupts.

The columns contain the following information:

Note: For repeatable interrupts there might be additional information in the Type
column about how many interrupts of the same type that is simultaneously executing
(n executing). If n is larger than one, there is a reentrant interrupt in your interrupt
simulation system that never finishes executing, which might indicate that there is a
problem in your application.

Only non-forced interrtupts may be edited or removed.

Click New or Edit to open the Edit Interrupt dialog box.

Interrupt Lists all interrupts.

Type Shows the type of the interrupt. The type can be Forced, Single,
or Repeat.

Status Shows the status of the interrupt. The status can be Idle, Removed,
Pending, Executing, or Expired.

Next Activation Shows the next activation time in cycles.
U430-5

Part 5. IAR C-SPY Simulator 181

182

Using the interrupt simulation system
EDIT INTERRUPT DIALOG BOX

Use the Edit Interrupt dialog box—available from the Interrupt Setup dialog box—to
add and modify interrupts. This dialog box provides you with a graphical interface
where you can interactively fine-tune the interrupt simulation parameters. You can add
the parameters and quickly test that the interrupt is generated according to your needs.

Figure 76: Edit Interrupt dialog box

For each interrupt you can set the following options:

Interrupt A drop-down list containing all available interrupts. Your selection
will automatically update the Description box. The list is populated
with entries from the device description file that you have selected.

Description Contains the description of the selected interrupt, if available. The
description is retrieved from the selected device description file and
consists of a string describing the vector address, priority, enable bit,
and pending bit, separated by space characters. For interrupts
specified using the system macro __orderInterrupt, the
Description box will be empty.

First activation The value of the cycle counter after which the specified type of
interrupt will be generated.

Repeat interval The periodicity of the interrupt in cycles.

Variance % A timing variation range, as a percentage of the repeat interval, in
which the interrupt may occur for a period. For example, if the
repeat interval is 100 and the variance 5%, the interrupt might occur
anywhere between T=95 and T=105, to simulate a variation in the
timing.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
FORCED INTERRUPT WINDOW

From the Forced Interrupt window—available from the Simulator menu—you can
force an interrupt instantly. This is useful when you want to check your interrupt
logistics and interrupt routines.

Figure 77: Forced Interrupt window

To force an interrupt, the interrupt simulation system must be enabled. To enable the
interrupt simulation system, see Interrupt Setup dialog box, page 180.

The Forced Interrupt window lists all available interrupts and their definitions. The
description field is editable and the information is retrieved from the selected device
description file and consists of a string describing the vector address, priority, enable bit,
and pending bit, separated by space characters.

By selecting an interrupt and clicking the Trigger button, an interrupt of the selected
type is generated.

A triggered interrupt will have the following characteristics:

Hold time Describes how long, in cycles, the interrupt remains pending until
removed if it has not been processed. If you select Infinite, the
corresponding pending bit will be set until the interrupt is
acknowledged or removed.

Probability % The probability, in percent, that the interrupt will actually occur
within the specified period.

Characteristics Settings

First Activation As soon as possible (0)

Repeat interval 0

Table 24: Characteristics of a forced interrupt
U430-5

Part 5. IAR C-SPY Simulator 183

184

Using the interrupt simulation system
C-SPY SYSTEM MACROS FOR INTERRUPTS

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. By writing a macro function containing
definitions for the simulated interrupts you can automatically execute the functions
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides a set of predefined system macros for the interrupt
simulation system. The advantage of using the system macros for specifying the
simulated interrupts is that it lets you automate the procedure.

These are the available system macros related to interrupts:

__enableInterrupts

__disableInterrupts

__orderInterrupt

__cancelInterrupt

__cancelAllInterrupts

__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupts dialog box. To read more about how to use the
__popSimulatorInterruptExecutingStack macro, see Interrupt simulation in a
multi-task system, page 185.

For detailed reference information about each macro, see Description of C-SPY system
macros, page 404.

Defining simulated interrupts at C-SPY startup using a setup file

If you want to use a setup file to define simulated interrupts at C-SPY startup, follow the
procedure described in Registering and executing using setup macros and setup files,
page 147.

Hold time Infinite

Variance 0%

Probability 100%

Characteristics Settings

Table 24: Characteristics of a forced interrupt
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
Interrupt simulation in a multi-task system

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If there are
too many interrupts executing simultaneously, a warning might be issued.

To avoid these problems, you can use the
__popSimulatorInterruptExecutingStack macro to inform the interrupt
simulation system that the interrupt handler has finished executing, as if the normal
instruction used for returning from an interrupt handler was executed. You can use the
following procedure:

1 Set a code breakpoint on the instruction that returns from the interrupt function.

2 Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

INTERRUPT LOG WINDOW

The Interrupt Log window—available from the Simulator menu—displays runtime
information about the interrupts that you have activated in the Interrupts dialog box or
forced via the Forced Interrupt window. The information is useful for debugging the
interrupt handling in the target system.

Figure 78: Interrupt Log window

The columns contain the following information:

Column Description

Cycles The point in time, measured in cycles, when the event occurred.

PC The value of the program counter when the event occurred.

Table 25: Description of the Interrupt Log window
U430-5

Part 5. IAR C-SPY Simulator 185

186

Simulating a simple interrupt
When the Interrupt Log window is open it will be updated continuously during runtime.

Note: If the window becomes full of entries, the first entries will be erased.

Simulating a simple interrupt
In this example you will simulate a timer interrupt. However, the procedure can also be
used for other types of interrupts.

This simple application contains an interrupt service routine for the BasicTimer, which
increments a tick variable. The main function sets the necessary status registers. The
application exits when 100 interrupts have been generated.

#include "io430x41x.h"
#include <intrinsics.h>

volatile int ticks = 0;
void main (void)
{
 /* Timer setup code */
 WDTCTL = WDTPW + WDTHOLD; /* Stop WDT */
 IE2 |= BTIE; /* Enable BT interrupt */
 BTCTL = BTSSEL+BTIP2+BTIP1+BTIP0;
 __enable_interrupt(); /* Enable interrupts */

 while (ticks < 100); /* Endless loop */
 printf("Done\n");
}

Interrupt The interrupt as defined in the device description file.

Number A unique number assigned to the interrupt. The number is used for
distinguishing between different interrupts of the same type.

Status Shows the status of the interrupt, which can be Triggered, Forced,
Executing, Finished, or Expired.
• Triggered: The interrupt has passed its activation time.
• Forced: The same as Triggered, but the interrupt has been forced from
the Forced Interrupt window.
• Executing: The interrupt is currently executing.
• Finished: The interrupt has been executed.
• Expired: The interrupt hold time has expired without the interrupt
being executed.

Column Description

Table 25: Description of the Interrupt Log window (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Simulating interrupts
/* Timer interrupt service routine */
#pragma vector = BASICTIMER_VECTOR
__interrupt void basic_timer(void)
{
 ticks += 1;
}

To simulate and debug an interrupt, perform the following steps:

1 Add your interrupt service routine to your application source code and add the file to
your project.

2 C-SPY needs information about the interrupt to be able to simulate it. This information
is provided in the device description files. To select a device description file, choose
Project>Options, and click the Setup tab in the Debugger category. Use the Use
device description file browse button to locate the file ddf file.

3 Build your project and start the simulator.

4 Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. For the BasicTimer example, verify the following
settings:

Click OK.

5 Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

● Generate an interrupt when the cycle counter has passed 4000
● Continuously repeat the interrupt after approximately 2000 cycles.

Option Settings

Interrupt BASICTIMER_VECTOR

First Activation 4000

Repeat interval 2000

Hold time Infinite

Probability % 100

Variance % 0

Table 26: Timer interrupt settings
U430-5

Part 5. IAR C-SPY Simulator 187

188

Simulating a simple interrupt
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Part 6. IAR C-SPY® FET
debugger
This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

● Introduction to the IAR C-SPY® FET Debugger

● C-SPY® FET-specific debugging

● Design considerations for in-circuit programming.
U430-5

189

190
U430-5

Introduction to the IAR
C-SPY® FET Debugger
This chapter introduces you to the IAR C-SPY Flash Emulation Tool Debugger
(C-SPY FET Debugger), as well as to how it differs from the C-SPY Simulator.
This chapter describes how you install the hardware and then run the demo
applications. The chapter also briefly describes the communication between
the C-SPY FET driver and the target system, and gives some troubleshooting
hints.

The chapters specific to the C-SPY FET Debugger assumes that you already
have some working knowledge of the FET Debugger, as well as some working
knowledge of the IAR C-SPY Debugger. For a quick introduction, see Part 2.
Tutorials.

Note that additional features may have been added to the software after the
MSP430 IAR Embedded Workbench® IDE User Guide was printed. The release
notes contain the latest information.

The FET C-SPY Debugger
The MSP430 microcontroller has built-in, on-chip debug support. To make the C-SPY
FET Debugger work, a communication driver must be installed on the host PC. This
driver is automatically installed during the installation of the IAR Embedded
Workbench IDE. Because the hardware debugger kernel is built into the microcontroller,
no ordinary ROM-monitor program or extra specific hardware is needed to make the
debugging work. It is also possible to use the debugger on your own hardware design.

The C-SPY FET Debugger provides general C-SPY Debugger features, and features
specific to the C-SPY FET driver. For detailed information about the general debugger
features, see Part 4. Debugging in this guide.
U430-5

Part 6. IAR C-SPY® FET Debugger 191

192

The FET C-SPY Debugger
The C-SPY FET driver uses the parallel port to communicate with the FET Interface
module. The FET Interface module communicates which the JTAG interface on the
hardware.

Figure 79: Communication overview

For more details about the communication, see C-SPY FET communication, page 225.

DIFFERENCES BETWEEN THE C-SPY DRIVERS

The following table summarizes the key differences between the FET and simulator
drivers:

Feature Simulator FET

OP-fetch x x

Data breakpoints1 x x

Execution in real time x

Simulated interrupts x

Real interrupts x

Cycle counter2 x x

Code coverage x

Table 27: Simulator and FET differences

Host computer

C-SPY
Debugger

C-SPY driver

Parallel
cable/USB

Interface
module

JTAG

On-chip
emulation CPU

Target board

FLASH RAM
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Introduction to the IAR C-SPY® FET Debugger
1. Data breakpoints are supported for the devices with the Enhanced Emulation module. For fur-
ther details, see Emulator menu, page 202.
2. Cycle counter is supported during single step, you can then view the value of the cycle counter
in the Register window.
3. The FET Debugger must single step during profiling.

Hardware installation
MSP-FET430X110

1 Connect the 25-conductor cable originating from the FET to the parallel port of your
PC.

2 Ensure that the MSP430 device is securely seated in the socket, and that its pin 1
(indicated with a circular indentation on the top surface) aligns with the 1 mark on the
PCB.

3 Ensure that jumpers J1 (near the non-socketed IC on the FET) and J5 (near the LED)
are in place.

MSP-FET430PXX0

(P120, P140, P410, P430, P440)

1 Use the 25-conductor cable to connect the FET Interface module to the parallel port or
USB port of your PC.

2 Use the 14-conductor cable to connect the FET Interface module to the Target Socket
module.

3 Ensure that the MSP430 device is securely seated in the socket, and that its pin 1
(indicated with a circular indentation on the top surface) aligns with the 1 mark on the
PCB.

4 Ensure that the two jumpers (LED and Vcc) near the 2x7 pin male connector are in
place.

IAR J-LINK OR TI USB FET INTERFACE MODULE

1 Use the USB cable to connect the IAR J-Link or TI USB FET interface module to the
USB port of your PC.

Profiling x x3

Enhanced Emulation Module support x

Trace x

Feature Simulator FET

Table 27: Simulator and FET differences (Continued)
U430-5

Part 6. IAR C-SPY® FET Debugger 193

194

Firmware upgrade
2 Windows will search for a USB driver. Since this is the first time you are using the
USB interface module, Windows will open a dialog box and ask you to browse to the
USB drivers. The USB drivers can be found in the product installation in the following
directories:

IAR J-Link: 430\drivers\JLink

TI USB FET interface module: 430\drivers\TIUSBFET\WinXP

Once the initial setup is completed, you will not have to repeat this step. Note that the
USB interface module will blink each time it is connected until Windows makes the
connection.

3 Use the 14-conductor cable to connect the USB Interface module to the Target Socket
module.

4 Ensure that the MSP430 device is securely seated in the socket, and that its pin 1
(indicated with a circular indentation on the top surface) aligns with the 1 mark on the
PCB.

5 Make sure that the two jumpers (LED and Vcc) near the 2x7 pin male connector are in
place.

Firmware upgrade
When the C-SPY FET Debugger driver starts up, it will check that the firmware version
is compatible. If an old firmware version is detected, you can choose whether it should
be automatically upgrade or not. If any problems occur, follow this procedure:

1 Close the IAR Embedded Workbench IDE.

2 Unplug and replug the USB FET cable.

3 Start the IAR Embedded Workbench IDE and the C-SPY FET Debugger.

4 The debugger should ask again for firmware upgrade.

Getting started
This section demonstrates two demo applications—one in assembler language and one
in C—that flash the LED. The applications are built and downloaded to the FET
Debugger, and then executed.

There is one demo workspace file supplied with the C-SPY FET Debugger
fet_projects.eww. This workspace contains two projects per FET variant—one in C
and one in assembler. The files are provided in the directory 430\FET_examples.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Introduction to the IAR C-SPY® FET Debugger
The majority of the examples use the various resources of the MSP430 to time the
flashing of the LED.

Note: The examples often assume the presence of a 32kHz crystal, and not all FET
Debuggers are supplied with a 32kHz crystal.

RUNNING A DEMO APPLICATION

The following examples assume that you are using an MSP430F149 device. See the
HTML document which FET project suits my device.htm.

C Example

1 In the IAR Embedded Workbench IDE, choose File>Open Workspace to open the
workspace file fet_projects.eww.

2 To display the C project, click the appropriate project tab at the bottom of the
workspace window, for instance fet140_1_C.

If you want to run the application for a different FET Debugger, click the appropriate
project tab.

3 Select the Debug build configuration from the drop-down list at the top of the
workspace window.

4 Choose Project>Options. In addition to the factory settings, verify the following
settings:

For more information about the C-SPY FET Debugger options and how to configure
C-SPY to interact with the target board, see Options for debugging using the C-SPY FET
debugger, page 197.

Click OK to close the Options dialog box.

5 Choose Project>Make to compile and link the source code.

6 Start C-SPY by clicking the Debug button or by choosing Project>Debug. C-SPY
will erase the flash memory of the device, and then download the application to the
target system.

Category Page Option/Setting

General Options Target Device: msp430F149

C/C++ Compiler Output Generate debug info

Debugger Setup Driver: FET Debugger

FET Debugger Setup Deselect Suppress download
Connection: Select the connection type you are using

Table 28: Project options for FET C example
U430-5

Part 6. IAR C-SPY® FET Debugger 195

196

Getting started
7 In C-SPY, choose Debug>Go or click the Go button to start the application. The LED
should flash.

8 Click the Stop button to stop the execution.

Assembler example

1 In the IAR Embedded Workbench IDE, choose File>Open Workspace to open the
workspace file fet_projects.eww.

2 To display the assembler project, click the appropriate project tab at the bottom of the
workspace window, for instance fet140_1_asm.

If you want to run the application for a different FET Debugger, click the appropriate
project tab.

3 Select the Debug build configuration from the drop-down list at the top of the
workspace window.

4 Choose Project>Options. In addition to the factory settings, verify the following
settings:

For more information about the C-SPY FET Debugger options and how to configure
C-SPY to interact with the target board, see Options for debugging using the C-SPY FET
debugger, page 197.

Click OK to close the Options dialog box.

5 Choose Project>Make to assemble and link the source code.

6 Start C-SPY by clicking the Debug button or by choosing Project>Debug. C-SPY will
erase the flash memory of the device, and then download the application object file to
the target system.

7 In C-SPY, choose Debug>Go or click the Go button to start the application. The LED
should flash.

8 Click the Stop button to stop the execution.

Category Page Option/Setting

General Options Target Device: msp430F149

C/C++ Compiler Output Generate debug info

Debugger Setup Driver: FET Debugger

FET Debugger Setup Deselect Suppress download
Connection: Select the connection type you are using

Table 29: Project options for FET assembler example
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific
debugging
This chaptersection describes the additional options, menus, and features
provided by the C-SPY® FET debugger driver. The chaptersection contains
the following sections:

● Options for debugging using the C-SPY FET debugger

● The Emulator menu

● Using breakpoints

● Using state storage

● Using the sequencer

● Stepping

● C-SPY FET communication.

Options for debugging using the C-SPY FET debugger
Before you start any C-SPY hardware debugger you must set some options for the
debugger system—both C-SPY generic options and options required for the hardware
system (C-SPY driver-specific options). Follow this procedure:

1 To open the Options dialog box, choose Project>Options.

2 To set C-SPY generic options and select a C-SPY driver:

● Select Debugger from the Category list
● On the Setup page, select the FET Debugger driver from the Driver list.

For information about the settings Setup macros, Run to, and Device descriptions, as
well as for information about the pages Extra Options and Plugins, see the chapter
Debugger optionsthe MSP430 IAR Embedded Workbench® IDE User Guide.

Note that a default device description file and linker command file is automatically
selected depending on your selection of a device on the General Options>Target page.
U430-5

Part 6. IAR C-SPY® FET Debugger 197

198

Options for debugging using the C-SPY FET debugger
3 To set the driver-specific options, select FET Debugger from the Category list. For
details about the options specific to the FET debugger, see:

● Setup, page 198
● Breakpoints, page 200.

4 When you have set all the required options, click OK in the Options dialog box.

SETUP

The Setup page in the FET debugger category contains setup options specific to the
C-SPY FET debugger.

Figure 80: FET debugger setup options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Download control

Use the following options to control the download:

Attach to running target

Use this option to make the debugger attach to a running application at its current
location, without resetting the target system. To avoid unexpected behavior when using
this option, deselect the options Debugger>Setup>Run to and
Debugger>Plugins>Stack.

This option must be disabled when you download the application for the first time.

Verify download Use this option to verify that the downloaded code image can be
read back from target memory with the correct contents.

Suppress download Disables the downloading of code, while preserving the present
content of the flash. This command is useful if you need to exit
C-SPY for a while and then continue the debug session without
downloading code. The implicit RESET performed by C-SPY at
startup is not disabled, though.
If this option is combined with Verify all, the debugger will read
your application back from the flash memory and verify that it is
identical with the application currently being debugged.

Erase main memory Erases only the main flash memory before download. The
information memory is not erased.

Erase main and
Information memory

Erases both the flash memories—main and Information
memory—before download.

Retain unchanged
memory

Reads the main and Information memories into a buffer. Only the
flash segments needed are erased. If data that is to be written into
a segment matches the data on the target, the data on the target is
left as is, and no download is performed. The new data effectively
replaces the old data, and unaffected old data is retained.

Allow erase/write access
to locked flash memory

Controls if it should be possible to erase Info Segment A. This
option can only be used with an MSP430F2xx device.
U430-5

Part 6. IAR C-SPY® FET Debugger 199

200

Options for debugging using the C-SPY FET debugger
Disable memory cache

Use this option to disable the memory cache in the FET debugger.

Connection

The C-SPY FET debugger can communicate with the target device via the parallel port
or the USB port. Select Lpt, J-Link (USB), or TI USB FET to specify the connection
type. If you select Lpt you must also specify which parallel port to use; LPT1, LPT2, or
LPT3.

Debug protocol

The C-SPY FET debugger supports both the ordinary 4-wire JTAG interface and the
2-wire JTAG debug interface, also referred to as the Spy-Bi-Wire interface.
Spy-By-Wire works for the parallel port FET module and the TI USB FET module.

Target VCC

Use the Target VCC option to specify the voltage provided by the USB interface. Type
the value in Volts with one decimal’s precision in the range 1.0–4.0 V. This option can
only be used with a USB connection.

BREAKPOINTS

The Breakpoints page in the FET debugger category contains options specific to
breakpoints.

Figure 81: FET debugger breakpoint options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Use virtual breakpoints

The option Use virtual breakpoints allows C-SPY to use virtual breakpoints when all
available hardware breakpoints have been used. When virtual breakpoints are used,
C-SPY is forced into single-step mode.

To prevent C-SPY form entering single-step mode, disable this option. In this case
C-SPY will not use virtual breakpoints, even though all hardware breakpoints are
already used. For further information, see Available breakpoints, page 204the MSP430
IAR Embedded Workbench® IDE User Guide.

System breakpoints on

The option System breakpoints on can be used for fine-tuning the use of system
breakpoints in the CLIB runtime environment. If the C-SPY Terminal I/O window is not
required or if you do not need a breakpoint on the exit label, you can save hardware
breakpoints by not reserving system breakpoints. Select or deselect the options exit,
putchar, and getchar respectively, if you want, or not want, C-SPY to use system
breakpoints for these. For further information, see Available breakpoints, page 204the
MSP430 IAR Embedded Workbench® IDE User Guide.

In the DLIB runtime environment, C-SPY will always set a system breakpoint on the
__DebugBreak label. You cannot disable this behavior.
U430-5

Part 6. IAR C-SPY® FET Debugger 201

202

Emulator menu
Emulator menu
Using the C-SPY FET driver creates a new menu on the menu bar—the Emulator
menu.

Figure 82: Emulator menu

The following commands are available on the menu:

Menu Command Description

Connected device The name of the device used for debugging.

Device
information

Opens a window with information about the target device being used.

Release JTAG on
Go

Sets the JTAG drivers in tri-state so that the device is released from JTAG
control—TEST pin is set to GND—when GO is activated.

Resynchronize
JTAG

Regains control of the device.
It is not possible to Resynchronize JTAG while the device is operating.

Init New Device Initializes the device according to the specified options on the Flash
Emulation Tool page. The current program file is downloaded to the
device memory, and the device is then reset. This command can be used to
program multiple devices with the same program from within the same
C-SPY session.
It is not possible to choose Init New Device while the device is operating,
thus the command will be dimmed.

Table 30: Emulator menu commands
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Secure Blows the fuse on the target device. After the fuse is blown, no
communication with the device is possible.

Breakpoint Usage Displays the Breakpoint Usage dialog box which lists all active
breakpoints; see Breakpoint Usage dialog box, page 216.

Advanced>Clock
Control

Depending on the hardware support, clock control comes in one of two
variants, General Clock Control or Extended Clock Control. Extended
Clock Control gives you module level control over the clocks.

Advanced>
Emulation Mode

Specifies the device to be emulated. The device must be reset (or
reinitialized by using the menu command Init New Device) following a
change to the emulation mode.

Advanced>
Memory Dump

Writes the specified device memory contents to a specified file. A dialog box
is displayed where you can specify a filename, a memory starting address, and
a length. The addressed memory is then written in a text format to the
named file. Options permit you to select word or byte text format, and
address information and register contents can also be appended to the file.
The Dump Memory length specifier is restricted to four hexadecimal digits
(0-FFFF). This limits the number of bytes that can be written from 0 to
65535. Consequently, it is not possible to write memory from 0 to 0xFFFF
inclusive as this would require a length specifier of 65536 (or 0x10000).

Advanced>
Breakpoint
Combiner

Combines two already defined breakpoints. Select a breakpoint in the
Breakpoint combiner dialog box, then right-click to display a list to select
the breakpoint to combine it with.
Only available if you are using a device that supports the Enhanced Emulation
Module. The settings are not saved when the debug session is closed.

State Storage
Control

Opens the State Storage Control window, which lets you define the use of
the state storage module. This is only possible if you are using a device that
contains support for the Enhanced Emulation Module.

State Storage
Window

Opens the State Storage window which contains state storage information
according to your definitions.

Sequencer
Control

Opens the Sequencer Control window, which lets you define a state
machine.

“Power on” Reset The device is reset by cycling power to the device.

GIE on/off Clears the General Interrupt Enable bit (GIE) in the Processor Status
register.

Leave Target
Running

Leaves the application running on the target hardware after the debug
session is closed.

Menu Command Description

Table 30: Emulator menu commands (Continued)
U430-5

Part 6. IAR C-SPY® FET Debugger 203

204

Using breakpoints
Note: Not all Emulator>Advanced submenus are available on all MSP430 devices.

Using breakpoints
This section provides an overview of the available breakpoints for the C-SPY FET
Debugger. The following is described:

● Available breakpoints, page 204
● Customizing the use of breakpoints, page 206
● Range breakpoints, page 207
● Conditional breakpoints, page 210
● Advanced trigger breakpoints, page 213
● Breakpoint Usage dialog box, page 216.

For information about the different methods for setting breakpoints, the facilities for
monitoring breakpoints, and the different breakpoint consumers, see the chapter Using
breakpoints, page 129 in this guidethe MSP430 IAR Embedded Workbench® IDE User
Guide.

AVAILABLE BREAKPOINTS

With the C-SPY FET Debugger you can set code breakpoints. If you are using a device
that supports the Enhanced Emulation Module you also have access to an extended
breakpoint system with support for:

● breakpoints on addresses, data, and registers
● defining which type of access that should trigger the breakpoint: read, write, or

fetch
● range breakpoints
● setting conditional breakpoints
● triggering different actions: stopping the execution, or starting the state storage

module.

The Enhanced Emulation Module also gives you access to the sequencer module which
is a state machine that uses breakpoints for triggering new states.

Force Single
Stepping

Forces single step debugging.

Force hardware
RST/NMI

Forces an RST/NMI clear reset when the Reset button is pressed.

Menu Command Description

Table 30: Emulator menu commands (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Hardware and virtual breakpoints

To set breakpoints, the C-SPY FET Debugger uses the hardware breakpoints available
on the device. When all hardware breakpoints are used, C-SPY can use virtual
breakpoints (can also be referred to as software breakpoints), which means that you can
set an unlimited amount of breakpoints.

The number of available hardware breakpoints for each device is:

For the latest device information, see the release notes.

If there are N or fewer breakpoints active, C-SPY will always operate at full speed. If
there are more than N breakpoints active, and virtual breakpoints are enabled, C-SPY
will be forced to single step between the breakpoints. This means that execution will not
be at full speed.

Device Breakpoints (N) Range breakpoints

MSP430F11x1 2

MSP430F11x2 2

MSP430F12x 2

MSP430F12x2 2

MSP430F13x 3 x

MSP430F14x 3 x

MSP430F15x 8 x

MSP430F16x 8 x

MSP430F20xx 2

MSP430F21xx 2

MSP430F41x 2

MSP430F42x 2

MSP430F43x 8 x

MSP430F44x 8 x

MSP430FE42x 2

MSP430FG43x 2

MSP430FW42x 2

MSP430FG43x 2

MSP430FW42x 2

Table 31: Available hardware breakpoints
U430-5

Part 6. IAR C-SPY® FET Debugger 205

206

Using breakpoints
System breakpoints

Sometimes C-SPY must set breakpoints for internal use. These breakpoints are called
system breakpoints. In the CLIB runtime environment, C-SPY will set a system
breakpoint when:

● the library functions putchar() and getchar() are used (low-level routines used
by functions like printf and scanf)

● the application has an exit label.

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.

C-SPY will also set a temporary system breakpoint when:

● the command Edit>Run to Cursor is used
● the option Run to is selected

The system breakpoints will use hardware breakpoints when available. When the
number of available hardware breakpoints is exceeded, virtual breakpoints will be used
instead.

When the Run to option is selected and all hardware breakpoints have already been
used, a virtual breakpoint will be set even if you have deselected the Use virtual
breakpoints option. When you start the debugger under these conditions, C-SPY will
prompt you to choose whether you want to execute in single-step mode or stop at the
first instruction.

CUSTOMIZING THE USE OF BREAKPOINTS

It is possible to prevent the debugger from executing in single-step mode. You do this
by disabling the use of virtual breakpoints and—in the CLIB runtime environment—by
fine-tuning the use of system breakpoints. This will increase the performance of the
debugger, but you will only have access to the available number of hardware
breakpoints. For further information about the necessary options, see Breakpoints, page
200.

Periodically monitoring data

If you are using a device that does not support the Enhanced Emulation Module, the
break-on-data capability of the MSP430 is not utilized. In that case, breakpoints can
only be set to occur during an instruction fetch. However, C-SPY provides a
non-realtime data breakpoint mechanism, which lets you periodically monitor data
without using data breakpoints. For a description of the data breakpoint mechanism, see
the chapter Using breakpointsMSP430 IAR Embedded Workbench® IDE User Guide.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Using breakpoints when programming flash memory

When programming the flash memory, do not set a breakpoint on the instruction
immediately following the write to flash operation. A simple work-around is to follow
the write to flash operation with a NOP instruction, and set a breakpoint on the instruction
following the NOP instruction.

RANGE BREAKPOINTS

Range breakpoints can be set on a data or an address range, and the action can be
specified to occur on an access inside or outside the specified range. These breakpoints
are only available if you are using a device that supports the Enhanced Emulation
Module.

The options for setting range breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Range to set a new breakpoint. Alternatively, to modify an existing
breakpoint, select a breakpoint in the Breakpoint window and choose Edit on the
context menu.

The Range breakpoints dialog box appears.

Figure 83: Range breakpoints dialog box

Note: You can also use a C-SPY system macro to set a range breakpoint, see
__setRangeBreak, page 417.
U430-5

Part 6. IAR C-SPY® FET Debugger 207

208

Using breakpoints
Start value

Set the start value location for the range breakpoint using the Edit button. These are the
locations you can choose between and their possible settings:

Range delimiter

This option sets the end location of the range. It can be one of the value types used for
the Start value, the Length of the range in hexadecimal notation, or Automatic.
Automatic means that the range will automatically be based on the type of expression
the breakpoint is set on. For example, if you set the breakpoint on a 12-byte structure,
the range of the breakpoint will be 12 bytes.

Location Description/Examples

Expression Any expression that evaluates to a valid address, such as a variable name.
For example, my_var refers to the location of the variable my_var,
and arr[3] refers to the third element of the array arr.

Absolute Address An absolute location on the form zone:hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory:0x42
If you enter a combination of a Zone and an address that is not valid,
C-SPY will indicate the mismatch.

Source Location A location in the C source program using the syntax {file
path}.row.column

File specifies the filename and full path. Row specifies the row in which
you want the breakpoint. Column specifies the column in which you want
the breakpoint.
For example,
{C:\IAR Systems\xxx\Utilities.c}.22.3
sets a breakpoint on the third character position on line 22 in the source
file Utilities.c.

Table 32: Range breakpoint start value types
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Type

To choose which breakpoint type to use, select one of the following options:

Access type

You can specify the type of access that triggers the selected breakpoint. Select one of the
following options:

Action

There are two action options—Break and State Storage Trigger.

If you select the option Break, the execution will stop when the breakpoint is triggered.

If you select the option State Storage Trigger, the breakpoint is defined as a state
storage trigger. To define the behavior of the state storage module further, use the
options in the State Storage Control window.

Action when

Specifies whether the action should occur at an access inside or outside of the specified
range.

Breakpoint type Description

Address (MAB) Sets a breakpoint on a specified address, or anything that can be
evaluated to one. The breakpoint is triggered when the specified location
is accessed. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop
exactly before the instruction will be executed.

Data (MDB) Sets a breakpoint on a specified value. It is the value on the data bus that
triggers the breakpoint.

Table 33: Range breakpoint types

Access Description

Read Read from location.

Write Write to location.

Read/Write Read from or write to location.

Fetch At instruction fetch.

Table 34: Range breakpoint access types
U430-5

Part 6. IAR C-SPY® FET Debugger 209

210

Using breakpoints
CONDITIONAL BREAKPOINTS

Conditional breakpoints are only available if you are using a device that supports the
Enhanced Emulation Module.

The options for setting conditional breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Conditional to set a new breakpoint. Alternatively, to modify an
existing breakpoint, select a breakpoint in the Breakpoint window and choose Edit on
the context menu.

The Conditional breakpoints dialog box appears.

Figure 84: Conditional breakpoints dialog box

Note: You can also use a system macro to set a conditional breakpoint, see
__setConditionalBreak, page 415.

Break At location

Set the break location using the Edit button. These are the locations you can choose
between and their possible settings:

Location Description/Examples

Expression Any expression that evaluates to a valid address, such as a function or
variable name.
For example, my_var refers to the location of the variable my_var,
and arr[3] refers to the third element of the array arr.

Table 35: Conditional break at location types
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Type

To choose which breakpoint type to use, select one of the following options:

Absolute Address An absolute location on the form zone:hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory:0x42
If you enter a combination of a Zone and an address that is not valid,
C-SPY will indicate the mismatch.

Source Location A location in the C source program using the syntax {file
path}.row.column

File specifies the filename and full path. Row specifies the row in which
you want the breakpoint. Column specifies the column in which you want
the breakpoint. Note that the Source Location type is only meaningful
for code breakpoints.
For example,
{C:\IAR Systems\xxx\Utilities.c}.22.3
sets a breakpoint on the third character position on line 22 in the source
file Utilities.c.

Breakpoint type Description

Address bus (MAB) Sets a breakpoint on a specified address, or anything that can be
evaluated to one. The breakpoint is triggered when the specified location
is accessed. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop
exactly before the instruction will be executed.

Data bus (MDB) Sets a breakpoint on a specified value. It is the value on the data bus that
triggers the breakpoint.

Register Sets a breakpoint on a register. In the Register Value text box, type
the value that should trigger the breakpoint. Specify the register, or
anything that can be evaluated to such, in the Break At text box.

Table 36: Conditional breakpoint types

Location Description/Examples

Table 35: Conditional break at location types (Continued)
U430-5

Part 6. IAR C-SPY® FET Debugger 211

212

Using breakpoints
Operator

You can specify one of the following condition operators for when the breakpoint should
be triggered:

Access

You can specify the type of access that triggers the selected breakpoint. Select one of the
following options:

Mask

You can specify a bit mask value that the breakpoint address or value will be masked
with. (On the FET hardware the mask is inverted, but this is not the case in the FET
Debugger driver.)

Condition

You can specify an additional condition to a conditional breakpoint. This means that a
conditional breakpoint can be a single data breakpoint or a combination of two
breakpoints that must occur at the same time. The following settings can be specified for
the additional condition:

Condition Description

== Equal to.

>= Greater than or equal to.

<= Less than or equal to.

!= Not equal to.

Table 37: Conditional breakpoint condition operators

Access Description

Read Read from location.

Write Write to location.

Read/Write Read from or write to location.

Fetch At instruction fetch.

Table 38: Conditional breakpoint access types

Access Description

MDB/Register Value The extra conditional data value.

Mask The bit mask value that the breakpoint value will be masked with.

Table 39: Conditional breakpoint condition types
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Action

There are two action options—Break and State Storage Trigger.

If you select the option Break, the execution will stop when the breakpoint is triggered.

If you select the option State Storage Trigger, the breakpoint is defined as a state
storage trigger. To define the behavior of the state storage module further, use the
options in the State Storage Control window.

ADVANCED TRIGGER BREAKPOINTS

Advanced trigger breakpoints are only available if you are using a device that supports
the Enhanced Emulation Module.

The options for setting advanced trigger breakpoints are available from the context
menu that appears when you right-click in the Breakpoints window. On the context
menu, choose New Breakpoint>Advanced Trigger to set a new breakpoint.
Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoint
window and choose Edit on the context menu.

The Advanced Trigger breakpoints dialog box appears.

Figure 85: Advanced trigger dialog box

Note: You can also use a C-SPY system macro to set an advanced trigger breakpoint,
__setAdvancedTriggerBreak, page 412.

Operator The operator of condition, either ==, >=, <=, or !=.

Access The access type of the condition, either Read, Write, or Read/Write.

Access Description

Table 39: Conditional breakpoint condition types (Continued)
U430-5

Part 6. IAR C-SPY® FET Debugger 213

214

Using breakpoints
Break At location

Set the break location using the Edit button. These are the locations you can choose
between and their possible settings:

Type

To choose which breakpoint type to use, select one of the following options:

Location Description/Examples

Expression Any expression that evaluates to a valid address, such as a function or
variable name.
For example, my_var refers to the location of the variable my_var,
and arr[3] refers to the third element of the array arr.

Absolute Address An absolute location on the form zone:hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory:0x42
If you enter a combination of a Zone and an address that is not valid,
C-SPY will indicate the mismatch.

Source Location A location in the C source program using the syntax {file
path}.row.column

file specifies the filename and full path. row specifies the row in which
you want the breakpoint. column specifies the column in which you
want the breakpoint. Note that the Source Location type is only
meaningful for code breakpoints.
For example,
{C:\IAR Systems\xxx\Utilities.c}.22.3
sets a breakpoint on the third character position on line 22 in the source
file Utilities.c.

Table 40: Advanced triggers break at location types

Breakpoint type Description

Address bus (MAB) Sets a breakpoint on a specified address, or anything that can be
evaluated to one. The breakpoint is triggered when the specified location
is accessed. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop
exactly before the instruction will be executed.

Data bus (MDB) Sets a breakpoint on a specified value. It is the value on the data bus that
triggers the breakpoint.

Table 41: Advanced trigger types
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Operator

You can specify one of the following condition operators for when the breakpoint should
be triggered:

Mask

You can specify a bit mask value that the breakpoint address or value will be masked
with. (On the FET hardware the mask is inverted, but this is not the case in the FET
Debugger driver.)

Value

The data value in the specified register that should be triggered.

Access type

Use this option to specify the type of access that triggers the selected breakpoint.

Action

There are two action options—Break and State Storage Trigger.

If you select the option Break, the execution will stop when the breakpoint is triggered.

If you select the option State Storage Trigger, the breakpoint is defined as a state
storage trigger. To define the behavior of the state storage module further, use the
options in the State Storage Control window.

Register Sets a breakpoint on a register. In the Register Value text box, type
the value that should trigger the breakpoint. Specify the register, or
anything that can be evaluated to such, in the Break At text box.

Condition Description

== Equal to.

>= Greater than or equal to.

<= Less than or equal to.

!= Not equal to.

Table 42: Advanced trigger condition operators

Breakpoint type Description

Table 41: Advanced trigger types (Continued)
U430-5

Part 6. IAR C-SPY® FET Debugger 215

216

Using state storage
BREAKPOINT USAGE DIALOG BOX

HistoryThe Breakpoint Usage dialog box—available from the driver-specific
menu—lists all active breakpoints.

Figure 86: Breakpoint Usage dialog box

In addition to listing all breakpoints that you have defined, this dialog box also lists the
internal breakpoints that the debugger is using.

For each breakpoint in the list the address and access type are shown. Each breakpoint
in the list can also be expanded to show its originator.

For more information, see Viewing all breakpoints, page 132the MSP430 IAR
Embedded Workbench® IDE User Guide.

Using state storage
The state storage module is a limited variant of a traditional trace module. It can store
eight states and can be used for monitoring program states or program flow, without
interfering with the execution. The state storage module is only available if you are using
a device that supports the Enhanced Emulation Module.

To use the state storage module, you must:

1 Define one or multiple range breakpoints or conditional breakpoints that you want to
trigger the state storage module. In the breakpoints dialog box, make sure to select the
action State Storage Trigger. This means that the breakpoint is defined as a state
storage trigger. (State storage can also be triggered from the Sequencer Control
window.)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Note that depending on the behavior you want when the state storage module is
triggered, it is useful to consider the combination of the Action options and the options
available in the State Storage Control window. See the examples following immediately
after these steps.

2 Choose Emulator>State Storage Control to open the State Storage Control window.

3 Select the option Enable state storage. Set the options Buffer wrap around, Trigger
action, and Storage action according to your preferences.

In the list State Storage Triggers, all breakpoints defined as state storage triggers are
listed.

For further details about the options, see State Storage Control window, page 218.

4 Click Apply.

5 Choose Emulator>State Storage window to open the State Storage window.

6 Choose Debug>Go to execute your application. Before you can view the state storage
information, you must stop the execution. You can do this, for instance, by using the
Break command.

For information about the window contents, see State Storage Window, page 220.

As an example, assume the following setup:

● There is a conditional breakpoint which has both of the action options
selected—Break and State Storage Trigger

● The state storage options Instruction fetch and Buffer wrap around are selected
in the State Storage Control window.

This will start the state storage immediately when you start executing your application.
When the breakpoint is triggered, the execution will stop and the last eight states can be
inspected in the State Storage window.

However, if you do not want the state storage module to start until a specific state is
reached, you would usually not want the execution to stop, because no state information
has been stored yet.

In this case, select the State Storage Trigger action in the Conditional breakpoints
dialog box (making sure that Break is deselected), and deselect the option Buffer wrap
around in the State Storage Control window.

When the breakpoint is triggered, the execution will not stop, but the state storage will
start. Because the option Buffer wrap around is deselected, you have ensured that the
data in the buffer will not be overwritten.
U430-5

Part 6. IAR C-SPY® FET Debugger 217

218

Using state storage
When another breakpoint (which has Break selected) is triggered, or if you stop the
execution by clicking the Break button, the State Storage window will show eight states
starting with the breakpoint that was used for starting the state storage module.

STATE STORAGE CONTROL WINDOW

Use the State Storage Control window—available from the Emulator menu—to define
how to use the state storage module available on devices that support the Enhanced
Emulation Module.

Figure 87: State Storage Control window

Enable state storage

This option enables the state storage module.

Buffer wrap around

This option controls if the state storage buffer should wrap around. If you select the
option Buffer wrap around the state storage buffer is continuously overwritten until the
execution is stopped or a breakpoint is triggered. Only the eight last states are stored.

Alternatively, in order not to overwrite the information in the state storage buffer,
deselect this option. To guarantee that the eight first states will be stored, you should also
click Reset.

Reset

Resets the state storage module.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Trigger action

This option acts upon the breakpoints that are defined as state storage triggers. The
option defines what action should take place when these breakpoints have been
triggered. You can choose between the following options:

Storage action on

This option defines when the state information should be collected. You can choose
between the following options:

State storage triggers

Lists all the breakpoints that are defined as state storage triggers. That is, the breakpoints
that have the action State Storage Trigger selected.

Start on trigger State storage starts when the breakpoint is triggered.

Stop on trigger State storage starts immediately when execution starts. State storage
stops when the breakpoint is triggered.

None State storage starts immediately when execution starts. State storage
does not stop when the breakpoint is triggered. However, if
execution stops, state storage also stops but it will resume when
execution resumes.

Triggers Stores state information at the time when the state storage trigger is
triggered. That is, when the breakpoint defined as a state storage
trigger is triggered.

Instruction fetch Stores state information at all instruction fetches.

All cycles Stores state information for all cycles.
U430-5

Part 6. IAR C-SPY® FET Debugger 219

220

Using state storage
STATE STORAGE WINDOW

The State Storage window—available from the Emulator menu—displays state storage
information for eight states. Invalid data is displayed in red color.

Figure 88: State Storage window

Update

Click the update button to refresh the data in the State Storage window, alternatively to
append new data.

Automatic update

Select this option to automatically update the data in the state storage window each time
new data is available in the state storage buffer.

Automatic restart

Select this option to reset the state storage module for consecutive data readouts after
each readout.

Append data

Select this option to append collected data from the state storage buffer to the data that
is already present in the State Storage window. The new data is added below the data
that is already present.

The window contains the following columns:

Column Description

Address bus Displays the stored value of the address bus.

Instruction Displays the instruction.

Mnemonic Displays the mnemonic.

Table 43: Columns in State Storage window
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Using the sequencer
The sequencer module lets you break the execution or trigger the state storage module
by using a more complex method than a standard breakpoint. This is useful if you want
to stop the execution under certain conditions, for instance a specific program flow. You
can combine this with letting the state storage module continuously store information.
At the time when the execution stops, you will have useful state information logged in
the State storage window.

Consider this example:

void my_putchar(char c)
{
 ...
 /* Code suspected to be erroneous */
 ...
}

void my_function(void)
{
 ...
 my_putchar('a');
 ...
 my_putchar('x');
 ...
 my_putchar('@');
 ...
}

Data bus Displays the stored content of the data bus.

Control signals (byte) Displays the stored value of the control signals during storage.
Bit 1: Instruction fetch
Bit 2: Byte/Word
Bit 3: Interrupt request
Bit 4: CPU off
Bit 5: The value of the Power Up Clear (PUC) signal
Bit 6:ZERO|HALT (which one depends on the used device)
Bit 7: Break trigger

Control signals (bits) Displays each bit in the stored value of the control signals during storage.

Column Description

Table 43: Columns in State Storage window (Continued)
U430-5

Part 6. IAR C-SPY® FET Debugger 221

222

Using the sequencer
In this example, the customized putchar function my_putchar() has for some reason
a problem with special characters. To locate the problem, it might be useful to stop
execution when the function is called, but only when it is called with one of the
problematic characters as the argument.

To achieve this, you can:

1 Set a breakpoint on the statement my_putchar('@');.

2 Set another breakpoint on the suspected code within the function my_putchar().

3 Define these breakpoints as transition triggers. Choose Emulator>Sequencer Control
to open the Sequencer Control window. Select the option Enable sequencer.

4 In this simple example you will only need two transition triggers. Make sure the
following options are selected:

The transition trigger 1 depends on the transition trigger 0. This means that the execution
will stop only when the function my_putchar() is called by the function call
my_putchar('@');

Click OK.

5 Now you should set up the state storage module. Choose Emulator>State Storage
Control to open the State Storage Control window. Make sure the following options
are selected:

Click OK.

Option Setting

Transition trigger 0 The breakpoint which is set on the function call my_putchar('@');

Transition trigger 1 The breakpoint which is set on the suspected code within the function
my_putchar()

Action Break

Table 44: Sequencer settings - example

Option Setting

Enable state storage Selected

Buffer wrap around Selected

Storage action Instruction fetch

Trigger action None

Table 45: State Storage Control settings - example
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
6 Start the program execution. The state storage module will continuously store trace
information. Execution stops when the function my_putchar() has been called by the
function call my_putchar('@');

7 Choose Emulator>State Storage Window to open the State Storage window. You
can now examine the stored trace information. For further details, see State Storage
Window, page 220.

8 When the sequencer is in state 3, C-SPY’s breakpoint mechanism—which is used for
all breakpoints, not only transition triggers—can be locked. Therefore, you should
always end the session with one of these steps:

● Disabling the sequencer module. This will restore all breakpoint actions.
● Resetting the state machine by clicking the Reset States button. The sequencer will

still be active and trigger on the defined setup during the program execution.

SEQUENCER CONTROL WINDOW

The Sequencer Control window—available from the Emulator menu—lets you break
the execution or trigger the state storage module by using a more complex method than
a standard breakpoint. This is useful if you, for instance, want to stop the execution or
start the state storage module under certain conditions, for instance a specific program
flow. The sequencer is only available if you are using a device that supports the
Enhanced Emulation Module.

The sequencer works as a state machine. In a simple setup, you can define three
transition triggers, where the last one triggers an action.

In an advanced setup, the state machine can have four states (0-3). State 0 is the starting
state, and state 3 is the state that triggers a breakpoint. This breakpoint can be designed
either to stop execution, or to trigger the state storage module.
U430-5

Part 6. IAR C-SPY® FET Debugger 223

224

Using the sequencer
For each state you can define up to two different transitions (a-b) to other states. For each
transition you define a transition trigger and which the next state should be. For state 3
you must also define an action: stop the execution or start the state storage module.

Figure 89: Sequencer Control window (advanced setup)

To enable the sequencer, select the option Enable Sequencer. From the eight available
hardware breakpoints (0-7) of the device, the breakpoint number 7 will be reserved for
state 3.

The Transition trigger drop-down lists let you define one breakpoint each, where the
breakpoint should act as a transition trigger.

To define an advanced setup, click the Advanced button. This will let you define 4 states
(0-3) with two transition triggers each (a and b). For each transition trigger, you can
define which state should be the next state after the transition.

Use the following options:

Finally, you must define an action. This option defines the result of the final transition
trigger. If you select the option Break, the execution will stop. If you select the option
State Storage Trigger, the state storage module will be triggered.

State Storage
Trigger

Triggers to move the state machine from one state to another. Select a
breakpoint from the drop-down list. Note: to do this you must first
define the required conditional breakpoints.

Next state Defines which state should be the next state after the transition. Select
one state, out of four, from the drop-down list.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
The Reset States button will set the state machine to state 0. Current state shows the
current state of the state machine.

Stepping
Be aware that stepping might cause some unexpected side-effects.

PROGRAMMING FLASH

Multiple internal machine cycles are required to clear and program the flash memory.
When single-stepping over instructions that manipulate the flash, control is given back
to C-SPY before these operations are complete. Consequently, C-SPY will update its
memory window with erroneous information. A workaround to this behavior is to
follow the flash access instruction with a NOP instruction, and then step past the NOP
before reviewing the effects of the flash access instruction.

SINGLE-STEPPING WITH ACTIVE INTERRUPTS

When you single-step with active and enabled interrupts, it can seem as if only the
interrupt service routine (ISR) is active. That is, the non-ISR code never appears to
execute, and the single-step operation always stops on the first line of the ISR. However,
this behavior is correct because the device will always process an active and enabled
interrupt.

There is a workaround for this behavior. While within the ISR, disable the GIE bit on
the stack so that interrupts will be disabled after exiting the ISR. This will permit the
non-ISR code to be debugged (but without interrupts). Interrupts can later be re-enabled
by setting GIE in the status register in the Register window.

On devices with Clock Control, it may be possible to suspend a clock between single
steps and delay an interrupt request.

C-SPY FET communication
C-SPY uses the JTAG pins of the device to debug the device. On some MSP430 devices,
these JTAG pins are shared with the device port pins. Normally, C-SPY maintains the
pins in JTAG mode so that the device can be debugged. During this time the port
functionality of the shared pins is not available.
U430-5

Part 6. IAR C-SPY® FET Debugger 225

226

C-SPY FET communication
RELEASING JTAG

When you choose Emulator>Release JTAG on Go, the JTAG drivers are set to tri-state
and the device will be released from JTAG control (the TEST pin is set to GND) when
GO is activated. Any active on-chip breakpoints are retained and the shared JTAG port
pins revert to their port functions.

At this time, C-SPY has no access to the device and cannot determine if an active
breakpoint has been triggered. C-SPY must be manually told to stop the device, at which
time the state of the device will be determined (that is, has a breakpoint been reached?).

If you choose Emulator>Release JTAG on Go, the JTAG pins will be released if, and
only if, there are N or fewer active breakpoints.

When making current measurements of the device, ensure that the JTAG control signals
are released (Emulator>Release JTAG on Go), otherwise the device will be powered
by the signals on the JTAG pins and the measurements will be erroneous.

PARALLEL PORT DESIGNATORS

The parallel port designators (LPTx) have the following physical addresses: LPT1:
0x378, LPT2: 0x278, LPT3: 0x3BC. The configuration of the parallel port (ECP,
Compatible, Bidirectional, Normal) is not significant; ECP is recommended.

TROUBLESHOOTING

If establishing communication between the C-SPY FET driver and the target system
fails, possible solutions to this problem include:

● Restart your host computer.
● Ensure that R6 on the MSP-FET430X110 and the FET Interface module has a value

of 82 ohms. Early units were built using a 330-ohm resistor for R6. The FET
Interface module can be opened by inserting a thin blade between the case halves,
and then carefully twisting the blade to pry the case halves apart.

● Ensure that the correct parallel port has been specified in the options category FET
Debugger available from the Project>Options menu. Check the PC BIOS for the
parallel port address (0x378, 0x278, 0x3BC), and the parallel port configuration
(ECP, Compatible, Bidirectional, or Normal).

● Ensure that no other software application has reserved/taken control of the parallel
port (for instance, printer drivers, ZIP drive drivers, etc.). Such software can prevent
the C-SPY FET driver from accessing the parallel port, and therefore also from
communicating with the device.

● Revisions 1.0, 1.1, and 1.2 of the FET Interface module require a hardware
modification; a 0.1µF capacitor needs to be installed between U1 pin 1 (signal
VCC_MSP) and ground. A convenient (electrically equivalent) installation point for
this capacitor is between pins 4 and 5 of U1.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging
Note: The hardware modification may already have been performed during
manufacturing, or your tool might contain an updated version of the FET Interface
module.

● Revisions 0.1 and 1.0 of the MSP-TS430PM64 Target Socket module require a
hardware modification; the PCB trace connecting pin 6 of the JTAG connector to
pin 9 of the MSP430 (signal XOUT) needs to be severed.

Note: The hardware modification may already have been performed during
manufacturing, or your tool might contain an updated version of the Target Socket
module.

Also note that if the modified Target Socket module is used with the PRGS, Version 1.10
or later of the PRGS software is required.

For revisions 1.0, 1.1, and 1.2 of the FET Interface module, install a 0.1µF capacitor
between the indicated points (pins 4 and 5 of U1).
U430-5

Part 6. IAR C-SPY® FET Debugger 227

228

C-SPY FET communication
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Design considerations for
in-circuit programming
This chapter describes the design considerations related to the bootstrap
loader, device signals, and external power for in-circuit programming. This
chapter also describes how you can adapt your own target hardware to be run
with C-SPY.

Bootstrap loader
The JTAG pins provide access to the flash memory of the MSP430Fxxx devices. On
some devices, these pins must be shared with the device port pins, and this sharing of
pins can complicate a design (or it might simply not be possible to do so). As an
alternative to using the JTAG pins, MSP430Fxxx devices contain a program—a
bootstrap loader—that permits the flash memory to be easily erased and programmed,
using a reduced set of signals.

Device signals
The following device signals should be made accessible so that the FET and PRGS
(serial programming adapter) tools can be utilized:

RST/NMI, TMS, TCK, TDI, TDO, GND, VCC, and TEST (if present).

Note: Connections to XIN and XOUT are not required, and should not be made. PRGS
software Version 1.10 or later must be used.

The BSL tool requires the following device signals: RST/NMI, TCK, GND, VCC, P1.1,
P2.2, and TEST (if present).
U430-5

Part 6. IAR C-SPY® FET Debugger 229

230

External power
External power
The PC parallel port is capable of supplying a limited amount of current. Because of the
ultra low power requirement of the MSP430, a stand-alone FET Debugger can run on
the available current. However, if additional circuitry is added to the tool, this current
might not be enough. In this case, external power can be supplied to the tool via the
connections provided on the MSP-FET430X110 and the Target Socket modules. Refer
to Figure 90, JTAG signal connection (MSP-FET430X110) and Figure 91, JTAG signal
connection (MSP-FET430Pxx0), respectively, to locate the external power connections.

When an MSP-FET430X110 device is powered from an external supply, an on-board
device regulates the external voltage to the level required by the MSP430.

When a Target Socket module is powered from an external supply, the external supply
powers the device on the Target Socket module and any user circuitry connected to the
Target Socket module, and the FET Interface module continues to be powered from the
PC via the parallel port. If the externally supplied voltage differs from that of the FET
Interface module, the Target Socket module must be modified so that the externally
supplied voltage is routed to the FET Interface module (so that it can adjust its output
voltage levels accordingly). For details of the Target Socket module schematic, see the
documentation supplied by the chip manufacturer.

Signal connections for in-system programming
With the proper connections, you can use the C-SPY Debugger and the
MSP-FET430X110, as well as the MSP-FET430Pxx0 ('P120, 'P140, 'P410, 'P440), to
program and debug code on your own target board. In addition, the connections will
support the MSP430 Serial Programming Adapter (PRGS), thus providing an easy way
to program prototype boards, if desired.

Note: The IAR XLINK Linker can be configured to output objects in msp430-txt
format for use with the PRGS tool. Choose Project>Options and click the Output tab
in the Linker category. Select the option Other and then choose msp430-txt from the
Output format drop-down list. The Intel and Motorola formats can also be used.

MSP-FET430X110

Figure 90, JTAG signal connection (MSP-FET430X110), shows the connections
between the FET device and the target device required to support in-system
programming and debugging using C-SPY. If your target board has its own “local”
power supply, such as a battery, do not connect Vcc to pin 2 of the JTAG header.
Otherwise, contention might occur between the FET device and your local power
supply.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Design considerations for in-circuit programming
The figure shows a 14-pin header (available from Digi-Key, p/n MHB14K-ND), being
used for the connections on your target board. It is recommended that you build a wiring
harness from the FET device with a connector which mates to the 14-pin header, and
mount the 14-pin header on your target board. This will allow you to unplug your target
board from the FET device as well as use the Serial Programming Adapter to program
prototype boards, if desired.

The signals required are routed on the FET device to header locations for easy
accessibility. Refer to the hardware documentation for more details.

After you make the connections from the FET device to your target board, remove the
MSP430 device from the socket on the FET device so that it does not conflict with the
MSP430 device in your target board. Now simply use C-SPY as you would normally to
program and debug.

Figure 90: JTAG signal connection (MSP-FET430X110)

Note: No JTAG connection is required to the XOUT pin of the MSP430 device as
shown on some schematics.

TDI/TDO1

13

11

9

7

5

3

2

14

12

10

8

6

4

VCC

GND

TCK

TMS

TDI/VPP

Test/VPP

RST/NMI

10uF100nF

100K

TDO/TDI

VCC/AVCC/DVCC**

RST/NMI

TCK

TMS

TDI

Test/VPP
*

MSP430

VSS/AVSS/DVSS**

VCC

14 pos. header
(3M p/n 2514-6002)
(Digi-Key p/n MHB14K-ND)

Disconnect if target has its own
'local' power source

20K***

* Not present on all devices

*** Pulldown not required on all devices.
Check device datasheet pin description.

** Pins vary by device.
U430-5

Part 6. IAR C-SPY® FET Debugger 231

232

Signal connections for in-system programming
MSP-FET430PXX0 (‘P120, ‘P140, ‘P410, ‘P440)

Figure 91, JTAG signal connection (MSP-FET430Pxx0) shows the connections between
the FET Interface module and the target device required to support in-system
programming and debugging using C-SPY. The figure shows a 14-pin header (available
from Digi-Key, p/n MHB14K-ND) connected to the MSP430. With this header mounted
on your target board, the FET Interface module can be plugged directly into your target.
Then simply use C-SPY as you would normally to program and debug.

The connections for the FET Interface module and the Serial Programming Adapter
(PRGS) are identical with the exception of VCC. Both the FET Interface module and
PRGS can supply VCC to your target board (via pin 2). In addition, the FET Interface
module has a VCC-sense feature that, if used, requires an alternate connection (pin 4
instead of pin 2). The FET Interface module VCC-sense feature senses the local VCC
(present on the target board, i.e. a battery or other “local” power supply) and adjusts its
output signals accordingly. The PRGS does not support this feature, but does provide the
user the ability to adjust its JTAG signal levels to the VCC level on your target board
through the GUI.

If the target board is to be powered by a local VCC, then the connection to pin 4 on the
JTAG should be made, and not the connection to pin 2. This utilizes the VCC-sense
feature of the FET Interface module and prevents any contention that might occur if the
local on-board VCC were connected to the VCC supplied from the FET Interface
module or the PRGS. If the VCC-sense feature is not necessary (that is, the target board
is to be powered from the FET Interface module or the PRGS) the VCC connection is
made to pin 2 on the JTAG header and no connection is made to pin 4.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Design considerations for in-circuit programming
The figure shows a jumper block in use. The jumper block supports both scenarios of
supplying VCC to the target board. If this flexibility is not required, the desired VCC
connections can be hard-wired eliminating the jumper block.

Figure 91: JTAG signal connection (MSP-FET430Pxx0)

Note: No JTAG connection is required to the XOUT pin of the MSP430 as shown on
some schematics.

TDI/TDO1

13

11

9

7

5

3

2

14

12

10

8

6

4

VCC(FromTool

GND

TCK

TMS

TDI/VPP

Test/VPP

VCC(Local

RST/NMI

10uF100nF

100K

TDO/TDI

RST/NMI

TCK

TMS

TDI

Test/VPP*

MSP430

VCC/AVCC/DVCC**

VSS/AVSS/DVSS**

VCC
Connect if target has its own
'local' power source

Connect to power target from
FET or PRGS if not using a
local power source

14 pos. header
(3M p/n 2514-6002)
(Digi-Key p/n MHB14K-ND)

20K***

* Not present on all devices

*** Pulldown not required on all devices.
Check device datasheet pin description.

** Pins vary by device.
U430-5

Part 6. IAR C-SPY® FET Debugger 233

234

Signal connections for in-system programming
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Part 7. Reference
information
This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

● IAR Embedded Workbench® IDE reference

● C-SPY® Debugger reference

● General options

● Compiler options

● Assembler options

● Custom build options

● Build actions options

● Linker options

● Library builder options

● Debugger options

● C-SPY® macros reference.
U430-5

235

236
U430-5

IAR Embedded
Workbench® IDE
reference
This chaptersection contains reference information about the windows,
menus, menu commands, and the corresponding components that are found
in the IAR Embedded Workbench IDE. Information about how to best use the
Embedded Workbench for your purposes can be found in parts 3 to 7 in this
guide.Information about how to best use the Embedded Workbench for your
purposes can be found in the MSP430 IAR Embedded Workbench® IDE User

Guide.

The IAR Embedded Workbench IDE is a modular application. Which menus
are available depends on which components are installed.

Windows
The available windows are:

● IAR Embedded Workbench IDE window
● Workspace window
● Editor window
● Source Browser window
● Breakpoints window
● Message windows.History

In addition, a set of C-SPY®-specific windows becomes available when you start the
IAR C-SPY Debugger. Reference information about these windows can be found in the
chapter C-SPY® Debugger reference in this guide.
U430-5

Part 7. Reference information 237

238

Windows
IAR EMBEDDED WORKBENCH IDE WINDOW

The figure shows the main window of the IAR Embedded Workbench IDE and its
different components. The window might look different depending on which plugin
modules you are using.

Figure 92: IAR Embedded Workbench IDE window

Each window item is explained in greater detail in the following sections.

Menu bar

Gives access to the IAR Embedded Workbench IDE menus.

Status bar

Toolbar

Menu bar

Workspace
window

Editor
window

Menu Description

File The File menu provides commands for opening source and project files, saving
and printing, and exiting from the IAR Embedded Workbench IDE.

Edit The Edit menu provides commands for editing and searching in editor windows
and for enabling and disabling breakpoints in C-SPY.

Table 46: IAR Embedded Workbench IDE menu bar
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
For reference information for each menu, see Menus, page 264.

Toolbar

The IAR Embedded Workbench IDE toolbar—available from the View
menu—provides buttons for the most useful commands on the IAR Embedded
Workbench IDE menus, and a text box for typing a string to do a quick search.

You can display a description of any button by pointing to it with the mouse button.
When a command is not available, the corresponding toolbar button will be dimmed,
and you will not be able to click it.

This figure shows the menu commands corresponding to each of the toolbar buttons:

Figure 93: IAR Embedded Workbench IDE toolbar

Note: When you start C-SPY, the Debug button will change to a Make and Debug
button.

View Use the commands on the View menu to open windows and decide which
toolbars to display.

Project The Project menu provides commands for adding files to a project, creating
groups, and running the IAR Systems tools on the current project.

Tools The Tools menu is a user-configurable menu to which you can add tools for use
with the IAR Embedded Workbench IDE.

Window With the commands on the Window menu you can manipulate the IAR
Embedded Workbench IDE windows and change their arrangement on the
screen.

Help The commands on the Help menu provide help about the IAR Embedded
Workbench IDE.

Menu Description

Table 46: IAR Embedded Workbench IDE menu bar (Continued)

New

Save

Cut

Paste

Quick search text box

Find

Go to

Open

Print

Copy

Redo

Undo

Replace

Compile

Stop Build

Make

DebugFind Next

Save All

Toggle Bookmark

Next
Bookmark

Navigate Backward

Navigate Forward
Toggle

Breakpoint
Toggle

Breakpoint

Compile
U430-5

Part 7. Reference information 239

240

Windows
Status bar

The Status bar at the bottom of the window—available from the View menu—displays
the status of the IAR Embedded Workbench IDE, and the state of the modifier keys.

As you are editing, the status bar shows the current line and column number containing
the insertion point, and the Caps Lock, Num Lock, and Overwrite status.

Figure 94: IAR Embedded Workbench IDE window status bar

WORKSPACE WINDOW

The Workspace window, available from the View menu, shows the name of the current
workspace and a tree representation of the projects, groups and files included in the
workspace.

Figure 95: Workspace window

In the drop-down list at the top of the window you can choose a build configuration to
display in the window for a specific project.

Configuration
drop-down menu

Tabs for
choosing
workspace
display

Indicates that the file will
be rebuilt next time the

project is built

Column containing
source code control

status information

Column containing
status information

about option overrides
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
The column that contains status information about settings and overrides can have one
of three icons for each level in the project:

For details about the different source code control icons, see Source code control states,
page 244.

At the bottom of the window you can choose which project to display. Alternatively, you
can choose to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see
the chapter Managing projects in Part 3. Project management and building in this
guide.For more information about project management and using the Workspace
window, see the MSP430 IAR Embedded Workbench® IDE User Guide.

Workspace window context menu

Clicking the right mouse button in the Workspace window displays a context menu
which gives you convenient access to several commands.

Figure 96: Workspace window context menu

Blank There are no settings/overrides for this file/group

Black check mark There are local settings/overrides for this file/group

Red check mark There are local settings/overrides for this file/group, but they are
identical with the inherited settings, which means the overrides are
superfluous.
U430-5

Part 7. Reference information 241

242

Windows
The following commands are available on the context menu:

Menu command Description

Options Displays a dialog box where you can set options for each build tool on
the selected item in the Workspace window. You can set options on the
entire project, on a group of files, or on an individual file.

Make Brings the current target up to date by compiling, assembling, and linking
only the files that have changed since the last build.

Compile Compiles or assembles the currently active file as appropriate. You can
choose the file either by selecting it in the Workspace window, or by
selecting the editor window containing the file you want to compile.

Rebuild All Recompiles and relinks all files in the selected build configuration.

Clean Deletes intermediate files.

Stop Build Stops the current build operation.

Add>Add Files Opens a dialog box where you can add files to the project.

Add>Add "filename" Adds the indicated file to the project. This command is only available if
there is an open file in the editor.

Add>Add Group Opens a dialog box where you can add new groups to the project.

Remove Removes selected items from the Workspace window.

Source Code Control Opens a submenu with commands for source code control, see Source
Code Control menu, page 243.

File Properties Opens a standard File Properties dialog box for the selected file.

Set as Active Sets the selected project in the overview display to be the active project.
It is the active project that will be built when the Make command is
executed.

Table 47: Workspace window context menu commands
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Source Code Control menu

The Source Code Control menu is available from the Project menu and from the
context menu in the Workspace window. This menu contains some of the most
commonly used commands of external, third-party source code control systems.

Figure 97: Source Code Control menu

For more information about interacting with an external source code control system, see
Source code control, page 86the MSP430 IAR Embedded Workbench® IDE User Guide.

The following commands are available on the submenu:

Menu command Description

Check In Opens the Check In Files dialog box where you can check in the
selected files; see Check In Files dialog box, page 246. Any changes you
have made in the files will be stored in the archive. This command is
enabled when currently checked-out files are selected in the Workspace
window.

Check Out Checks out the selected file or files. Depending on the SCC system you
are using, a dialog box may appear; see Check Out Files dialog box, page
247. This means you get a local copy of the file(s), which you can edit.
This command is enabled when currently checked-in files are selected in
the Workspace window.

Undo Check out The selected files revert to the latest archived version; the files are no
longer checked-out. Any changes you have made to the files will be lost.
This command is enabled when currently checked-out files are selected
in the Workspace window.

Get Latest Version Replaces the selected files with the latest archived version.

Compare Displays—in a SCC-specific window—the differences between the local
version and the most recent archived version.

Table 48: Description of source code control commands
U430-5

Part 7. Reference information 243

244

Windows
Source code control states

Each source code-controlled file can be in one of several states.

History Displays SCC-specific information about the revision history of the
selected file.

Properties Displays information available in the SCC system for the selected file.

Refresh Updates the SCC display status for all the files that are part of the
project. This command is always enabled for all projects under SCC.

Add Project To Source
Control

Opens a dialog box, which originates from the SCC client application, to
let you create a connection between the selected IAR Embedded
Workbench project and an SCC project; the IAR Embedded Workbench
project will then be an SCC-controlled project. After creating this
connection, a special column that contains status information will appear
in the Workspace window.

Remove Project From
Source Control

Removes the connection between the selected IAR Embedded
Workbench project and an SCC project; your project will no longer be a
SCC-controlled project. The column in the Workspace window that
contains SCC status information will no longer be visible for that project.

SCC state Description

Checked out to you. The file is editable.

Checked out to you. The file is editable and you have modified the file.

(grey padlock) Checked in. In many SCC systems this means that the file is
write-protected.

(grey padlock) Checked in. There is a new version available in the archive.

(red padlock) Checked out exclusively to another user. In many SCC systems this
means that you cannot check out the file.

(red padlock) Checked out exclusively to another user. There is a new version available
in the archive. In many SCC systems this means that you cannot check
out the file.

Table 49: Description of source code control states

Menu command Description

Table 48: Description of source code control commands (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Note: The source code control in IAR Embedded Workbench depends on the
information provided by the SCC system. If the SCC system provides incorrect or
incomplete information about the states, IAR Embedded Workbench might display
incorrect symbols.

Select Source Code Control Provider dialog box

The Select Source Code Control Provider dialog box is displayed if there are several
SCC systems from different vendors available. Use this dialog box to choose the SCC
system you want to use.

Figure 98: Select Source Code Control Provider dialog box
U430-5

Part 7. Reference information 245

246

Windows
Check In Files dialog box

The Check In Files dialog box is available by choosing the Project>Source Code
Control>Check In command, alternatively available from the Workspace window
context menu.

Figure 99: Check In File dialog box

Comment

A text box in which you can write a comment—typically a description of your
changes—that will be stored in the archive together with the file revision. This text box
is only enabled if the SCC system supports the adding of comments at check-in.

Keep checked out

The file(s) will continue to be checked out after they have been checked in. Typically,
this is useful if you want to make your modifications available to other members in your
project team, without stopping your own work with the file.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check in.

Files

A list of the files that will be checked in. The list will contain all files that were selected
in the Workspace window when this dialog box was opened.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Check Out Files dialog box

The Check Out File dialog box is available by choosing the Project>Source Code
Control>Check Out command, alternatively available from the Workspace window
context menu. However, this dialog box is only available if the SCC system supports
adding comments at check-out or advanced options.

Figure 100: Check Out File dialog box

Comment

A text field in which you can write a comment—typically the reason why the file is
checked out—that will be placed in the archive together with the file revision. This text
box is only enabled if the SCC system supports the adding of comments at check-out.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check out.

Files

A list of files that will be checked out. The list will contain all files that were selected in
the Workspace window when this dialog box was opened.
U430-5

Part 7. Reference information 247

248

Windows
EDITOR WINDOW

Source files are displayed in editor windows. You can have one or several editor
windows open at the same time. The editor window is always docked, and its size and
position depends on other currently open windows.

Figure 101: Editor window

The name of the open source file is displayed on the tab. If a file is read-only, a padlock
icon is visible at the bottom left corner of the editor window. If a file has been modified
after it was last saved, an asterisk appears after the filename on the tab, for example
Utilities.c *. All open files are available from the drop-down menu in the upper
right corner of the editor window.

For information about using the editor, see the chapter Editing, page 95.For information
about using the editor, see the MSP430 IAR Embedded Workbench® IDE User Guide.

Split commands

Use the Window>Split command—or the Splitter controls—to split the editor window
horizontally or vertically into multiple panes.

On the Window menu you also find commands for opening multiple editor windows, as
well as commands for moving files between the different editor windows.

Splitter
control

Bookmark

Go to function

 Tabs

Drop-down menu
listing all open files

Splitter control
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Go to function

With the Go to function button in the bottom left-hand corner of the editor window you
can display all functions in the C or C++ editor window. You can then choose to go
directly to one of them.

Editor window tab context menu

The context menu that appears if you right-click on a tab in the editor window provides
access to commands for saving and closing the file.

Figure 102: Editor window tab context menu

Editor window context menu

The context menu available in the editor window provides convenient access to several
commands.

Figure 103: Editor window context menu

Note: The contents of this menu depend on different circumstances, which means it
may contain other commands compared to this figure. All commands available are
described in the Table 50, Description of commands on the editor window context menu.
U430-5

Part 7. Reference information 249

250

Windows
The following commands are available on the editor window context menu:

Menu command Description

Cut, Copy, Paste Standard window commands.

Complete Attempts to complete the word you have begun to type, basing the guess
on the contents of the rest of the editor document.

Match Brackets Selects all text between the brackets immediately surrounding the
insertion point, increases the selection to the next hierarchic pair of
brackets, or beeps if there is no higher bracket hierarchy.

Insert Template Displays a list in the editor window from which you can choose a code
template to be inserted at the location of the insertion point. If the code
template you choose requires any field input, the Template dialog box
appears; for information about this dialog box, see Template dialog box,
page 274. For information about using code templates, see Using and
adding code templates, page 99the MSP430 IAR Embedded Workbench®
IDE User Guide.

Open "header.h" Opens the header file "header.h" in an editor window. This menu
command is only available if the insertion point is located on an
#include line when you open the context menu.

Open Header/Source
File

Jumps from the current file to the corresponding header or source file. If
the destination file is not open when performing the command, the file
will first be opened. This menu command is only available if the insertion
point is located on any line except an #include line when you open
the context menu. This command is also available from the File>Open
menu.

Go to definition Shows the declaration of the symbol where the insertion point is placed.

Check In
Check Out
Undo Checkout

Commands for source code control; for more details, see Source Code
Control menu, page 243. These menu commands are only available if the
current source file in the editor window is SCC-controlled. The file must
also be a member of the current project.

Toggle Breakpoint
(Code)

Toggles a code breakpoint at the statement or instruction containing or
close to the cursor in the source window. For information about code
breakpoints, see Code breakpoints dialog box, page 256.

Toggle Breakpoint
(Log)

HistoryToggles a log breakpoint at the statement or instruction
containing or close to the cursor in the source window. For information
about log breakpoints, see Log breakpoints dialog box, page 258.

Enable/disable
Breakpoint

Toggles a breakpoint between being disabled, but not actually
removed—making it available for future use—and being enabled again.

Table 50: Description of commands on the editor window context menu
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Source file paths

The IAR Embedded Workbench IDE supports relative source file paths to a certain
degree.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IAR Embedded Workbench IDE will use a path relative to the project
file when accessing the source file.

Editor key summary

The following tables summarize the editor’s keyboard commands.

Use the following keys and key combinations for moving the insertion point:

Set Next Statement Sets the PC directly to the selected statement or instruction without
executing any code. Use this menu command with care. This menu
command is only available when you are using the debugger.

Quick Watch Opens the Quick Watch window, see Quick Watch window, page 325.
This menu command is only available when you are using the debugger.

Add to Watch Adds the selected symbol to the Watch window. This menu command is
only available when you are using the debugger.

Move to PC Moves the insertion point to the current PC position in the editor
window. This menu command is only available when you are using the
debugger.

Run to Cursor Executes from the current statement or instruction up to a selected
statement or instruction. This menu command is only available when you
are using the debugger.

Options HistoryDisplays the IDE Options dialog box, see Tools menu, page 286.

To move the insertion point Press

One character left Arrow left

One character right Arrow right

One word left Ctrl+Arrow left

One word right Ctrl+Arrow right

One line up Arrow up

One line down Arrow down

To the start of the line Home

Table 51: Editor keyboard commands for insertion point navigation

Menu command Description

Table 50: Description of commands on the editor window context menu (Continued)
U430-5

Part 7. Reference information 251

252

Windows
Use the following keys and key combinations for scrolling text:

Use the following key combinations for selecting text:

To the end of the line End

To the first line in the file Ctrl+Home

To the last line in the file Ctrl+End

To scroll Press

Up one line Ctrl+Arrow up

Down one line Ctrl+Arrow down

Up one page Page Up

Down one page Page Down

Table 52: Editor keyboard commands for scrolling

To select Press

The character to the left Shift+Arrow left

The character to the right Shift+Arrow right

One word to the left Shift+Ctrl+Arrow left

One word to the right Shift+Ctrl+Arrow right

To the same position on the previous line Shift+Arrow up

To the same position on the next line Shift+Arrow down

To the start of the line Shift+Home

To the end of the line Shift+End

One screen up Shift+Page Up

One screen down Shift+Page Down

To the beginning of the file Shift+Ctrl+Home

To the end of the file Shift+Ctrl+End

Table 53: Editor keyboard commands for selecting text

To move the insertion point Press

Table 51: Editor keyboard commands for insertion point navigation (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
SOURCE BROWSER WINDOW

The Source Browser window—available from the View menu—displays an hierarchical
view in alphabetical order of all symbols defined in the active build configuration.

Figure 104: Source Browser window

The window consists of two separate panes. The top pane displays the names of global
symbols and functions defined in the project.

Each row is prefixed with an icon, which corresponds to the Symbol type classification,
see Table 54, Information in Source Browser window. By clicking in the window header,
you can sort the symbols either by name or by symbol type.

In the top pane you can also access a context menu; see Source Browser window context
menu, page 254.

For a symbol selected in the top pane, the bottom pane displays the following
information:

Type of information Description

Full name Displays the unique name of each element, for instance
classname::membername.

Symbol type Displays the symbol type for each element: enumeration, enumeration
constant, class, typedef, union, macro, field or variable, function,
template function, template class, and configuration.

Filename Specifies the path to the file in which the element is defined.

Table 54: Information in Source Browser window
U430-5

Part 7. Reference information 253

254

Windows
For further details about how to use the Source Browser window, see Displaying browse
information, page 85.For further details about how to use the Source Browser window,
see the MSP430 IAR Embedded Workbench® IDE User Guide.

Source Browser window context menu

Right-clicking in the Source Browser window displays a context menu with convenient
access to several commands.

Figure 105: Source Browser window context menu

The following commands are available on the context menu:

Menu command Description

Go to Source The editor window will display the definition of the selected item.

Move to parent If the selected element is a member of a class, struct, union,
enumeration, or namespace, this menu command can be used for
moving to its enclosing element.

All symbols Type filter; all global symbols and functions defined in the project will
be displayed.

Functions & variables Type filter; all functions and variables defined in the project will be
displayed.

Types Type filter; all types such as structures and classes defined in the
project will be displayed.

Constants & macros Type filter; all constants and macros defined in the project will be
displayed.

All files File filter; symbols from all files that you have explicitly added to your
project and all files included by them will be displayed.

Exclude system includes File filter; symbols from all files that you have explicitly added to your
project and all files included by them will be displayed, except the
include files in the IAR Embedded Workbench installation directory.

Table 55: Source Browser window context menu commands

U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
BREAKPOINTS WINDOW

The Breakpoints window—available from the View menu—lists all breakpoints. From
the window you can conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

Figure 106: Breakpoints window

All breakpoints you define are displayed in the Breakpoints window.

For more information about the breakpoint system and how to set breakpoints, see the
chapter Using breakpoints in Part 4. Debugging.For more information about the
breakpoint system and how to set breakpoints, see the MSP430 IAR Embedded
Workbench® IDE User Guide.

Breakpoints window context menu

Right-clicking in the Breakpoints window displays a context menu with several
commands.

Figure 107: Breakpoints window context menu

Only project members File filter; symbols from all files that you have explicitly added to your
project will be displayed, but no include files.

Menu command Description

Table 55: Source Browser window context menu commands (Continued)
U430-5

Part 7. Reference information 255

256

Windows
The following commands are available on the context menu:

Code breakpoints dialog box

Code breakpoints are triggered when an instruction is fetched from the specified
location. If you have set the breakpoint on a specific machine instruction, the breakpoint
will be triggered and the execution will stop, before the instruction is executed.

To set a code breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Log on the context menu. To modify an existing breakpoint, select it in the
Breakpoints window and choose Edit on the context menu.

Menu command Description

Go to Source Moves the insertion point to the location of the breakpoint, if the
breakpoint has a source location. Double-click a breakpoint in the
Breakpoints window to perform the same command.

Edit Opens the Edit Breakpoint dialog box for the selected breakpoint.

Delete Deletes the selected breakpoint. Press the Delete key to perform the
same command.

Enable Enables the selected breakpoint. The check box at the beginning of the
line will be selected. You can also perform the command by manually
selecting the check box. This command is only available if the selected
breakpoint is disabled.

Disable Disables the selected breakpoint. The check box at the beginning of the
line will be cleared. You can also perform this command by manually
deselecting the check box.This command is only available if the selected
breakpoint is enabled.

Enable All Enables all defined breakpoints.

Disable All Disables all defined breakpoints.

New Breakpoint Displays a submenu where you can open the New Breakpoint dialog
box for the available breakpoint types. All breakpoints you define using
the New Breakpoint dialog box are preserved between debug
sessions. In addition to code and log breakpoints—see Code breakpoints
dialog box, page 256 and —other types of breakpoints might be available
depending on the C-SPY driver you are using. For information about
driver-specific breakpoint types, see the driver-specific debugger
documentation.

Table 56: Breakpoints window context menu commands
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
The Code breakpoints dialog box appears.

Figure 108: Code breakpoints page

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 260.

Size

Optionally, you can specify a size—in practice, a range—of locations. Each fetch access
to the specified memory range will trigger the breakpoint. There are two different ways
the size can be specified:

● Auto, the size will be set automatically, typically to 1
● Manual, you specify the size of the breakpoint range manually in the Size text box.

Action

You can optionally connect an action to a breakpoint. Specify an expression, for instance
a C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.
U430-5

Part 7. Reference information 257

258

Windows
Conditions

You can specify simple and complex conditions.

Log breakpoints dialog box

Log breakpoints are triggered when an instruction is fetched from the specified location.
If you have set the breakpoint on a specific machine instruction, the breakpoint will be
triggered and the execution will temporarily halt and print the specified message in the
C-SPY Debug Log window. This is a convenient way to add trace printouts during the
execution of your application, without having to add any code to the application source
code.

To set a log breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Log on the context menu. To modify an existing breakpoint, select it in the
Breakpoints window and choose Edit on the context menu.

The Log breakpoints dialog box appears.

Figure 109: Log breakpoints page

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.

Condition true The breakpoint is triggered if the value of the expression is true.

Condition changed The breakpoint is triggered if the value of the expression has changed
since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 57: Breakpoint conditions
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
The quickest—and typical—way to set a log breakpoint is by choosing Toggle
Breakpoint (Log) from the context many available by right-clicking in either the editor
or the Disassembly window. For more information about how to set breakpoints, see
Defining breakpoints, page 129.

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter Location dialog box; see Enter Location dialog box, page
260.

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
"__message" style—a comma-separated list of arguments.

C-SPY macro "__message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 400.

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.

Condition true The breakpoint is triggered if the value of the expression is true.

Condition changed The breakpoint is triggered if the value of the expression has changed
since it was last evaluated.

Table 58: Log breakpoint conditions
U430-5

Part 7. Reference information 259

260

Windows
Enter Location dialog box

Use the Enter Location dialog box—available from a breakpoints dialog box—to
specify the location of the breakpoint.

Figure 110: Enter Location dialog box

You can choose between these locations and their possible settings:

Location type Description/Examples

Expression Any expression that evaluates to a valid address, such as a function or
variable name. Code breakpoints are set on functions and data
breakpoints are set on variable names. For example, my_var refers to
the location of the variable my_var, and arr[3] refers to the third
element of the array arr.

Absolute Address An absolute location on the form zone:hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory:0x42.
If you enter a combination of a zone and address that is not valid, C-SPY
will indicate the mismatch.

Source Location A location in the C source code using the syntax:
{file path}.row.column. File specifies the filename and full path.
Row specifies the row in which you want the breakpoint. Column specifies
the column in which you want the breakpoint. Note that the Source
Location type is usually meaningful only for code breakpoints.
For example, {C:\my_projects\Utilities.c}.22.3
sets a breakpoint on the third character position on line 22 in the source
file Utilities.c.

Table 59: Location types
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
BUILD WINDOW

The Build window—available by choosing View>Messages—displays the messages
generated when building a build configuration. When opened, this window is by default
grouped together with the other message windows, see Windows, page 237.

Figure 111: Build window (message window)

Double-clicking a message in the Build window opens the appropriate file for editing,
with the insertion point at the correct position.

Right-clicking in the Build window displays a context menu which allows you to copy,
select, and clear the contents of the window.

Figure 112: Build window context menu

The Options command opens the Messages page of the IDE options dialog box. On
this page you can set options related to messages; see Messages page, page 290.
U430-5

Part 7. Reference information 261

262

Windows
FIND IN FILES WINDOW

The Find in Files window—available by choosing View>Messages—displays the
output from the Edit>Find and Replace>Find in Files command. When opened, this
window is by default grouped together with the other message windows, see Windows,
page 237.

Figure 113: Find in Files window (message window)

Double-clicking an entry in the page opens the appropriate file with the insertion point
positioned at the correct location.

Right-clicking in the Find in Files window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Figure 114: Find in Files window context menu
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
TOOL OUTPUT WINDOW

The Tool Output window—available by choosing View>Messages—displays any
messages output by user-defined tools in the Tools menu, provided that you have
selected the option Redirect to Output Window in the Configure Tools dialog box;
see Configure Tools dialog box, page 303. When opened, this window is by default
grouped together with the other message windows, see Windows, page 237.

Figure 115: Tool Output window (message window)

Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Figure 116: Tool Output window context menu
U430-5

Part 7. Reference information 263

264

Menus
DEBUG LOG WINDOW

The Debug Log window—available by choosing View>Messages—displays debugger
output, such as diagnostic messages and trace information. This output is only available
when the C-SPY Debugger is running. When opened, this window is by default grouped
together with the other message windows, see Windows, page 237.

Figure 117: Debug Log window (message window)

Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Figure 118: Debug Log window context menu

Menus
The following menus are available in the IAR Embedded Workbench IDE:

● File menu
● Edit menu
● View menu
● Project menu
● Tools menu
● Window menu
● Help menu.

In addition, a set of C-SPY-specific menus become available when you start the IAR
C-SPY Debugger. Reference information about these menus can be found in the chapter
C-SPY® Debugger reference, page 313.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
FILE MENU

The File menu provides commands for opening workspaces and source files, saving and
printing, and exiting from the IAR Embedded Workbench IDE.

The menu also includes a numbered list of the most recently opened files and
workspaces to allow you to open one by selecting its name from the menu.

Figure 119: File menu

The following commands are available on the File menu:

Menu command Shortcut Description

New CTRL+N Displays a submenu with commands for creating a new
workspace, or a new text file.

Open>File CTRL+O Displays a submenu from which you can select a text file to
open.

Open>
Workspace

Displays a submenu from which you can select a workspace file
to open. Before a new workspace is opened you will be
prompted to save and close any currently open workspaces.

Open>
Header/Source File

CTRL+
SHIFT+H

Opens the header file or source file that corresponds to the
current file, and jumps from the current file to the newly
opened file. This command is also available from the context
menu available from the editor window.

Close Closes the active window. You will be given the opportunity to
save any files that have been modified before closing.

Table 60: File menu commands
U430-5

Part 7. Reference information 265

266

Menus
Open Workspace Displays a dialog box where you can open a workspace file.
You will be given the opportunity to save and close any
currently open workspace file that has been modified before
opening a new workspace.

Save Workspace Saves the current workspace file.

Close Workspace Closes the current workspace file.

Save CTRL+S Saves the current text file or workspace file.

Save As Displays a dialog box where you can save the current file with a
new name.

Save All Saves all open text documents and workspace files.

Page Setup Displays a dialog box where you can set printer options.

Print CTRL+P Displays a dialog box where you can print a text document.

Recent Files Displays a submenu where you can quickly open the most
recently opened text documents.

Recent Workspaces Displays a submenu where you can quickly open the most
recently opened workspace files.

Exit Exits from the IAR Embedded Workbench IDE. You will be
asked whether to save any changes to text windows before
closing them. Changes to the project are saved automatically.

Menu command Shortcut Description

Table 60: File menu commands (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
EDIT MENU

The Edit menu provides several commands for editing and searching.

Figure 120: Edit menu

Menu command Shortcut Description

Undo CTRL+Z Undoes the last edit made to the current editor window.

Redo CTRL+Y Redoes the last Undo in the current editor window.
You can undo and redo an unlimited number of edits
independently in each editor window.

Cut CTRL+X The standard Windows command for cutting text in editor
windows and text boxes.

Copy CTRL+C The standard Windows command for copying text in editor
windows and text boxes.

Paste CTRL+V The standard Windows command for pasting text in editor
windows and text boxes.

Paste Special Provides you with a choice of the most recent contents of the
clipboard to choose from when pasting in editor documents.

Select All CTRL+A Selects all text in the active editor window.

Table 61: Edit menu commands
U430-5

Part 7. Reference information 267

268

Menus
Find and Replace>FindCTRL+F Displays the Find dialog box where you can search for text
within the current editor window. Note that if the insertion
point is located in the Memory window when you choose the
Find command, the dialog box will contain a different set of
options than it would otherwise do. If the insertion point is
located in the Trace window when you choose the Find
command, the Find in Trace dialog box is opened; the
contents of this dialog box depend on the C-SPY driver you
are using, see the driver documentation for more
information.

Find and Replace>
Find Next

F3 Finds the next occurrence of the specified string.

Find and Replace>
Replace

CTRL+H Displays a dialog box where you can search for a specified
string and replace each occurrence with another string. Note
that if the insertion point is located in the Memory window
when you choose the Replace command, the dialog box will
contain a different set of options than it would otherwise do.

Find and Replace>
Find in Files

Displays a dialog box where you can search for a specified
string in multiple text files; see Find in Files dialog box, page
271.

Find and Replace>
Incremental Search

CTRL+I Displays a dialog box where you can gradually fine-tune or
expand the search by continuously changing the search string.

Navigate>Go To CTRL+G Displays a dialog box where you can move the insertion point
to a specified line and column in the current editor window.

Navigate>
Toggle Bookmark

CTRL+F2 Toggles a bookmark at the line where the insertion point is
located in the active editor window.

Navigate>
Go to Bookmark

F2 Moves the insertion point to the next bookmark that has
been defined with the Toggle Bookmark command.

Navigate>
Navigate Backward

ALT+Left
arrow

Navigates backward in the insertion point history. The
current position of the insertion point is added to the history
by actions like Go to definition and clicking on a result from
the Find in Files command.

Navigate>
Navigate Forward

ALT+Right
arrow

Navigates forward in the insertion point history. The current
position of the insertion point is added to the history by
actions like Go to definition and clicking on a result from
the Find in Files command.

Menu command Shortcut Description

Table 61: Edit menu commands (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Code Templates>
Insert Template

CTRL+
SHIFT+
SPACE

Displays a list in the editor window from which you can
choose a code template to be inserted at the location of the
insertion point. If the code template you choose requires any
field input, the Template dialog box appears; for
information about this dialog box, see Template dialog box,
page 274. For information about using code templates, see
Using and adding code templates, page 99the MSP430 IAR
Embedded Workbench® IDE User Guide.

Code Templates>
Edit Templates

Opens the current code template file, where you can modify
existing code templates and add your own code templates.
For information about using code templates, see Using and
adding code templates, page 99the MSP430 IAR Embedded
Workbench® IDE User Guide.

Next Error/Tag F4 If there is a list of error messages or the results from a Find
in Files search in the Messages window, this command will
display the next item from that list in the editor window.

Previous Error/Tag SHIFT+F4 If there is a list of error messages or the results from a Find
in Files search in the Messages window, this command will
display the previous item from that list in the editor window.

Complete CTRL+
SPACE

Attempts to complete the word you have begun to type,
basing the guess on the contents of the rest of the editor
document.

Auto Indent CTRL+T Indents one or several lines you have selected in a C/C++
source file. To configure the indentation, see Configure Auto
Indent dialog box, page 292.

Match Brackets Selects all text between the brackets immediately
surrounding the insertion point, increases the selection to the
next hierarchic pair of brackets, or beeps if there is no higher
bracket hierarchy.

Block Comment CTRL+K HistoryPlaces the C++ comment character sequence // at
the beginning of the selected lines.

Block Uncomment CTRL+K HistoryRemoves the C++ comment character sequence //
from the beginning of the selected lines.

Menu command Shortcut Description

Table 61: Edit menu commands (Continued)
U430-5

Part 7. Reference information 269

270

Menus
Find dialog box

The Find dialog box is available from the Edit menu.History

Replace dialog box

The Replace dialog box is available from the Edit menu.History

Toggle Breakpoint F9 Toggles a breakpoint at the statement or instruction that
contains or is located near the cursor in the source window.
This command is also available as an icon button in the debug
bar.

Enable/Disable
Breakpoint

CTRL+F9 Toggles a breakpoint between being disabled, but not actually
removed—making it available for future use—and being
enabled again.

Option Description

Find What Selects the text to search for.

Match Whole Word Only Searches the specified text only if it occurs as a separate word.
Otherwise specifying int will also find print, sprintf etc. This
option is not available when you perform the search in the Memory
window.

Match Case Searches only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.
This option is not available when you perform the search in the
Memory window.

Direction Specifies the direction of the search. Choose between the options
Up and Down.

Search as Hex Searches for the specified hexadecimal value. This option is only
available when you perform the search in the Memory window.

Find Next Searches the next occurrence of the selected text.

Stop Stops an ongoing search. This function button is only available during
a search.

Table 62: Find dialog box options

Option Description

Find What Selects the text to search for.

Table 63: Replace dialog box options

Menu command Shortcut Description

Table 61: Edit menu commands (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Find in Files dialog box

Use the Find in Files dialog box—available from the Edit menu—to search for a string
in files.

Figure 121: Find in Files dialog box

Replace With Selects the text to replace each found occurrence in the Replace
With box.

Match Whole Word Only Searches the specified text only if it occurs as a separate word.
Otherwise int will also find print, sprintf etc. This checkbox
is not available when you perform the search in the Memory window.

Match Case Searches only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.
This checkbox is not available when you perform the search in the
Memory window.

Search as Hex Searches for the specified hexadecimal value. This checkbox is only
available when you perform the search in the Memory window.

Find Next Searches the next occurrence of the text you have specified.

Replace Replaces the searched text with the specified text.

Replace All Replaces all occurrences of the searched text in the current editor
window.

Option Description

Table 63: Replace dialog box options (Continued)
U430-5

Part 7. Reference information 271

272

Menus
The result of the search appears in the Find in Files messages window—available from
the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
messages window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-most
margin indicates the line.

In the Find in Files dialog box, you specify the search criteria with the following
settings.

Find what

A text field in which you type the string you want to search for. There are two options
for fine-tuning the search:

Look in

The options in the Look in area lets you specify which files you want to search in for a
specified string. Choose between:

Match case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

Project files The search will be performed in all files that you have explicitly added to
your project.

Project files and user
include files

The search will be performed in all files that you have explicitly added to
your project and all files included by them, except the include files in the
IAR Embedded Workbench installation directory.

Project files and all
include files

The search will be performed in all project files that you have explicitly
added to your project and all files included by them.

Directory The search will be performed in the directory that you specify. Recent
search locations are saved in the drop-down list. Locate the directory
using the browse button.

Look in
subdirectories

The search will be performed in the directory that you have specified
and all its subdirectories.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
File types

This is a filter for choosing which type of files to search; the filter applies to all options
in the Look in area. Choose the appropriate filter from the drop-down list. HistoryNote
that the File types text field is editable, which means that you can add your own filters.
Use the * character to indicate zero or more unknown characters of the filters, and the ?
character to indicate one unknown character.

Stop

Stops an ongoing search. This function button is only available during an ongoing
search.

Incremental Search dialog box

The Incremental Search dialog box—available from the Edit menu—lets you
gradually fine-tune or expand the search string.

Figure 122: Incremental Search dialog box

Find What

Type the string to search for. The search will be performed from the location of the
insertion point—the start point. Gradually incrementing the search string will gradually
expand the search criteria. Backspace will remove a character from the search string; the
search will be performed on the remaining string and will start from the start point.

If a word in the editor window is selected when you open the Incremental Search
dialog box, this word will be displayed in the Find What text box.

Match Case

Use this option to find only occurrences that exactly match the case of the specified text.
Otherwise searching for int will also find INT and Int.
U430-5

Part 7. Reference information 273

274

Menus
Function buttons

Template dialog box

Use the Template dialog box to specify any field input that is required by the source
code template you insert. This dialog box appears when you insert a code template that
requires any field input.

Figure 123: Template dialog box

Note: This figure reflects the default code template that can be used for automatically
inserting code for a for loop.

The contents of this dialog box match the code template. In other words, which fields
that appear depends on how the code template is defined.

At the bottom of the dialog box, the code that would result from the code template is
displayed.

For more information about using code templates, see Using and adding code templates,
page 99the MSP430 IAR Embedded Workbench® IDE User Guide.

Function button Description

Find Next Searches for the next occurrence of the current search string. If the
Find What text box is empty when you click the Find Next button, a
string to search for will automatically be selected from the drop-down
list. To search for this string, click Find Next.

Close Closes this dialog box.

Table 64: Incremental Search function buttons
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
VIEW MENU

With the commands on the View menu you can choose what to display in the IAR
Embedded Workbench IDE. During a debug session you can also open
debugger-specific windows from the View menu.

Figure 124: View menu

Menu command Description

Messages Opens a submenu which gives access to the message windows—Build,
Find in Files, Tool Output, Debug Log—that display messages and text
output from the IAR Embedded Workbench commands. If the window
you choose from the menu is already open, it becomes the active
window.

Workspace Opens the current Workspace window.

Source Browser Opens the Source Browser window.

Breakpoints Opens the Breakpoints window.

Toolbars The options Main and Debug toggle the two toolbars on and off.

Status bar Toggles the status bar on and off.

Table 65: View menu commands
U430-5

Part 7. Reference information 275

276

Menus
Debugger windows During a debugging session, the different debugging windows are also
available from the View menu:
Disassembly window
Memory window
Register window
Watch window
Locals window
Auto window
Live Watch window
Quick Watch window
Call Stack window
Terminal I/O window
Code Coverage window
Profiling window
Stack window
LCD window
For descriptions of these windows, see C-SPY windows, page 313.

Menu command Description

Table 65: View menu commands (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
PROJECT MENU

The Project menu provides commands for working with workspaces, projects, groups,
and files, as well as specifying options for the build tools, and running the tools on the
current project.

Figure 125: Project menu

Menu Command Description

Add Files Displays a dialog box that where you can select which files to include to
the current project.

Add Group Displays a dialog box where you can create a new group. The Group
Name text box specifies the name of the new group. The Add to Target
list selects the targets to which the new group should be added. By
default the group is added to all targets.

Import File List Displays a standard Open dialog box where you can import information
about files and groups from projects created using another IAR tool
chain.
To import information from project files which have one of the older
filename extensions pew or prj you must first have exported the
information using the context menu command Export File List
available in your own IAR Embedded Workbench.

Edit Configurations Displays the Configurations for project dialog box, where you can
define new or remove existing build configurations.

Table 66: Project menu commands
U430-5

Part 7. Reference information 277

278

Menus
Remove In the Workspace window, removes the selected item from the
workspace.

Create New Project Displays a dialog box where you can create a new project and add it to
the workspace.

Add Existing Project Displays a dialog box where you can add an existing project to the
workspace.

Options Displays the Options for node dialog box, where you can set options
for the build tools on the selected item in the Workspace window. You
can set options on the entire project, on a group of files, or on an
individual file.

Source Code Control Opens a submenu with commands for source code control, see Source
Code Control menu, page 243.

Make Brings the current build configuration up to date by compiling,
assembling, and linking only the files that have changed since the last
build.

Compile Compiles or assembles the currently selected file, files, or group.
One or more files can be selected in the Workspace window—all files in
the same project, but not necessarily in the same group. You can also
select the editor window containing the file you want to compile. The
Compile command is only enabled if every file in the selection is
individually suitable for the command.
You can also select a group, in which case the command is applied to each
file in the group (including inside nested groups) that can be compiled,
even if the group contains files that cannot be compiled, such as header
files.

Rebuild All Rebuilds and relinks all files in the current target.

Clean Removes any intermediate files.

Batch Build Displays a dialog box where you can configure named batch build
configurations, and build a named batch.

Stop Build Stops the current build operation.

Debug Starts the IAR C-SPY Debugger so that you can debug the project object
file. If necessary, a make will be performed before running C-SPY to
ensure the project is up to date. Depending on your IAR product
installation, you can choose which debugger drive to use by selecting the
appropriate C-SPY driver on the C-SPY Setup page available by using the
Project>Options command.

Menu Command Description

Table 66: Project menu commands (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Argument variables summary

Variables can be used for paths and arguments. The following argument variables can
be used:

Make & Restart
Debugger

Stops the debugger, makes the active build configuration, and starts the
debugger again; all in a single command. This button is only available
during debugging.

Variable Description

CUR_DIR Current directory

CUR_LINE Current line

EW_DIR Top directory of IAR Embedded Workbench, for example
c:\program files\iar systems\embedded workbench
4.n

EXE_DIR Directory for executable output

$FILE_BNAME$ Filename without extension

$FILE_BPATH$ Full path without extension

$FILE_DIR$ Directory of active file, no filename

$FILE_FNAME$ Filename of active file without path

$FILE_PATH$ Full path of active file (in Editor, Project, or Message window)

$LIST_DIR$ Directory for list output

OBJ_DIR Directory for object output

$PROJ_DIR$ Project directory

$PROJ_FNAME$ Project file name without path

$PROJ_PATH$ Full path of project file

$TARGET_DIR$ Directory of primary output file

$TARGET_BNAME$ Filename without path of primary output file and without extension

$TARGET_BPATH$ Full path of primary output file without extension

$TARGET_FNAME$ Filename without path of primary output file

$TARGET_PATH$ Full path of primary output file

$TOOLKIT_DIR$ Directory of the active product, for example c:\program
files\iar systems\embedded workbench 4.n\430

Table 67: Argument variables

Menu Command Description

Table 66: Project menu commands (Continued)
U430-5

Part 7. Reference information 279

280

Menus
Configurations for project dialog box

In the Configuration for project dialog box—available by choosing Project>Edit
Configurations—you can define new build configurations for the selected project;
either entirely new, or based on a previous project.

Figure 126: Configurations for project dialog box

The dialog box contains the following:

Operation Description

Configurations Lists existing configurations, which can be used as templates for new
configurations.

New Opens a dialog box where you can define new build configurations.

Remove Removes the configuration that is selected in the Configurations list.

Table 68: Configurations for project dialog box options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
New Configuration dialog box

In the New Configuration dialog box—available by clicking New in the
Configurations for project dialog box—you can define new build configurations;
either entirely new, or based on any currently defined configuration.

Figure 127: New Configuration dialog box

The dialog box contains the following:

Item Description

Name The name of the build configuration.

Tool chain The target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

Based on configuration A currently defined build configuration that you want the new
configuration to be based on. The new configuration will inherit the
project settings as well as information about the factory settings from
the old configuration. If you select None, the new configuration will have
default factory settings and not be based on an already defined
configuration.

Factory settings Specifies the default factory settings—either Debug or Release—that
you want to apply to your new build configuration. These factory
settings will be used by your project if you press the Factory Settings
button in the Options dialog box.

Table 69: New Configuration dialog box options
U430-5

Part 7. Reference information 281

282

Menus
Create New Project dialog box

The Create New Project dialog box is available from the Project menu, and lets you
create a new project based on a template project. There are template projects available
for C/C++ applications, assembler applications, and library projects. You can also create
your own template projects.

Figure 128: Create New Project dialog box

The dialog box contains the following:

Item Description

Tool chain The target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

Project templates Lists all available template projects that you can base a new project on.

Table 70: Description of Create New Project dialog box
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Options dialog box

The Options dialog box is available from the Project menu.

In the Category list you can select the build tool for which you want to set options. The
options available in the Category list will depend on the tools installed in your IAR
Embedded Workbench IDE, and will typically include the following options:

Note: Additional debugger categories might be available depending on the debugger
drivers installed.

Selecting a category displays one or more pages of options for that component of the
IAR Embedded Workbench IDE.

For detailed information about each option, see the option reference chapters: available
in the MSP430 IAR Embedded Workbench® IDE User Guide.

● General options
● Compiler options
● Assembler options
● Custom build options
● Build actions options
● Linker options
● Library builder options
● Debugger options.

For information about the options related to available hardware debugger systems, see
the online help system.

Category Description

General Options General options

C/C++ Compiler MSP430 IAR C/C++ Compiler options

Assembler MSP430 IAR Assembler options

Custom Build Options for extending the tool chain

Build Actions Options for pre-build and post-build actions

Linker IAR XLINK Linker options. This category is
available for application projects.

Library Builder IAR XAR Library Builder options. This
category is available for library projects.

Debugger IAR C-SPY Debugger options

FET Debugger FET-specific options

Simulator Simulator-specific options

Table 71: Project option categories
U430-5

Part 7. Reference information 283

284

Menus
Batch Build dialog box

The Batch Build dialog box—available by choosing Project>Batch build—lists all
defined batches of build configurations.

Figure 129: Batch Build dialog box

The dialog box contains the following:

Item Description

Batches Lists all currently defined batches of build configurations.

New Displays the Edit Batch Build dialog box, where you can define new
batches of build configurations.

Remove Removes the selected batch.

Edit Displays the Edit Batch Build dialog box, where you can modify
already defined batches.

Build Consists of the three build commands Make, Clean, and Rebuild All.

Table 72: Description of the Batch Build dialog box
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Edit Batch Build dialog box

In the Edit Batch Build dialog box—available from the Batch Build dialog box—you
can create new batches of build configurations, and edit already existing batches.

Figure 130: Edit Batch Build dialog box

The dialog box contains the following:

To move appropriate build configurations from the Available configurations list to the
Configurations to build list, use the arrow buttons. Note also that you can drag the
build configurations in the Configurations to build field to specify the order between
the build configurations.

Item Description

Name The name of the batch.

Available configurations Lists all build configurations that are part of the workspace.

Configurations to build Lists all the build configurations you select to be part of a named
batch.

Table 73: Description of the Edit Batch Build dialog box
U430-5

Part 7. Reference information 285

286

Menus
TOOLS MENU

The Tools menu provides commands for customizing the environment, such as changing
common fonts and shortcut keys.

It is a user-configurable menu to which you can add tools for use with IAR Embedded
Workbench. Thus, it might look different depending on which tools have been
preconfigured to appear as menu items. See Configure Tools dialog box, page 303.

Figure 131: Tools menu

Tools menu commands

Menu command Description

Options Displays the IDE Options dialog box where you can customize the IAR
Embedded Workbench IDE. Select the feature you want to customize by
clicking the appropriate tab. Which pages are available in this dialog box
depends on your IAR Embedded Workbench IDE configuration, and
whether the IDE is in a debugging session or not

Configure Tools Displays a dialog box where you can set up the interface to use external
tools.

Filename Extensions Displays a set of dialog boxes where you can define the filename
extensions to be accepted by the build tools.

Configure Viewers Displays a dialog box where you can configure viewer applications to
open documents with.

Notepad User-configured. This is an example of a user-configured addition to the
Tools menu.

Table 74: Tools menu commands
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
External Editor page

On the External Editor page—available by choosing Tools>Options—you can
specify an external editor.

Figure 132: External Editor page with command line settings

Options

Option Description

Use External Editor Enables the use of an external editor.

Type Selects the method for interfacing with the external editor. The type can
be either Command Line or DDE (Windows Dynamic Data Exchange).

Editor Type the filename and path of your external editor. A browse button is
available for your convenience.

Arguments Type any arguments to pass to the editor. Only applicable if you have
selected Type as Command Line.

Service Type the DDE service name used by the editor. Only applicable if you
have selected Type as DDE.

Command Type a sequence of command strings to send to the editor. The
command strings should be typed as:
DDE-Topic CommandString

DDE-Topic CommandString

Only applicable if you have selected Type as DDE.

Table 75: External Editor options
U430-5

Part 7. Reference information 287

288

Menus
The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.

Note: Variables can be used in arguments. See Argument variables summary, page
279, for information about available argument variables.

Common fonts page

The Common Fonts page—available by choosing Tools>Options—displays the fonts
used for all project windows except the editor windows.

Figure 133: Common Fonts page

With the Font buttons you can change the fixed and proportional width fonts,
respectively.

Any changes to the Fixed Width Font options will apply to the Disassembly, Register,
and Memory windows. Any changes to the Proportional Width Font options will
apply to all other windows.

None of the settings made on this page apply to the editor windows. For information
about how to change the font in the editor windows, see Editor Colors and Fonts page,
page 295.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Key Bindings page

The Key Bindings page—available by choosing Tools>Options—displays the shortcut
keys used for each of the menu options, which you can change, if you wish.

Figure 134: Key Bindings page

Options

It is not possible to set or add the shortcut if it is already used by another command.

To delete a shortcut key definition, select the corresponding menu command in the scroll
list and click Clear under Primary or Alias. To revert all command shortcuts to the
factory settings, click Reset All. Click OK to make the new shortcut key bindings take
effect.

Option Description

Category Drop-down menu to choose the menu you want to edit. Any currently
defined shortcut keys are shown in the scroll list below.

Press shortcut key Type the key combination you want to use as shortcut key.

Primary The shortcut key will be displayed next to the command on the menu.
Click Set to set the combination, or Clear to delete the shortcut.

Alias The shortcut key will work but not be displayed on the menu. Click
either Add to make the key take effect, or Clear to delete the shortcut.

Reset All Reverts all command shortcut keys to the factory settings.

Table 76: Key Bindings page options
U430-5

Part 7. Reference information 289

290

Menus
Messages page

On the Messages page—available by choosing Tools>Options—you can choose the
amount of output in the Messages window.

Figure 135: Messages page

Show build messages

Use this drop-down menu to specify the amount of output in the Messages window.
Choose between:

Log File

Use the options in this area to log build messages in a file. To enable the options, select
the Enable build log file option. Choose between:

Type the filename you want to use in the text box. A browse button is available for your
convenience.

All Shows all messages, including compiler and linker information.

Messages Shows messages, warnings, and errors.

Warnings Shows warnings and errors.

Errors Show errors only.

Append to end of file Appends the messages at the end of the specified file.

Overwrite old file Replaces the contents in the file you specify.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Editor page

On the Editor page—available by choosing Tools>Options—you can change the editor
options.

Figure 136: Editor page

Options

Option Description

Tab Size Specifies the number of character spaces corresponding to each tab.

Indent Size Specifies the number of character spaces to be used for indentation.

Tab Key Function Specifies how the tab key is used. Either as Insert Tab or as Indent
with Spaces.

EOL character Selects line break character.
PC (default) uses Windows and DOS end of line character.
Unix uses UNIX end of line characters.
Preserve uses the same end of line character as the file had when it
was read from the disc drive. The PC format is used by default, and
if the read file did not have any breaks, or if there is a mixture of
break characters used in the file.

Show right margin HistoryShows the area of the editor window outside the right-side
margin as a light gray field. You can choose to set the size of the text
field between the left-side margin and the right-side margin using
one of the options Printing edge or Columns.

Syntax Highlighting Displays the syntax of C or C++ applications in different text styles.

Table 77: Editor page options
U430-5

Part 7. Reference information 291

292

Menus
For more information about the IAR Embedded Workbench IDE Editor and how it can
be used, see Editing, page 95.For more information about the IAR Embedded
Workbench IDE editor and how it can be used, see the MSP430 IAR Embedded
Workbench® IDE User Guide.

Configure Auto Indent dialog box

Use the Configure Auto Indent dialog box to configure the automatic indentation
performed by the editor for C/C++ source code. To open the dialog box:

1 Choose Tools>Options.

2 Click the Editor tab.

3 Select the Auto indent option.

Auto Indent Ensures that when you press Return, the new line will automatically
be indented. For C/C++ source files, indentation will be performed
as configured in the Configure Auto Indent dialog box. Click the
Configure button to open the dialog box where you can configure
the automatic indentation; see Configure Auto Indent dialog box, page
292. For all other text files, the new line will have the same
indentation as the previous line.

Show Line Numbers Displays line numbers in the Editor window.

Scan for Changed Files Checks if files have been modified by some other tool and
automatically reloads them. If a file has been modified in the IAR
Embedded Workbench IDE, you will be prompted first.

Show Bookmarks Displays a column on the left side in the editor window, with icons
for compiler errors and warnings, Find in Files results, user
bookmarks and breakpoints.

Enable Virtual Space Allows the insertion point to move outside the text area.

Remove trailing blanks Removes trailing blanks from files when they are saved to disk.
Trailing blanks are blank spaces between the last non-blank
character and the end of line character.

Option Description

Table 77: Editor page options (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
4 Click the Configure button.

Figure 137: Configure Auto Indent dialog box

To read more about indentation, see Automatic text indentation, page 98the MSP430 IAR
Embedded Workbench® IDE User Guide.

Type the number of spaces to indent in the appropriate text box for each category of
indentation:

Sample code

Reflects the settings made in the text boxes for indentation. All indentations are relative
to the preceding line, statement, or other syntactic structures.

Opening Brace (a) The number of spaces used to indent an opening brace.

Body (b) The number of additional spaces used to indent code after an opening
brace, or a statement that continues onto a second line.

Label (c) The number of additional spaces used to indent a label, including case
labels.
U430-5

Part 7. Reference information 293

294

Menus
Editor Setup Files page

On the Editor Setup Files page—available by choosing Tools>Options—you can
specify setup files for the editor.

Figure 138: Editor Setup Files page

Use Custom Keyword File

Use this option to specify a text file containing keywords that you want the editor to
highlight. For information about syntax coloring, see Syntax coloring, page 97the
MSP430 IAR Embedded Workbench® IDE User Guide.

Use Code Templates

Use this option to specify a text file with code templates that you can use for inserting
frequently used code in your source file. For information about using code templates,
see Using and adding code templates, page 99the MSP430 IAR Embedded Workbench®
IDE User Guide.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Editor Colors and Fonts page

The Editor Colors and Fonts page—available by choosing Tools>Options—allows
you to specify the colors and fonts used for text in the Editor windows.

Figure 139: Editor Colors and Fonts page

Options

The keywords controlling syntax highlighting for assembler and C or C++ source code
are specified in the files syntax_icc.cfg and syntax_asm.cfg, respectively. These
files are located in the config directory.

Option Description

Font Opens a dialog box to choose font and its size.

Syntax Coloring Lists the possible items for which you can specify font and style of
syntax. The elements you can customize are: C or C++, compiler
keywords, assembler keywords, and user-defined keywords.

Color Chooses a color from a list of colors.

Type Style Chooses a type style from a drop-down list.

Sample Displays the current setting.

Table 78: Editor Colors and Fonts page options
U430-5

Part 7. Reference information 295

296

Menus
Project page

On the Project page—available by choosing Tools>Options—you can set options for
Make and Build. The following table describes the options and their available settings.

Figure 140: Projects page

Options

Option Description

Stop build operation on Specifies when the build operation should stop.
Never: Do not stop.
Warnings: Stop on warnings and errors.
Errors: Stop on errors.

Save editor windows before
building

Always: Always save before Make or Build.
Ask: Prompt before saving.
Never: Do not save.

Save workspace and projects
before building

Always: Always save before Make or Build.
Ask: Prompt before saving.
Never: Do not save.

Make before debugging Always: Always make before debugging.
Ask: Always prompt before Making.
Never: Do not make.

Reload last workspace at startup Select this option if you want the last active workspace to
load automatically the next time you start IAR Embedded
Workbench.

Play a sound after build operations Plays a sound when the build operations are finished.

Table 79: Project page options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Debugger page

On the Debugger page—available by choosing Tools>Options—you can set options
for configuring the debugger environment.

Figure 141: Debugger page

Options

Generate browse information Enables the use of the Source Browser window.

Option Description

When source resolves to
multiple function instances:
Automatically choose all
instances

Some source code corresponds to multiple code instances, for
example template code. When specifying a source location in such
code, for example when setting a source breakpoint, you can make
C-SPY act on all instances or a subset of instances. This option lets
C-SPY act on all instances without first asking.

Source code color in
Disassembly window

Specifies the color of the source code in the Disassembly window.

Table 80: Debugger page options

Option Description

Table 79: Project page options (Continued)
U430-5

Part 7. Reference information 297

298

Menus
Register Filter page

On the Register Filter page—available by choosing Tools>Options when the IAR
C-SPY Debugger is running—you can choose to display registers in the Register
window in groups you have created yourself. See Register groups, page 138, for more
information about how to create register groups.For information about register groups,
see the MSP430 IAR Embedded Workbench® IDE User Guide.

Figure 142: Register Filter page

Step into functions This option controls the behavior of the Step Into command.
If you choose the Functions with source only option, the
debugger will only step into functions for which the source code is
known. This helps you avoid stepping into library functions or
entering disassembly mode debugging.

STL container expansion The value decides how many elements that are shown initially
when a container value is expanded in, for example, the Watch
window. Additional elements can be shown by clicking the
expansion arrow.

Live watch The value decides how often the C-SPY Live Watch window is
updated during execution.

Default integer format Sets the default integer format in the Watch, Locals, and related
windows.

Option Description

Table 80: Debugger page options (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Options

Terminal I/O page

On the Terminal I/O page—available by choosing Tools>Options when the IAR
C-SPY Debugger is running—you can configure the C-SPY terminal I/O functionality.

Figure 143: Terminal I/O page

Option Description

Use register filter Enables the usage of register filters.

Filter Files Displays a dialog box where you can select or create a new filter file.

Groups Lists available groups in the register filter file, alternatively displays the
new register group.

New Group The name for the new register group.

Group members Lists the registers selected from the register scroll bar window.

Base Changes the default integer base.

Table 81: Register Filter options
U430-5

Part 7. Reference information 299

300

Menus
Options

Source Code Control page

On the Source Code Control page—available by choosing Tools>Options—you can
configure the interaction between an IAR Embedded Workbench project and an SCC
project.

Figure 144: Source Code Control page

Option Description

Input Mode: Keyboard Buffered: All input characters are buffered.
Direct: Input characters are not buffered.

Input Mode: File Input characters are read from a file, either a text file or a binary file. A
browse button is available for locating the file.

Input Echoing Input characters can be echoed either in a log file, or in the C-SPY
Terminal I/O window. To echo input in a file requires that you have
enabled the option Enable log file that is available by choosing
Debug>Logging.

Show target reset in
Output window

When the target resets, a message is displayed in the C-SPY Terminal I/O
window.

Table 82: Terminal I/O options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Keep items checked out when checking in

Determines the default setting for the option Keep Checked Out in the Check In Files
dialog box; see Check In Files dialog box, page 246.

Save editor windows before performing source code control commands

Specifies whether editor windows should be saved before you perform any source code
control commands. The following options are available:

Stack page

HistoryOn the Stack page—available by choosing Tools>Options—you can set
options specific to the Stack window.

Figure 145: Stack page

Ask When you perform any source code control commands, you will be asked
about saving editor windows first.

Never Editor windows will never be saved first when you perform any source
code control commands.

Always Editor windows will always be saved first when you perform any source
code control commands.
U430-5

Part 7. Reference information 301

302

Menus
Enable graphical stack display and stack usage tracking

Use this option to enable the graphical stack bar available at the top of the Stack window.
At the same time, it enables the functionality needed to detect stack overflows. To read
more about the stack bar and the information it provides, see The graphical stack bar,
page 333.

% stack usage threshold

Use this text field to specify the percentage of stack usage above which C-SPY should
issue a warning for stack overflow.

Warn when exceeding stack threshold

Use this option to make C-SPY issue a warning when the stack usage exceeds the
threshold specified in the % stack usage threshold option.

Warn when stack pointer is out of bounds

Use this option to make C-SPY issue a warning when the stack pointer is outside the
stack memory range.

Stack pointer(s) not valid until reaching

Use this option to specify a location in your application code from where you want the
stack display and verification to take place. The Stack window will not display any
information about stack usage until execution has reached this location. By default,
C-SPY will not track the stack usage before the main function. If your application does
not have a main function, for example, if it is an assembler-only project, your should
specify your start label.

Typically, the stack pointer is set up in the system initialization code cstartup, but not
necessarily from the very first instruction. By using this option you can avoid incorrect
warnings or misleading stack display for this part of the application.

Warnings

You can choose to issue warnings using one of the following options:

Log Warnings are issued in the Debug Log window

Log and alert Warnings are issued in the Debug Log window and as alert dialog
boxes.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Limit stack display to

Use this option to limit the amount of memory displayed in the Stack window by
specifying a number, counting from the stack pointer. This can be useful if you have a
big stack or if you are only interested in the topmost part of the stack. Using this option
can improve the Stack window performance, especially if reading memory from the
target system is slow. By default, the Stack window shows the whole stack, or in other
words, from the stack pointer to the bottom of the stack. If the debugger cannot
determine the memory range for the stack, the byte limit is used even if the option is not
selected.

Note: The Stack window does not affect the execution performance of your
application, but it might read a large amount of data to update the displayed information
when the execution stops.

Configure Tools dialog box

In the Configure Tools dialog box—available from the Tools menu—you can specify
a user-defined tool to add to the Tools menu.

Figure 146: Configure Tools dialog box
U430-5

Part 7. Reference information 303

304

Menus
Note: If you intend to add an external tool to the standard build tool chain, see
Extending the tool chain, page 93the MSP430 IAR Embedded Workbench® IDE User
Guide.

Options

Note: Variables can be used in the arguments, allowing you to set up useful tools such
as interfacing to a command line revision control system, or running an external tool on
the selected file.

You can remove a command from the Tools menu by selecting it in this list and clicking
Remove.

Click OK to confirm the changes you have made to the Tools menu.

Option Description

Menu Content Lists all available user defined menu commands.

Menu Text Specifies the text for the menu command. By adding the sign &, the
following letter, N in this example, will then appear as the
mnemonic key for this command. The text you type in this field
will be reflected in the Menu Content field.

Command Specifies the command, and its path, to be run when you choose
the command from the menu. A browse button is available for
your convenience.

Argument Optionally type an argument for the command.

Initial Directory Specifies an initial working directory for the tool.

Redirect to Output window Specifies any console output from the tool to the Tool Output
page in the Messages window. Tools that are launched with this
option cannot receive any user input, for instance input from the
keyboard.
Tools that require user input or make special assumptions regarding
the console that they execute in, will not work at all if launched
with this option.

Prompt for Command Line Displays a prompt for the command line argument when the
command is chosen from the Tools menu.

Tool Available Specifies in which context the tool should be available, only when
debugging or only when not debugging.

Table 83: Configure Tools dialog box options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
The menu items you have specified will then be displayed on the Tools menu.

Figure 147: Customized Tools menu

Specifying command line commands or batch files

Command line commands or batch files need to be run from a command shell, so to add
these to the Tools menu you need to specify an appropriate command shell in the
Command text box. These are the command shells that can be entered as commands:

Filename Extensions dialog box

In the Filename Extensions dialog box—available from the Tools menu—you can
customize the filename extensions recognized by the build tools. This is useful if you
have many source files that have a different filename extension.

If you have an IAR Embedded Workbench for a different microprocessor installed on
your host computer, it can appear in the Tool Chain box. In that case you should select
the tool chain you want to customize.

Figure 148: Filename Extensions dialog box

Note the * sign which indicates that there are user-defined overrides. If there is no *
sign, factory settings are used.

Click Edit to open the Filename Extension Overrides dialog box.

System Command shell

Windows 98/Me command.com

Windows NT/2000/XP cmd.exe (recommended) or command.com

Table 84: Command shells
U430-5

Part 7. Reference information 305

306

Menus
Filename Extension Overrides dialog box

The Filename Extension Overrides dialog box—available by clicking Edit in the
Filename Extensions dialog box—lists the available tools in the build chain, their
factory settings for filename extensions, and any defined overrides.

Figure 149: Filename Extension Overrides dialog box

Select the tool for which you want to define more recognized filename extensions, and
click Edit to open the Edit Filename Extensions dialog box.

Edit Filename Extensions dialog box

The Edit File Extensions dialog box—available by clicking Edit in the Filename
Extension Overrides dialog box—lists the filename extensions accepted by default,
and you can also define new filename extensions.

Figure 150: Edit Filename Extensions dialog box

Click Override and type the new filename extension you want to be recognized.
Extensions can be separated by commas or semicolons, and should include the leading
period.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Configure Viewers dialog box

The Configure Viewers dialog box—available from the Tools menu—lists the
filename extensions of document formats that IAR Embedded Workbench can handle,
and which viewer application that will be used for opening the document type. Explorer
Default in the Action column means that the default application associated with the
specified type in Windows Explorer is used for opening the document type.

Figure 151: Configure Viewers dialog box

To specify how to open a new document type or editing the setting for an existing
document type, click New or Edit to open the Edit Viewer Extensions dialog box.

Edit Viewer Extensions dialog box

Type the filename extension for the document type—including the separating
period (.)—in the Filename extensions box.

Figure 152: Edit Viewer Extensions dialog box

Then choose one of the Action options:

● Built-in text editor—select this option to open all documents of the specified type
with the IAR Embedded Workbench text editor.

● Use file explorer associations—select this option to open all documents with the
default application associated with the specified type in Windows Explorer.
U430-5

Part 7. Reference information 307

308

Menus
● Command line—select this option and type or browse your way to the viewer
application, and give any command line options you would like to the tool.

WINDOW MENU

Use the commands on the Window menu to manipulate the IAR Embedded Workbench
IDE windows and change their arrangement on the screen.

The last section of the Window menu lists the windows currently open on the screen.
Choose the window you want to switch to.

Figure 153: Window menu

Window menu commands

Menu command Description

Close Tab Closes the active tab.

Close Window CTRL+F4 Closes the active editor window.

Split Splits an editor window horizontally or vertically into two,
or four panes, to allow you to see more parts of a file
simultaneously.

New Vertical Editor
Window

Opens a new empty window next to current editor
window.

New Horizontal
Editor Window

Opens a new empty window under current editor window.

Move Tabs To Next
Window

Moves all tabs in current window to next window.

Move Tabs To
Previous Window

Moves all tabs in current window to previous window.

Close All Tabs Except
Active

Closes all the tabs except the active tab.

Close All Editor Tabs Closes all tabs currently available in editor windows.

Table 85: Window menu commands
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
HELP MENU

The Help menu provides help about the IAR Embedded Workbench IDE and displays
the version numbers of the user interface and of the MSP430 IAR Embedded
Workbench IDE.

Menu command Description

Content Opens the contents page of the IAR Embedded
Workbench IDE online help.

Index Opens the index page of the IAR Embedded
Workbench IDE online help.

Search Opens the search page of the IAR Embedded
Workbench IDE online help.

Release notes Provides access to late-breaking information about
IAR Embedded Workbench.

MSP430 Embedded Workbench User Guide Provides access to an online version of this user
guide, available in PDF format.

MSP430 Assembler Reference Guide Provides access to an online version of the
MSP430 IAR Assembler Reference Guide, available in
PDF format.

MSP430 C/C++ Compiler Reference Guide Provides access to an online version of the
MSP430 IAR C/C++ Compiler Reference Guide,
available in PDF format.

MSP430 Migration Guide Provides access to an online version of the
MSP430 IAR Embedded Workbench Migration Guide,
available in hypertext PDF format.

IAR MISRA C Reference Guide Provides access to the online version of the IAR
Embedded Workbench® MISRA C Reference Guide,
available in PDF format.

Product updates Provides access to the latest product updates
available on the IAR Systems web site.

Linker and Library Tools Reference Guide Provides access to the online version of the IAR
Linker and Library Tools Reference Guide, available in
PDF format.

IAR on the Web Allows you to browse the home page, the news
page, and the technical notes search page of the
IAR Systems web site, and to contact IAR
Technical Support.

Table 86: Help menu commands
U430-5

Part 7. Reference information 309

310

Menus
Note: Additional documentation might be available on the Help menu depending on
your product installation.

Startup Screen Displays the Embedded Workbench Startup
dialog box; see Embedded Workbench Startup dialog
box, page 311.

About>Product Info Displays detailed information about the installed
IAR products. Copy this information (using the
Ctrl+C keyboard shortcut) and include it in your
message if you contact IAR Technical Support via
electronic mail.

About>Install Log Opens the license manager log file lms.log in
the editor. Attach this file to the email message if
you contact IAR Technical Support regarding any
problems related to the license management
system.

Menu command Description

Table 86: Help menu commands (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference
Embedded Workbench Startup dialog box

The Embedded Workbench Startup dialog box—available from the Help
menu—provides an easy access to ready-made example workspaces that can be built
and executed out of the box for a smooth development startup.

Figure 154: Embedded Workbench Startup dialog box
U430-5

Part 7. Reference information 311

312

Menus
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger
reference
This chaptersection contains detailed reference information about the
windows, menus, menu commands, and the corresponding components that
are specific for the IAR C-SPY Debugger.

C-SPY windows
The following windows specific to C-SPY are available in the IAR C-SPY Debugger:

● IAR C-SPY Debugger main window
● Disassembly window
● Memory window
● Register window
● Watch window
● Locals window
● Auto window
● Live Watch window
● Quick Watch window
● Call Stack window
● Terminal I/O window
● Code Coverage window
● Profiling window
● Stack windowHistory
● LCD window.

Additional windows will be available depending on which C-SPY driver you are using.
For information about driver-specific windows, see the driver-specific documentation.

EDITING IN C-SPY WINDOWS

You can edit the contents of the Memory, Register, Auto, Watch, Locals, Live Watch,
and Quick Watch windows.

Use the following keyboard keys to edit the contents of the Register and Watch
windows:

Key Description

Enter Makes an item editable and saves the new value.

Table 87: Editing in C-SPY windows
U430-5

Part 7. Reference information 313

314

C-SPY windows
IAR C-SPY DEBUGGER MAIN WINDOW

When you start the IAR C-SPY Debugger, the following debugger-specific items appear
in the main IAR Embedded Workbench IDE window:

● A dedicated debug menu with commands for executing and debugging your
application

● Depending on the C-SPY driver you are using, a driver-specific menu. Typically,
this menu contains menu commands for opening driver-specific windows and dialog
boxes. See the driver-specific documentation for more information

● A special debug toolbar
● Several windows and dialog boxes specific to C-SPY.

The window might look different depending on which components you are using.

Each window item is explained in greater detail in the following sections.

Menu bar

In addition to the menus available in the development environment, the Debug menu is
available when C-SPY is running. The Debug menu provides commands for executing
and debugging the source application. Most of the commands are also available as icon
buttons in the debug toolbar. The following menus are available when C-SPY is running:

Additional menus might be available, depending on which debugger drivers have been
installed; for information, see the driver-specific documentation.

Debug toolbar

The debug toolbar provides buttons for the most frequently-used commands on the
Debug menu.

Esc Cancels a new value.

Menu Description

Debug The Debug menu provides commands for executing and debugging the source
application. Most of the commands are also available as icon buttons in the debug
toolbar.

Simulator The Simulator menu provides access to the dialog boxes for setting up interrupt
simulation and memory maps. Only available when the C-SPY Simulator is used.

Emulator The Emulator menu provides access to commands specific to the C-SPY FET
debugger. Only available when the C-SPY FET debugger is used.

Table 88: C-SPY menu

Key Description

Table 87: Editing in C-SPY windows (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
You can display a description of any button by pointing to it with the mouse pointer.
When a command is not available the corresponding button will be dimmed and you will
not be able to select it.

The following diagram shows the command corresponding to each button:

Figure 155: C-SPY debug toolbar

DISASSEMBLY WINDOW

The C-SPY Disassembly window—available from the View menu—shows the
application being debugged as disassembled application code.

Reset

Break

Step Over

Step Into

Step Out

Next
Statement

Run To
Cursor

Go

Stop
Debugging
U430-5

Part 7. Reference information 315

316

C-SPY windows
The current position—highlighted in green—indicates the next assembler instruction to
be executed. You can move the cursor to any line in the Disassembly window by clicking
on the line. Alternatively, you can move the cursor using the navigation keys.
Breakpoints are indicated in red. Code that has been executed—code coverage—is
indicated with a green diamond.

Figure 156: C-SPY Disassembly window

To change the default color of the source code in the Disassembly window, choose
Tools>Options>Debugger. Set default color using the Set source code coloring in
Disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
window and drag it to the Disassembly window.

Disassembly window operations

At the top of the window you can find a set of useful text boxes, drop-down lists and
command buttons:

Go to memory
address

Current position

Breakpoint

Zone display

Toggle embedded
source mode

Code coverage
information

Operation Description

Go to The memory location you want to view.

Table 89: Disassembly window operations
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
Disassembly context menu

Clicking the right mouse button in the Disassembly window displays a context menu
which gives you access to some extra commands.

Figure 157: Disassembly window context menu

Zone display Lists the available memory or register zones to display. Read more about
Zones in section Memory zones, page 114.

Disassembly mode Toggles between showing only disassembly or disassembly together with
the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

Operation Description

Move to PC Displays code at the current program counter location.

Run to Cursor Executes the application from the current position up to the line
containing the cursor.

Code Coverage
Enable
Show

Clear

Opens a submenu with commands for controlling code coverage.
Enable toggles code coverage on and off.
Show toggles between displaying and hiding code coverage. Executed
code is indicated by a green diamond.
Clear clears all code coverage information.

Toggle Breakpoint (Code) Toggles a code breakpoint. Assembler instructions at which code
breakpoints have been set are highlighted in red. For information
about code breakpoints, see Code breakpoints dialog box, page 256.

Toggle Breakpoint (Log) Toggles a log breakpoint for trace printouts. Assembler instructions
at which log breakpoints have been set are highlighted in red. For
information about log breakpoints, see Log breakpoints dialog box, page
258.

Enable/Disable Breakpoint Enables and Disables a breakpoint.

Table 90: Disassembly context menu commands

Operation Description

Table 89: Disassembly window operations (Continued)
U430-5

Part 7. Reference information 317

318

C-SPY windows
MEMORY WINDOW

The Memory window—available from the View menu—gives an up-to-date display of
a specified area of memory and allows you to edit it. You can open several instances of
this window, which is very convenient if you want to keep track of different memory or
register zones, or monitor different parts of the memory.

Figure 158: Memory window

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

Memory window operations

At the top of the window you can find commands for navigation:

Set Next Statement Sets program counter to the location of the insertion point.

Copy Window Contents Copies the selected contents of the Disassembly window to the
clipboard.

Operation Description

Table 90: Disassembly context menu commands (Continued)

Go to memory
address

Zone display

Operation Description

Go to The address of the memory location you want to view.

Zone display Lists the available memory or register zones to display. Read more about
Zones in section Memory zones, page 114.

Table 91: Memory window operations
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
Memory window context menu

The context menu available in the Memory window provides above commands, edit
commands, and a command for opening the Fill dialog box.

Figure 159: Memory window context menu

Menu command Description

Copy, Paste Standard editing commands.

Zone Lists the available memory or register zones to display. Read more about
Zones in Memory zones, page 114.

x1, x2, x4 Units Switches between displaying the memory contents in units of 8, 16, or 32
bits

Little Endian
Big Endian

Switches between displaying the contents in big-endian or little-endian
order. An asterisk (*) indicates the default byte order.

Data Coverage
Enable
Show
Clear

Enable toggles data coverage on and off.
Show toggles between showing and hiding data coverage.
Clear clears all data coverage information.

Memory Fill Opens the Fill dialog box, where you can fill a specified area with a value.

Memory Upload Displays the Memory Upload dialog box, where you can save a selected
memory area to a file in Intel Hex format.

Set Data Breakpoint Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog
box. The breakpoints you set in this window will be triggered for both
read and write access.

Table 92: Commands on the memory window context menu
U430-5

Part 7. Reference information 319

320

C-SPY windows
Data coverage display

Data coverage is displayed with the following colors:

● Yellow indicates data that has been read
● Blue indicates data that has been written
● Green indicates data that has been both read and written.

Fill dialog box

In the Fill dialog box—available from the context menu available in the Window
memory—you can fill a specified area of memory with a value.

Figure 160: Fill dialog box

Options

These are the available memory fill operations:

Option Description

Start Address Type the start address—in binary, octal, decimal, or hexadecimal
notation.

Length Type the length—in binary, octal, decimal, or hexadecimal notation.

Zone Select memory zone.

Value Type the 8-bit value to be used for filling each memory location.

Table 93: Fill dialog box options

Operation Description

Copy The Value will be copied to the specified memory area.

AND An AND operation will be performed between the Value and the
existing contents of memory before writing the result to memory.

Table 94: Memory fill operations
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
REGISTER WINDOW

The Register window—available from the View menu—gives an up-to-date display of
the contents of the processor registers, and allows you to edit them. When a value
changes it becomes highlighted. Some registers are expandable, which means that the
register contains interesting bits or sub-groups of bits.

You can open several instances of this window, which is very convenient if you want to
keep track of different register groups.

Figure 161: Register window

You can select which register group to display in the Register window using the
drop-down list. To define application-specific register groups, see Defining
application-specific groups, page 139.For more information about register groups, see
the MSP430 IAR Embedded Workbench® IDE User Guide.

XOR An XOR operation will be performed between the Value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between the Value and the existing
contents of memory before writing the result to memory.

Operation Description

Table 94: Memory fill operations (Continued)
U430-5

Part 7. Reference information 321

322

C-SPY windows
WATCH WINDOW

The Watch window—available from the View menu—allows you to monitor the values
of C-SPY expressions or variables. You can view, add, modify, and remove expressions
in the Watch window. Tree structures of arrays, structs, and unions are expandable,
which means that you can study each item of these.

Figure 162: Watch window

Every time execution in C-SPY stops, a value that has changed since the last stop is
highlighted. In fact, every time memory changes, the values in the Watch window are
recomputed, including updating the red highlights.History

Watch window context menu

The context menu available in the Watch window provides commands for adding and
removing expressions, changing the display format of expressions, as well as commands
for changing the default type interpretation of variables.

Figure 163: Watch window context menu
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
The menu contains the following commands:

The display format setting affects different types of expressions in different ways:

LOCALS WINDOW

The Locals window—available from the View menu—automatically displays the local
variables and function parameters.

Figure 164: Locals window

Menu command Description

Add, Remove Adds or removes the selected expression.

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Changes the display format of expressions. The display format setting
affects different types of expressions in different ways, see Table 96,
Effects of display format setting on different types of expressions. Your
selection of display format is saved between debug sessions.

Show As Provides a submenu with commands for changing the default type
interpretation of variables. The commands on this submenu are mainly
useful for assembler variables—data at assembler labels—as these are by
default displayed as integers. For more information, see Viewing assembler
variables, page 128.

Table 95: Watch window context menu commands

Type of expressions Effects of display format setting

Variable The display setting affects only the selected variable, not other variables.

Array element The display setting affects the complete array, that is, same display format
is used for each array element.

Structure field All elements with the same definition—the same field name and C
declaration type—are affected by the display setting.

Table 96: Effects of display format setting on different types of expressions
U430-5

Part 7. Reference information 323

324

C-SPY windows
Locals window context menu

The context menu available in the Locals window provides commands for changing the
display format of expressions; for information about these commands, see Watch
window context menu, page 322.

AUTO WINDOW

The Auto window—available from the View menu—automatically displays a useful
selection of variables and expressions in, or near, the current statement.

Figure 165: Auto window

Auto window context menu

The context menu available in the Auto window provides commands for changing the
display format of expressions; for information about these commands, see Watch
window context menu, page 322.

LIVE WATCH WINDOW

The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in the
expressions must be statically located, such as global variables.

Figure 166: Live Watch window

Typically, this window is useful for hardware target systems supporting this feature.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
Live Watch window context menu

The context menu available in the Live Watch window provides commands for adding
and removing expressions, changing the display format of expressions, as well as
commands for changing the default type interpretation of variables. For information
about these commands, see Watch window context menu, page 322.

In addition, the menu contains the Options command, which opens the Debugger
dialog box where you can set the Update interval option. The default value of this
option is 1000 milliseconds, which means the Live Watch window will be updated once
every second during program execution.

QUICK WATCH WINDOW

In the Quick Watch window—available from the View menu—you can watch the value
of a variable or expression and evaluate expressions.

Figure 167: Quick Watch window

Type the expression you want to examine in the Expressions text box. Click the
Recalculate button to calculate the value of the expression. For examples about how to
use the Quick Watch window, see Using the Quick Watch window, page 126 and
Executing macros using Quick Watch, page 148the MSP430 IAR Embedded
Workbench® IDE User Guide.
U430-5

Part 7. Reference information 325

326

C-SPY windows
Quick Watch window context menu

The context menu available in the Quick Watch window provides commands for
changing the display format of expressions, as well as commands for changing the
default type interpretation of variables. For information about these commands, see
Watch window context menu, page 322.

In addition, the menu contains the Add to Watch window command, which adds the
selected expression to the Watch window.

CALL STACK WINDOW

The Call stack window—available from the View menu—displays the C function call
stack with the current function at the top. To inspect a function call, double-click it.
C-SPY now focuses on that call frame instead.

Figure 168: Call Stack window

Each entry has the format:

function(values)

where (values) is a list of the current value of the parameters, or empty if the function
does not take any parameters.

If the Step Into command steps into a function call, the name of the function is
displayed in the grey bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

Destination for Step
Into
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
Call Stack window context menu

The context menu available by right-clicking in the Call Stack window provides the
following commands:

Figure 169: Call Stack window context menu

Commands

Go to Source Displays the selected functions in the Disassembly or editor
windows.

Show Arguments Shows function arguments.

Run to Cursor Executes to the function selected in the call stack.

Toggle Breakpoint (Code) Toggles a code breakpoint.

Toggle Breakpoint (Log) Toggles a log breakpoint.

Enable/Disable Breakpoint Enables or disables the selected breakpoint.
U430-5

Part 7. Reference information 327

328

C-SPY windows
TERMINAL I/O WINDOW

In the Terminal I/O window—available from the View menu—you can enter input to
the application, and display output from it. To use this window, you need to link the
application with the option Debug info with terminal I/O. C-SPY will then direct
stdin, stdout and stderr to this window. If the Terminal I/O window is closed,
C-SPY will open it automatically when input is required, but not for output.

Figure 170: Terminal I/O window

Clicking the Ctrl codes button opens a menu with submenus for input of special
characters, such as EOF (end of file) and NUL.

Figure 171: Ctrl codes menu

Clicking the Input Mode button opens the Change Input Mode dialog box where you
choose whether to input data from the keyboard or from a text file.

Figure 172: Change Input Mode dialog box
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
For reference information about the options available in the dialog box, see Terminal I/O
page, page 299.

CODE COVERAGE WINDOW

Code coverage is only supported by the C-SPY Simulator.

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code that have been executed
at least once since the start of the analysis. The compiler generates detailed stepping
information in the form of step points at each statement, as well as at each function call.
The report includes information about all modules and functions. It reports the amount
of all step points, in percentage, that have been executed and lists all step points that have
not been executed up to the point where the application has been stopped. The coverage
will continue until turned off.

Figure 173: Code Coverage window

Note:

● You can enable the Code Coverage plugin module on the Debugger>Plugins page
available in the Options dialog box.

● Code coverage is not supported by all C-SPY drivers. For information about
whether the C-SPY driver you are using supports code coverage, see Differences
between the C-SPY drivers, page 192the driver-specific documentation. Code
coverage is supported by the C-SPY Simulator.
U430-5

Part 7. Reference information 329

330

C-SPY windows
Code coverage commands

In addition to the commands available as icon buttons in the toolbar, clicking the right
mouse button in the Code Coverage window displays a context menu that gives you
access to these and some extra commands.

Figure 174: Code coverage context menu

You can find the following commands on the menu:

The following icons are used to give you an overview of the current status on all levels:

● A red diamond signifies that 0% of the code has been executed
● A green diamond signifies that 100% of the code has been executed
● A red and green diamond signifies that some of the code has been executed
● A yellow diamond signifies a step point that has not been executed.

For step point lines, the information displayed is the column number range and the row
number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:<row>.

PROFILING WINDOW

The Profiling window—available from the View menu—displays profiling information,
that is, timing information for the functions in an application. Profiling must be turned
on explicitly using a button in the window’s toolbar, and will stay active until it is turned
off.

Activate/Deactivate Switches code coverage on and off during execution.

Clear Clears the code coverage information. All step points are marked as not
executed.

Refresh Updates the code coverage information and refreshes the window. All step
points that has been executed since the last refresh are removed from the
tree.

Auto-refresh Toggles the automatic reload of code coverage information on and off.
When turned on, the code coverage information is reloaded automatically
when C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As Saves the current code coverage information in a text file.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
The profiler measures time at the entry and return of a function. This means that time
consumed in a function is not added until the function returns or another function is
called. You will only notice this if you are stepping into a function.

Figure 175: Profiling window

Note:

● You can enable the Profiling plugin module on the Debugger>Plugins page
available in the Options dialog box.

● Profiling is not supported by all C-SPY drivers. For information about whether the
C-SPY driver you are using supports profiling, see Differences between the C-SPY
drivers, page 192the driver-specific documentation. Profiling is supported by the
C-SPY Simulator.

Profiling commands

In addition to the toolbar buttons, the context menu available in the Profiling window
gives you access to these and some extra commands:

Figure 176: Profiling context menu

You can find the following commands on the menu:

Activate Toggles profiling on and off during execution.

New measurement Starts a new measurement. By clicking the button, the values displayed
are reset to zero.
U430-5

Part 7. Reference information 331

332

C-SPY windows
Profiling columns

The Profiling window contains the following columns:

There is always an item in the list called Outside main. This is time that cannot be
placed in any of the functions in the list. That is, code compiled without debug
information, for instance, all startup and exit code, and C/C++ library code.

STACK WINDOW

HistoryThe Stack window is a memory window that displays the contents of the stack.
In addition, some integrity checks of the stack can be performed to detect and warn
about problems with stack overflow. For example, the Stack window is useful for
determining the optimal size of the stack.

Graph Displays the percentage information for Flat Time and Accumulated
Time as graphs (bar charts) or numbers.

Show details Shows more detailed information about the function selected in the list.
A window is opened showing information about callers and callees for
the selected function.

Refresh Updates the profiling information and refreshes the window.

Auto refresh Toggles the automatic update of profiling information on and off. When
turned on, the profiling information is updated automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As Saves the current profiling information in a text file.

Column Description

Function The name of each function.

Calls The number of times each function has been called.

Flat Time The total time spent in each function in cycles or as a percentage of the
total number of cycles, excluding all function calls made from that
function.

Accumulated Time Time spent in each function in cycles or as a percentage of the total
number of cycles, including all function calls made from that function.

Table 97: Profiling window columns
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
Before you can open the Stack window you must make sure it is enabled: choose
Project>Options>Debugger>Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open
several Stack windows, each showing a different stack—if several stacks are
available—or the same stack with different display settings.

Figure 177: Stack window

The stack drop-down menu

If the microcontroller you are using has multiple stacks, you can use the stack
drop-down menu at the top of the window to select which stack to view.

The graphical stack bar

At the top of the window, a stack bar displays the state of the stack graphically. To view
the stack bar you must make sure it is enabled: choose Tools>Options>Stack and select
the option Enable graphical stack display and stack usage tracking.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. A green line represents the current value of
the stack pointer. The part of the stack memory that has been used during execution is
displayed in a dark gray color, and the unused part in a light gray color. The graphical
stack bar turns red when the stack usage exceeds a threshold that you can specify.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xCD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can
incorrectly grow outside its bounds, and even modify memory outside the stack range,
U430-5

Part 7. Reference information 333

334

C-SPY windows
without actually modifying any of the bytes near the stack range. Likewise, your
application might modify memory within the stack range by mistake. Furthermore, the
Stack window cannot detect a stack overflow when it happens, but can only detect the
signs it leaves behind.

Note: The size and location of the stack is retrieved from the definition of the segment
holding the stack, typically CSTACK, made in the linker command file. If you, for some
reason, modify the stack initialization made in the system startup code, cstartup, you
should also change the segment definition in the linker command file accordingly;
otherwise the Stack window cannot track the stack usage. To read more about this, see
the MSP430 IAR C/C++ Compiler Reference Guide.

When the stack bar is enabled, the functionality needed to detect and warn about stack
overflows is also enabled, see Stack page, page 301.

The Stack window columns

The main part of the window displays the contents of stack memory in the following
columns:

Column Description

Location Displays the location in memory. The addresses are displayed in
increasing order. The address referenced by the stack pointer, in other
words the top of the stack, is highlighted in a green color.

Data Displays the contents of the memory unit at the given location. From the
Stack window context menu, you can select how the data should be
displayed; as a 1-, 2-, or 4-byte group of data.

Variable Displays the name of a variable, if there is a local variable at the given
location. Variables are only displayed if they are declared locally in a
function, and located on the stack and not in registers.

Value Displays the value of the variable that is displayed in the Variable
column.

Frame Displays the name of the function the call frame corresponds to.

Table 98: Stack window columns
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
The Stack window context menu

The following context menu is available if you right-click in the Stack window:

Figure 178: Stack window context menu

The following commands are available in the context window:

LCD WINDOW

The LCD window—available from the View menu—simulates a 7- or 14-segments
LCD display.

Figure 179: LCD window

Show variables Separate columns named Variables, Value, and Frame are
displayed in the Stack window. Variables located at memory
addresses listed in the Stack window are displayed in these
columns.

Show offsets When this option is selected, locations in the Location column are
displayed as offsets from the stack pointer. When deselected,
locations are displayed as absolute addresses.

1x Bytes The data in the Data column is displayed as single bytes.

2x Bytes The data in the Data column is displayed as 2-byte groups.

4x Bytes The data in the Data column is displayed as 4-byte groups.

Options Opens the IDE Options dialog box where you can set options
specific to the Stack window, see Stack page, page 301.
U430-5

Part 7. Reference information 335

336

C-SPY menus
LCD Settings dialog box

Click the Settings button in the LCD window to display the LCD Settings dialog box.

Figure 180: LCD Settings dialog box

These are the available settings:

C-SPY menus
In addition to the menus available in the development environment, the Debug menu is
available when C-SPY is running.

Additional menus will be available depending on which C-SPY driver you are using. For
information about driver-specific menus, see the online help system available from the
Help menu for information about driver-specific documentation.

Setting Description

LCD configuration file Selects the LCD display to simulate. Available displays are a 7
segment display and a 14 segment display.

LCD control register address Sets up the address to the LCD control register.

Table 99: LCD window settings
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
DEBUG MENU

The Debug menu provides commands for executing and debugging your application.
Most of the commands are also available as toolbar buttons.

Figure 181: Debug menu

Menu Command Description

Go F5 Executes from the current statement or instruction until a breakpoint or
program exit is reached.

Break Stops the application execution.

Reset Resets the target processor.

Stop Debugging Stops the debugging session and returns you to the project manager.

Step Over F10 Executes the next statement or instruction, without entering C or C++
functions or assembler subroutines.

Step Into F11 Executes the next statement or instruction, entering C or C++ functions
or assembler subroutines.

Step Out SHIFT+F11 Executes from the current statement up to the statement after the call
to the current function.

Next Statement If stepping into and out of functions is unnecessarily slow, use this
command to step directly to the next statement.

Run to Cursor Executes from the current statement or instruction up to a selected
statement or instruction.

Table 100: Debug menu commands
U430-5

Part 7. Reference information 337

338

C-SPY menus
Autostep settings dialog box

In the Autostep settings dialog box—available from the Debug menu—you can
customize autostepping.

Figure 182: Autostep settings dialog box

The drop-down menu lists the available step commands.

The Delay text box lets you specify the delay between each step.

Macro Configuration dialog box

In the Macro Configuration dialog box—available by choosing Debug>Macros—you
can list, register, and edit your macro files and functions.

Autostep Displays the Autostep settings dialog box which lets you customize
and perform autostepping.

Refresh Refreshes the contents of the Memory, Register, Watch, and Locals
windows.

Set Next Statement Moves the program counter directly to where the cursor is, without
executing any source code. Note, however, that this creates an anomaly
in the program flow and might have unexpected effects.

Macros Displays the Macro Configuration dialog box to allow you to list,
register, and edit your macro files and functions.

Logging>Set Log file Displays a dialog box to allow you to log input and output from C-SPY to
a file. You can select the type and the location of the log file. You can
choose what you want to log: errors, warnings, system information, user
messages, or all of these.

Logging>Set Terminal
I/O Log file

Displays a dialog box to allow you to log terminal input and output from
C-SPY to a file. You can select the destination of the log file.

Menu Command Description

Table 100: Debug menu commands (Continued)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
Macro functions that have been registered using the dialog box will be deactivated when
you exit the debug session, and will not automatically be registered at the next debug
session.

Figure 183: Macro Configuration dialog box

Registering macro files

Select the macro files you want to register in the file selection list, and click Add or Add
All to add them to the Selected Macro Files list. Conversely, you can remove files from
the Selected Macro Files list using Remove or Remove All.

Once you have selected the macro files you want to use click Register to register them,
replacing any previously defined macro functions or variables. Registered macro
functions are displayed in the scroll window under Registered Macros. Note that
system macros cannot be removed from the list, they are always registered.
U430-5

Part 7. Reference information 339

340

C-SPY menus
Listing macro functions

Selecting All displays all macro functions, selecting User displays all user-defined
macros, and selecting System displays all system macros.

Clicking on either Name or File under Registered Macros displays the column
contents sorted by macro names or by file. Clicking a second time sorts the contents in
the reverse order.

Modifying macro files

Double-clicking a user-defined macro function in the Name column automatically
opens the file in which the function is defined, allowing you to modify it, if needed.

Log File dialog box

The Log File dialog box—available by choosing Debug>Logging>Set Log File
—allows you to log output from C-SPY to a file.

Figure 184: Log File dialog box

Enable or disable logging to the file with the Enable Log file check box.

The information printed in the file is by default the same as the information listed in the
Log window. To change the information logged, use the Include options:

Option Description

Errors C-SPY has failed to perform an operation.

Warnings A suspected error.

Info Progress information about actions C-SPY has performed.

User Printouts from C-SPY macros, that is, your printouts using the
__message statement.

Table 101: Log file options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® Debugger reference
Click the browse button, to override the default file type and location of the log file.
Click Save to select the specified file—the default filename extension is log.

Terminal I/O Log File dialog box

The Terminal I/O Log Files dialog box—available by choosing
Debug>Logging—allows you to select a destination log file, and to log terminal I/O
input and output from C-SPY to this file.

Figure 185: Terminal I/O Log File dialog box

Click the browse button to open a standard Save As dialog box. Click Save to select the
specified file—the default filename extension is log.
U430-5

Part 7. Reference information 341

342

C-SPY menus
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

General options
This chapter describes the general options in the IAR Embedded
Workbench® IDE.

For information about how options can be set, see Setting options, page 89.

Target
The Target options specify the device, the size of the floating-point type double,
whether position-independent code should be generated, whether code for the hardware
multiplier unit should be generated, and if the project is an assembler-only project.

Figure 186: Target options

DEVICE

Use the drop-down list to select the device for which you will build your application.
The choice of device controls which linker command file and device description file that
will be used.
U430-5

Part 7. Reference information 343

344

Target
FLOATING-POINT

The compiler represents floating-point values by 32- and 64-bit numbers in standard
IEEE 754 format. The Size of type 'double' option specifies the size of the type
double. Choose between:

For more details about the floating-point format, see the MSP430 IAR C/C++ Compiler
Reference Guide.

POSITION-INDEPENDENT CODE

Select normal or position-independent code generation. Note that position-independent
code will lead to a rather large overhead in code size. For more details about
position-independent code, see MSP430 IAR C/C++ Compiler Reference Guide.

HARDWARE MULTIPLIER

Generates code for the MSP430 hardware multiplier peripheral unit. The option is only
enabled when you have chosen a device containing the hardware multiplier from the
Device drop-down list.

ASSEMBLER-ONLY PROJECT

Use this option if your project only contains assembler source files. The option will
make the necessary settings required for an assembler only project, for instance,
disabling the use of a C or C++ runtime library and the cstartup system. The Run to
option will be disabled.

32 bits
(default)

The data type double is represented by the 32-bit floating-point format.

64 bits The data type double is represented by the 64-bit floating-point format.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

General options
Output
With the Output options you can specify the type of output file—Executable or
Library. You can also specify the destination directories for executable files, object
files, and list files.

Figure 187: Output options

OUTPUT FILE

Use these options to choose the type of output file. Choose between:

OUTPUT DIRECTORIES

Use these options to specify paths to destination directories. Note that incomplete paths
are relative to your project directory. You can specify the paths to the following
destination directories:

Executable
(default)

As a result of the build process, the XLINK linker will create an application
(an executable output file). When this option is selected, linker options will
be available in the Options dialog box. Before you create the output you
should set the appropriate linker options.

Library As a result of the build process, the XAR library builder will create a library
file. When this option is selected, XAR library builder options will be
available in the Options dialog box, and Linker will disappear from the list
of categories. Before you create the library you can set the XAR options.

Executables/libraries Use this option to override the default directory for executable or
library files. Type the name of the directory where you want to save
executable files for the project.
U430-5

Part 7. Reference information 345

346

Library Configuration
Library Configuration
With the Library Configuration options you can specify which library to use.

Figure 188: Library Configuration options

For information about the runtime library, library configurations, the runtime
environment they provide, and the possible customizations, see MSP430 IAR C/C++
Compiler Reference Guide.

LIBRARY

In the Library drop-down list you choose which runtime library to use. For information
about available libraries, see the MSP430 IAR C/C++ Compiler Reference Guide.

Note: For C++ projects, you must use one of the DLIB library variants.

The library object file and library configuration file that actually will be used are
displayed in the Library file and Configuration file text boxes, respectively.

LIBRARY FILE

The Library file text box displays the library object file that will be used. A library
object file is automatically chosen depending on your project settings.

Object files Use this option to override the default directory for object files. Type
the name of the directory where you want to save object files for the
project.

List files Use this option to override the default directory for list files. Type the
name of the directory where you want to save list files for the project.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

General options
If you have chosen Custom DLIB or Custom CLIB in the Library drop-down list, you
must specify your own library object file.

CONFIGURATION FILE

The Configuration file text box displays the library configuration file that will be used.
A library configuration file is chosen automatically depending on the project settings. If
you have chosen Custom DLIB in the Library drop-down list, you must specify your
own library configuration file.

Note: A library configuration file is only required for the DLIB library.

Library Options
With the options on the Library Options page you can choose printf and scanf
formatters.

Figure 189: Library Options page

See the MSP430 IAR C/C++ Compiler Reference Guide for more information about the
formatting capabilities.

PRINTF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications. To reduce the memory consumption,
alternative versions are also provided:

● Printf formatters in the IAR DLIB Library are: Full, Large, Small, and Tiny
● Printf formatters in the IAR CLIB Library are: Large, Medium, and Small.
U430-5

Part 7. Reference information 347

348

Stack/Heap
SCANF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications. To reduce the memory consumption,
alternative versions are also provided:

● Scanf formatters in the IAR DLIB Library are: Full, Large, and Small
● Scanf formatters in the IAR CLIB Library are: Large, and Medium.

Stack/Heap
With the options on the Stack/Heap page you can customize the heap and stack sizes.

Figure 190: Stack/Heap page

OVERRIDE DEFAULT

Use this option to override the default heap and stack size settings.

STACK SIZE

Enter the required stack size in the Stack size text box, using decimal notation.

HEAP SIZE

Enter the required heap size in the Heap size text box, using decimal notation.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

General options
MISRA C
Use the options on the MISRA C page to control how IAR Embedded Workbench
checks the source code for deviations from the MISRA C rules. The settings will be used
for both the compiler and the linker.

If you want the compiler to check different sets of rules, you can override these settings
in the C/C++ Compiler category.

Figure 191: MISRA C general options

ENABLE MISRA C

Select this option to enable checking the source code for deviations from the MISRA C
rules during compilation and linking. Only the rules selected in the scroll list will be
checked.

LOG MISRA C SETTINGS

Select this option to generate a MISRA C log during compilation and linking. This is a
list of the rules that are enabled—but not necessarily checked—and a list of rules that
are actually checked.

SET ACTIVE MISRA C RULES

Only the rules you select in the scroll list will be checked during compilation and
linking. Click one of the buttons None, Required, or All to select or deselect several
rules with one click. The Required button selects all 93 rules that are categorized by the
Guidelines for the Use of the C Language in Vehicle Based Software as required and
deselects the rules that are categorized as advisory.
U430-5

Part 7. Reference information 349

350

MISRA C
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Compiler options
This chapter describes the compiler options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Language
The Language options enable the use of target-dependent extensions to the C or C++
language.

Figure 192: Compiler language options

LANGUAGE

With the Language options you can specify the language support you need.

For information about Embedded C++ and Extended Embedded C++, see the MSP430
IAR C/C++ Compiler Reference Guide.

C

By default, the MSP430 IAR C/C++ Compiler runs in ISO/ANSI C mode, in which
features specific to Embedded C++ and Extended Embedded C++ cannot be utilized.
U430-5

Part 7. Reference information 351

352

Language
Embedded C++

In Embedded C++ mode, the compiler treats the source code as Embedded C++. This
means that features specific to Embedded C++, such as classes and overloading, can be
utilized.

Embedded C++ requires that a DLIB library (C/C++ library) is used.

Extended Embedded C++

In Extended Embedded C++ mode, you can take advantage of features like namespaces
or the standard template library in your source code.

Extended Embedded C++ requires that a DLIB library (C/C++ library) is used.

Automatic

If you select Automatic, language support will be decided automatically depending on
the filename extension of the file being compiled:

● Files with the filename extension c will be compiled as C source files
● Files with the filename extension cpp will be compiled as Extended Embedded C++

source files.

This option requires that a DLIB library (C/C++ library) is used.

REQUIRE PROTOTYPES

This option forces the compiler to verify that all functions have proper prototypes. Using
this option means that code containing any of the following will generate an error:

● A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

● A function definition of a public function with no previous prototype declaration
● An indirect function call through a function pointer with a type that does not include

a prototype.

LANGUAGE CONFORMANCE

Language extensions must be enabled for the MSP430 IAR C/C++ Compiler to be able
to accept MSP430-specific keywords as extensions to the standard C or C++ language.
In the IAR Embedded Workbench IDE, the option Allow IAR extensions is enabled by
default.

The option Relaxed ISO/ANSI disables IAR extensions, but does not adhere to strict
ISO/ANSI.

Select the option Strict ISO/ANSI to adhere to the strict ISO/ANSI C standard.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Compiler options
For details about language extensions, see the MSP430 IAR C/C++ Compiler Reference
Guide.

PLAIN 'CHAR' IS

Normally, the compiler interprets the char type as unsigned char. Use this option to
make the compiler interpret the char type as signed char instead, for example for
compatibility with another compiler.

Note: The runtime library is compiled with unsigned plain characters. If you select the
radio button Signed, you might get type mismatch warnings from the linker as the
library uses unsigned char.

ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in C or Embedded C++ source code. If
you use this option, multibyte characters in the source code are interpreted according to
the host computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

ENABLE IAR MIGRATION PREPROCESSOR EXTENSIONS

Migration preprocessor extensions extend the preprocessor in order to ease migration of
code from earlier IAR compilers. If you need to migrate code from an earlier IAR C or
C++ compiler, you may want to use this option.

Note: If you use this option, not only will the compiler accept code that is not standard
conformant, but it will also reject some code that does conform to standard.

Important! Do not depend on these extensions in newly written code. Support for them
may be removed in future compiler versions.
U430-5

Part 7. Reference information 353

354

Code
Code
The Code options specify the use of registers and the stack.

Figure 193: Compiler code options

R4 UTILIZATION

This option controls how register R4 can be used. There are three possible settings:

● Normal use. This setting allows the compiler to use the register in generated code.
● __regvar variables. When this setting is selected, the compiler uses the register for

locating global register variables declared with the extended keyword __regvar.
● Not used. If you select this setting, R4 is locked and can be used for a special

purpose by the application.

R5 UTILIZATION

This option controls how register R5 can be used. There are three possible settings:

● Normal use. This setting allows the compiler to use the register in generated code.
● __regvar variables. When this setting is selected, the compiler uses the register for

locating global register variables declared with the extended keyword __regvar.
● Not used. If you select this setting, R5 is locked and can be used for a special

purpose by the application.

REDUCE STACK USAGE

Use this option to make the compiler minimize the use of stack space at the cost of
somewhat larger and slower code.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Compiler options
20-BIT CONTEXT SAVE ON INTERRUPT

Use this option to make all interrupt functions be treated as a __save_reg_20 declared
function without explicitly using the __save_reg20 keyword.

This is useful if your application requires that all 20 bits of registers are preserved. The
drawback is that the code will be somewhat slower.

Note: This option has no effect when compiling for the MSP430 architecture.

Optimizations
The Optimizations options determine the type and level of optimization for generation
of object code.

Figure 194: Compiler optimizations options

OPTIMIZATIONS

Size or speed, and level

The MSP430 IAR C/C++ Compiler supports two optimization models—size and
speed—at different optimization levels.

Select the optimization model using either the Size or Speed radio button. Then choose
the optimization level—None, Low, Medium, or High—from the drop-down list next to
the radio buttons.

By default, a debug project will have a size optimization that is fully debuggable, while
a release project will have a size optimization that generates an absolute minimum of
code.
U430-5

Part 7. Reference information 355

356

Output
For a list of optimizations performed at each optimization level, see the MSP430 IAR
C/C++ Compiler Reference Guide.

Enabled transformations

The following transformations are available on different level of optimizations:

● Common subexpression elimination
● Loop unrolling
● Function inlining
● Code motion
● Type-based alias analysis.

When a transformation is available, you can enable or disable it by selecting its check
box.

In a debug project, the transformations are by default disabled. In a release project, the
transformations are by default enabled.

For a brief description of the transformations that can be individually disabled, see the
MSP430 IAR C/C++ Compiler Reference Guide.

Output
The Output options determine the output format of the compiled file, including the level
of debugging information in the object code.

Figure 195: Compiler output options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Compiler options
MODULE TYPE

By default, the compiler generates program modules. Use this option to make a library
module that will only be included if it is referenced in your application. Select the
Override default check box and choose one of:

For information about program and library modules, and working with libraries, see the
XLIB and XAR chapters in the IAR Linker and Library Tools Reference Guide, available
from the Help menu.

OBJECT MODULE NAME

Normally, the internal name of the object module is the name of the source file, without
a directory name or extension. Use this option to set the object module name explicitly.

First select the Object module name check box, then type a name in the entry field.

This option is particularly useful when several modules have the same filename, because
the resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

GENERATE DEBUG INFORMATION

This option causes the compiler to include additional information in the object modules
that is required by C-SPY® and other symbolic debuggers.

The Generate debug information option is selected by default. Deselect this option if
you do not want the compiler to generate debug information.

Note: The included debug information increases the size of the object files.

Program Module The object file will be treated as a program module rather than as
a library module.

Library Module The object file will be treated as a library module rather than as a
program module.
U430-5

Part 7. Reference information 357

358

List
List
The List options determine whether a list file is produced, and the information included
in the list file.

Figure 196: Compiler list file options

Normally, the compiler does not generate a list file. Select any of the following options
to generate a list file or an assembler file. The list file will be saved in the List directory,
and its filename will consist of the source filename, plus the filename extension lst.
You can open the output files directly from the Output folder which is available in the
Workspace window.

OUTPUT LIST FILE

Select the Output list file option and choose the type of information to include in the
list file:

OUTPUT ASSEMBLER FILE

Select the Output assembler file option and choose the type of information to include
in the list file:

Assembler mnemonics Includes assembler mnemonics in the list file.

Diagnostics Includes diagnostic information in the list file.

Include source Includes source code in the assembler file.

Include call frame information Includes compiler-generated information for runtime
model attributes, call frame information, and frame size
information.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Compiler options
Preprocessor
The Preprocessor options allow you to define symbols and include paths for use by the
compiler.

Figure 197: Compiler preprocessor options

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional include directories option adds a path to the list of #include file
paths. The paths required by the product are specified by default depending on your
choice of runtime library.

Type the full file path of your #include files.

Note: Any additional directories specified using this option will be searched before the
standard include directories.

To make your project more portable, use the argument variable $TOOLKIT_DIR$ for the
subdirectories of the active product and $PROJ_DIR$ for the directory of the current
project. For an overview of the argument variables, see Argument variables summary,
page 279.
U430-5

Part 7. Reference information 359

360

Diagnostics
PREINCLUDE FILE

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

DEFINED SYMBOLS

The Defined symbols option is useful for conveniently specifying a value or choice that
would otherwise be specified in the source file.

Type the symbols that you want to define for the project, for example:

TESTVER=1

Note that there should be no space around the equal sign.

The Defined symbols option has the same effect as a #define statement at the top of
the source file.

For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was defined. To
do this you would use include sections such as:

#ifdef TESTVER
... ; additional code lines for test version only

#endif

You would then define the symbol TESTVER in the Debug target but not in the Release
target.

PREPROCESSOR OUTPUT TO FILE

By default, the compiler does not generate preprocessor output.

Select the Preprocessor output to file option if you want to generate preprocessor
output. You can also choose to preserve comments and/or to generate #line directives.

Diagnostics
The Diagnostics options determine how diagnostics are classified and displayed. Use
the diagnostics options to override the default classification of the specified diagnostics.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Compiler options
Note: The diagnostics cannot be suppressed for fatal errors, and fatal errors cannot be
reclassified.

Figure 198: Compiler diagnostics options

ENABLE REMARKS

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that might cause strange behavior in the generated code.

By default remarks are not issued. Select the Enable remarks option if you want the
compiler to generate remarks.

SUPPRESS THESE DIAGNOSTICS

This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings Pe117 and Pe177, type:

Pe117,Pe177

TREAT THESE AS REMARKS

A remark is the least severe type of diagnostic message. It indicates a source code
construct that might cause strange behavior in the generated code. Use this option to
classify diagnostics as remarks.

For example, to classify the warning Pe177 as a remark, type:

Pe177
U430-5

Part 7. Reference information 361

362

MISRA C
TREAT THESE AS WARNINGS

A warning indicates an error or omission that is of concern, but which will not cause the
compiler to stop before compilation is completed. Use this option to classify diagnostic
messages as warnings.

For example, to classify the remark Pe826 as a warning, type:

Pe826

TREAT THESE AS ERRORS

An error indicates a violation of the C or C++ language rules, of such severity that object
code will not be generated, and the exit code will be non-zero. Use this option to classify
diagnostic messages as errors.

For example, to classify the warning Pe117 as an error, type:

Pe117

TREAT ALL WARNINGS AS ERRORS

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, object code is not generated.

MISRA C
Use these options to override the options set on the MISRA C page of the General
Options category.

Figure 199: MISRA C compiler options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Compiler options
OVERRIDE GENERAL MISRA C SETTINGS

Select this option if you want the compiler to check a different selection of rules than
the rules selected in the General Options category.

SET ACTIVE MISRA C RULES

Only the rules that have been selected in the scroll list will be checked during
compilation. To select or deselect several rules with one click, click one of the buttons
None, Required, All, or Restore. The Required button selects all 93 rules that are
categorized by the Guidelines for the Use of the C Language in Vehicle Based Software
as required and deselects the rules that are categorized as advisory. The Restore button
restores the MISRA C settings used in the General Options category.

Extra Options
The Extra Options page provides you with a command line interface to the compiler.

Figure 200: Extra Options page for the compiler

USE COMMAND LINE OPTIONS

Additional command line arguments for the compiler (not supported by the GUI) can be
specified here.
U430-5

Part 7. Reference information 363

364

Extra Options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Assembler options
This chapter describes the assembler options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Language
The Language options control the code generation of the assembler.

Figure 201: Assembler language options

USER SYMBOLS ARE CASE SENSITIVE

By default, case sensitivity is on. This means that, for example, LABEL and label refer
to different symbols. You can deselect User symbols are case sensitive to turn case
sensitivity off, in which case LABEL and label will refer to the same symbol.

ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in comments, in string literals, and in character
constants. They are transferred untouched to the generated code.
U430-5

Part 7. Reference information 365

366
MACRO QUOTE CHARACTERS

The Macro quote characters option sets the characters used for the left and right quotes
of each macro argument.

By default, the characters are < and >. This option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or >.

From the drop-down list, choose one of four types of brackets to be used as macro quote
characters:

Figure 202: Choosing macro quote characters

Output
The Output options allow you to generate information to be used by a debugger such
as the IAR C-SPY® Debugger.

Figure 203: Assembler output options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Assembler options
GENERATE DEBUG INFORMATION

The Generate debug information option must be selected if you want to use a
debugger with your application. By default, this option is selected in a Debug project,
but not in a Release project.

List
The List options are used for making the assembler generate a list file, for selecting the
list file contents, and generating other listing-type output.

Figure 204: Assembler list file options

By default, the assembler does not generate a list file. Selecting Output list file causes
the assembler to generate a listing and send it to the file sourcename.lst.

Note: If you want to save the list file in another directory than the default directory for
list files, use the Output Directories option in the General Options category; see
Output, page 345, for additional information.

INCLUDE HEADER

The header of the assembler list file contains information about the product version, date
and time of assembly, and the command line equivalents of the assembler options that
were used. Use this option to include the list file header in the list file.
U430-5

Part 7. Reference information 367

368
INCLUDE LISTING

Use the suboptions under Include listing to specify which type of information to
include in the list file:

INCLUDE CROSS-REFERENCE

The Include cross reference option causes the assembler to generate a cross-reference
table at the end of the list file. See the MSP430 IAR Assembler Reference Guide for
details.

LINES/PAGE

The default number of lines per page is 80 for the assembler list file. Use the Lines/page
option to set the number of lines per page, within the range 10 to 150.

TAB SPACING

By default, the assembler sets eight character positions per tab stop. Use the Tab
spacing option to change the number of character positions per tab stop, within the
range 2 to 9.

Option Description

#included text Includes #include files in the list file.

Macro definitions Includes macro definitions in the list file.

Macro expansions Includes macro expansions in the list file.

Macro execution info Prints macro execution information on every call of a macro.

Assembled lines only Excludes lines in false conditional assembler sections from the list file.

Multiline code Lists the code generated by directives on several lines if necessary.

Table 102: Assembler list file options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Assembler options
Preprocessor
The Preprocessor options allow you to define include paths and symbols in the
assembler.

Figure 205: Assembler preprocessor options

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional include directories option adds paths to the list of #include file paths.
The path required by the product is specified by default.

Type the full path of the directories that you want the assembler to search for #include
files.

To make your project more portable, use the argument variable $TOOLKIT_DIR$ for the
subdirectories of the active product and $PROJ_DIR$ for the directory of the current
project. For an overview of the argument variables, see Table 67, Argument variables,
page 279.

See the MSP430 IAR Assembler Reference Guide for information about the #include
directive.

Note: By default the assembler also searches for #include files in the paths specified
in the A430_INC environment variable. We do not, however, recommend that you use
environment variables in the IAR Embedded Workbench IDE.
U430-5

Part 7. Reference information 369

370
DEFINED SYMBOLS

This option provides a convenient way of specifying a value or choice that you would
otherwise have to specify in the source file.

Type the symbols you want to define, one per line.

● For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was
defined. To do this you would use include sections such as:

#ifdef TESTVER
... ; additional code lines for test version only
#endif

You would then define the symbol TESTVER in the Debug target but not in the
Release target.

● Alternatively, your source might use a variable that you need to change often, for
example FRAMERATE. You would leave the variable undefined in the source and use
this option to specify a value for the project, for example FRAMERATE=3.

To delete a user-defined symbol, select in the Defined symbols list and press the Delete
key.

Diagnostics
Use the Diagnostics options to disable or enable individual warnings or ranges of
warnings.

Figure 206: Assembler diagnostics options

The assembler displays a warning message when it finds an element of the source code
that is legal, but probably the result of a programming error.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Assembler options
By default, all warnings are enabled. The Diagnostics options allow you to enable only
some warnings, or to disable all or some warnings.

Use the radio buttons and entry fields to specify which warnings you want to enable or
disable.

For additional information about assembler warnings, see the MSP430 IAR Assembler
Reference Guide.

MAX NUMBER OF ERRORS

By default, the maximum number of errors reported by the assembler is 100. This option
allows you to decrease or increase this number, for example, to see more errors in a
single assembly.

Extra Options
The Extra Options page provides you with a command line interface to the assembler.

Figure 207: Extra Options page for the assembler

USE COMMAND LINE OPTIONS

Additional command line arguments for the assembler (not supported by the GUI) can
be specified here.
U430-5

Part 7. Reference information 371

372
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Custom build options
This chapter describes the Custom Build options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Custom Tool Configuration
To set custom build options in the IAR Embedded Workbench IDE, choose
Project>Options to display the Options dialog box. Then select Custom Build in the
Category list to display the Custom Tool Configuration page:

Figure 208: Custom tool options

In the Filename extensions text box, specify the filename extensions for the types of
files that are to be processed by this custom tool. You can enter several filename
extensions. Use commas, semicolons, or blank spaces as separators.

In the Command line text box, type the command line for executing the external tool.

In the Output files text box, enter the output files from the external tool.

If there are any additional files that are used by the external tool during the building
process, these files should be added in the Additional input files text box. If these
additional input files, so-called dependency files, are modified, the need for a rebuild is
detected.

For an example, see Extending the tool chain, page 93.
U430-5

Part 7. Reference information 373

374
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Build actions options
This chapter describes the options for pre-build and post-build actions
available in the IAR Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Build Actions Configuration
To set options for pre-build and post-build actions in the IAR Embedded Workbench
IDE, choose Project>Options to display the Options dialog box. Then select Build
Actions in the Category list to display the Build Actions Configuration page.

These options apply to the whole build configuration, and cannot be set on groups or
files.

Figure 209: Build actions options

PRE-BUILD COMMAND LINE

Type a command line to be executed directly before a build; a browse button for locating
an extended command line file is available for your convenience. The commands will
not be executed if the configuration is already up-to-date.
U430-5

Part 7. Reference information 375

376
POST-BUILD COMMAND LINE

Type a command line to be executed directly after each successful build; a browse button
is available for your convenience. The commands will not be executed if the
configuration was up-to-date. This is useful for copying or post-processing the output
file.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Linker options
This chapter describes the XLINK options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Note that the XLINK command line options that are used for defining
segments in a linker command file are described in the IAR Linker and Library
Tools Reference Guide.

Output
The Output options are used for specifying the output format and the level of debugging
information included in the output file.

Figure 210: XLINK output file options

OUTPUT FILE

Use Output file to specify the name of the XLINK output file. If a name is not specified,
the linker will use the project name with a filename extension. The filename extension
depends on which output format you choose. If you choose Debug information for
C-SPY, the output file will have the filename extension d43.

Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).
U430-5

Part 7. Reference information 377

378

Output
Override default

Use this option to specify a filename or filename extension other than the default.

FORMAT

The output options determine the format of the output file generated by the IAR XLINK
Linker. The output file is used as input to either a debugger or as input for programming
the target system. The IAR Systems proprietary output format is called UBROF,
Universal Binary Relocatable Object Format.

The default output settings are:

● In a debug project, Debug information for C-SPY, With runtime control
modules, and With I/O emulation modules are selected by default

● In a release project, msp430-txt is selected by default, which is an output format
without debug information suitable for target download.

Note: For debuggers other than C-SPY®, check the user documentation supplied with
that debugger for information about which format/variant should be used.

Debug information for C-SPY

This option creates a UBROF output file, with a d43 filename extension, to be used with
the IAR C-SPY Debugger.

With runtime control modules

This option produces the same output as the Debug information for C-SPY option, but
also includes debugger support for handling program abort, exit, and assertions. Special
C-SPY variants for the corresponding library functions are linked with your application.
For more information about the debugger runtime interface, see the MSP430 IAR
C/C++ Compiler Reference Guide.

With I/O emulation modules

This option produces the same output as the Debug information for C-SPY and With
runtime control modules options, but also includes debugger support for I/O handling,
which means that stdin and stdout are redirected to the Terminal I/O window, and
that it is possible to access files on the host computer during debugging.

For more information about the debugger runtime interface, see the MSP430 IAR
C/C++ Compiler Reference Guide.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Linker options
Buffered terminal output

During program execution in C-SPY, instead of instantly printing each new character to
the C-SPY Terminal I/O window, this option will buffer the output. This option is useful
when using debugger systems that have slow communication.

Allow C-SPY-specific extra output file

Use this option to enable the options available on the Extra Output page.

If you choose any of the options With runtime control modules or With I/O
emulation modules, the generated output file will contain dummy implementations for
certain library functions, such as putchar, and extra debug information required by
C-SPY to handle those functions. In this case, the options available on the Extra Output
page are disabled, which means you cannot generate an extra output file. The reason is
that the extra output file would still contain the dummy functions, but would lack the
required extra debug information, and would therefore normally be useless.

However, for some debugger systems, two output files from the same build process are
required—one with the required debug information, and one that you can burn to your
hardware before debugging. This is useful when you want to debug code that is located
in non-volatile memory. In this case, you must choose the Allow C-SPY-specific extra
output file option to make it possible to generate an extra output file.

Other

Use this option to generate output other than those generated by the options Debug
information for C-SPY, With runtime control modules, and With I/O emulation
modules.

Use the Output format drop-down list to select the appropriate output. If applicable,
use Format variant to select variants available for some of the output formats. The
alternatives depend on the output format chosen.

When you specify the Other>Output format option as either debug (ubrof), or ubrof,
a UBROF output file with the filename extension dbg will be created. The generated
output file will not contain debugging information for simulating facilities such as stop
at program exit, long jump instructions, and terminal I/O. If you need support for these
facilities during debugging, use the Debug information for C-SPY, With runtime
control modules, and With I/O emulation modules options, respectively.

For more information, see the IAR Linker and Library Tools Reference Guide.
U430-5

Part 7. Reference information 379

380

Extra Output
Module-local symbols

Use this option to specify whether local (non-public) symbols in the input modules
should be included or not by the IAR XLINK Linker. If suppressed, the local symbols
will not appear in the listing cross-reference and they will not be passed on to the output
file.

You can choose to ignore just the compiler-generated local symbols, such as jump or
constant labels. Usually these are only of interest when debugging at assembler level.

Note: Local symbols are only included in files if they were compiled or assembled with
the appropriate option to specify this.

Extra Output
The Extra Output options are used for generating an extra output file and for specifying
its format.

Note: If you have chosen any of the options With runtime control modules or With
I/O emulation modules available on the Output page, you must also choose the option
Allow C-SPY-specific extra output file to enable the Extra Output options.

Figure 211: XLINK extra output file options

Use the Generate extra output file option to generate an additional output file from the
build process.

Use the Override default option to override the default file name. If a name is not
specified, the linker will use the project name and a filename extension which depends
on the output format you choose.

Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Linker options
Use the Output format drop-down list to select the appropriate output. If applicable,
use Format variant to select variants available for some of the output formats. The
alternatives depend on the output format you have chosen.

When you specify the Output format option as either debug (ubrof), or ubrof, a
UBROF output file with the filename extension dbg will be created.

#define
You can define symbols with the #define option.

Figure 212: XLINK defined symbols options

DEFINE SYMBOL

Use Define symbol to define absolute symbols at link time. This is especially useful for
configuration purposes.

Type the symbols that you want to define for the project, for example:

TESTVER=1

Note that there should be no space around the equal sign.

Any number of symbols can be defined in a linker command file. The symbol(s) defined
in this manner will be located in a special module called ?ABS_ENTRY_MOD, which is
generated by the linker.

XLINK will display an error message if you attempt to redefine an existing symbol.
U430-5

Part 7. Reference information 381

382

Diagnostics
Diagnostics
The Diagnostics options determine the error and warning messages generated by the
IAR XLINK Linker.

Figure 213: XLINK diagnostics options

ALWAYS GENERATE OUTPUT

Use Always generate output to generate an output file even if a non-fatal error was
encountered during the linking process, such as a missing global entry or a duplicate
declaration. Normally, XLINK will not generate an output file if an error is encountered.

Note: XLINK always aborts on fatal errors, even when this option is used.

The Always generate output option allows missing entries to be patched in later in the
absolute output image.

SEGMENT OVERLAP WARNINGS

Use Segment overlap warnings to reduce segment overlap errors to warnings, making
it possible to produce cross-reference maps, etc.

NO GLOBAL TYPE CHECKING

Use No global type checking to disable type checking at link time. While a well-written
application should not need this option, there may be occasions where it is helpful.

By default, XLINK performs link-time type checking between modules by comparing
the external references to an entry with the PUBLIC entry (if the information exists in the
object modules involved). A warning is generated if there are mismatches.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Linker options
RANGE CHECKS

Use Range checks to specify the address range check. The following table shows the
range check options in the IAR Embedded Workbench IDE:

If an address is relocated outside address range of the target CPU —code, external data,
or internal data address—an error message is generated. This usually indicates an error
in an assembler language module or in the segment placement.

WARNINGS/ERRORS

By default, the IAR XLINK Linker generates a warning when it detects that something
may be wrong, although the generated code might still be correct. The
Warnings/Errors options allow you to suppress or enable all warnings, and to change
the severity classification of errors and warnings.

Refer to the IAR Linker and Library Tools Reference Guide for information about the
different warning and error messages.

Use the following options to control the generation of warning and error messages:

Suppress all warnings

Use this option to suppress all warnings.

Suppress these diagnostics

This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings w117 and w177, type w117,w177.

Treat these as warnings

Use this option to specify errors that should be treated as warnings instead. For example,
to make error 106 become treated as a warning, type e106.

Treat these as errors

Use this option to specify warnings that should be treated as errors instead. For example,
to make warning 26 become treated as an error, type w26.

Option Description

Generate errors An error message is generated

Generate warnings Range errors are treated as warnings

Disabled Disables the address range checking

Table 103: XLINK range check options
U430-5

Part 7. Reference information 383

384

List
List
The List options determine the generation of an XLINK cross-reference listing.

Figure 214: XLINK list file options

GENERATE LINKER LISTING

Causes the linker to generate a listing and send it to the file projectname.map.

Segment map

Use Segment map to include a segment map in the XLINK listing file. The segment
map will contain a list of all the segments in dump order.

Symbols

The following options are available:

Option Description

None Symbols will be excluded from the linker listing.

Symbol listing An abbreviated list of every entry (global symbol) in every module. This
entry map is useful for quickly finding the address of a routine or data
element.

Module map A list of all segments, local symbols, and entries (public symbols) for
every module in the application.

Table 104: XLINK list file options
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Linker options
Module summary

Use the Module summary option to generate a summary of the contributions to the total
memory use from each module.

Only modules with a contribution to memory use are listed.

Include suppressed entries

Use this option to include all segment parts in a linked module in the list file, not just the
segment parts that were included in the output. This makes it possible to determine
exactly which entries that were not needed.

Static overlay map

If the compiler uses static overlay, this option includes a listing of the static overlay
system in the list file. Read more about static overlay maps in the IAR Linker and
Library Tools Reference Guide.

File format

The following options are available:

Lines/page

Sets the number of lines per page for the XLINK listings to lines, which must be in
the range 10 to 150.

Option Description

Text Plain text file

HTML HTML format, with hyperlinks

Table 105: XLINK list file format options
U430-5

Part 7. Reference information 385

386

Config
Config
With the Config options you can specify the path and name of the linker command file,
override the default program entry, and specify the library search path.

Figure 215: XLINK config options

LINKER COMMAND FILE

A default linker command file is selected automatically for the chosen Target settings
in the General Options category. You can override this by selecting the Override
default option, and then specifying an alternative file.

The argument variables $TOOLKIT_DIR$ or $PROJ_DIR$ can be used here too, to
specify a project-specific or predefined linker command file.

OVERRIDE DEFAULT PROGRAM ENTRY

By default, the program entry is the label __program_start. The linker will make sure
that a module containing the program entry label is included, and that the segment part
containing the label is not discarded.

The default program handling can be overridden by selecting Override default
program entry.

Selecting the option Entry label will make it possible to specify a label other than
__program_start to use for the program entry.

Selecting the option Defined by application will disable the use of a start label. The
linker will, as always, include all program modules, and enough library modules to
satisfy all symbol references, keeping all segment parts that are marked with the root
attribute or that are referenced, directly or indirectly, from such a segment part.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Linker options
SEARCH PATHS

The Search paths option specifies the names of the directories which XLINK will
search if it fails to find the object files to be linked in the current working directory. Add
the full paths of any further directories that you want XLINK to search.

The paths required by the product are specified by default, depending on your choice of
runtime library. If the box is left empty, XLINK searches for object files only in the
current working directory.

Type the full file path of your #include files. To make your project more portable, use
the argument variable $TOOLKIT_DIR$ for the subdirectories of the active product and
$PROJ_DIR$ for the directory of the current project. For an overview of the argument
variables, see Argument variables summary, page 279.

RAW BINARY IMAGE

Use the Raw binary image options to link pure binary files in addition to the ordinary
input files. Use the text boxes to specify the following parameters:

The entire contents of the file are placed in the segment you specify, which means it can
only contain pure binary data, for example, the raw-binary output format. The segment
part where the contents of the specified file is placed, is only included if the specified
symbol is required by your application. Use the -g linker option if you want to force a
reference to the symbol. Read more about single output files and the -g option in the
IAR Linker and Library Tools Reference Guide.

File The pure binary file you want to link.

Symbol The symbol defined by the segment part where the binary data is placed.

Segment The segment where the binary data will be placed.

Align The alignment of the segment part where the binary data is placed.
U430-5

Part 7. Reference information 387

388

Processing
Processing
With the Processing options you can specify details about how the code is generated.

Figure 216: XLINK processing options

FILL UNUSED CODE MEMORY

Use Fill unused code memory to fill all gaps between segment parts introduced by the
linker with the value you enter. The linker can introduce gaps either because of
alignment restriction, or at the end of ranges given in segment placement options.

The default behavior, when this option is not used, is that these gaps are not given a value
in the output file.

Fill pattern

Use this option to specify size, in hexadecimal notation, of the filler to be used in gaps
between segment parts.

Generate checksum

Use Generate checksum to checksum all generated raw data bytes. This option can
only be used if the Fill unused code memory option has been specified.

Size

Size specifies the number of bytes in the checksum, which can be 1, 2, or 4.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Linker options
Algorithms

One of the following algorithms can be used:

Complement

Use the Complement drop-down list to specify the one’s complement or two’s
complement.

Bit order

By default it is the most significant 1, 2, or 4 bytes (MSB) of the result that will be
output, in the natural byte order for the processor. Choose LSB from the Bit order
drop-down list if you want the least significant bytes to be output.

Alignment

Use this option to specify an optional alignment for the checksum. If you do not specify
an alignment explicitly, an alignment of 2 is used.

Initial value

Use this option to specify the initial value of the checksum. This is useful if the
microcontroller you are using has its own checksum calculation and you want that
calculation to correspond to the calculation performed by XLINK.

THE CHECKSUM CALCULATION

The CRC checksum is calculated as if the following code was called for each bit in the
input, starting with a CRC of 0:

unsigned long
crc(int bit, unsigned long oldcrc)
{
 unsigned long newcrc = (oldcrc << 1) ^ bit;
 if (oldcrc & 0x80000000)
 newcrc ^= POLY;
 return newcrc;
}

Algorithms Description

Arithmetic sum Simple arithmetic sum

CRC16 CRC16, generating polynomial 0x11021 (default)

CRC32 CRC32, generating polynomial 0x104C11DB7

Crc polynomial CRC with a generating polynomial of the value you enter

Table 106: XLINK checksum algorithms
U430-5

Part 7. Reference information 389

390

Extra Options
POLY is the generating polynomial. The checksum is the result of the final call to this
routine. If the complement is specified, the checksum is the one’s or two’s complement
of the result.

The linker will place the checksum byte(s) at the __checksum label in the CHECKSUM
segment. This segment must be placed using the segment placement options like any
other segment.

For additional information about segment control, see the IAR Linker and Library Tools
Reference Guide.

Extra Options
The Extra Options page provides you with a command line interface to the linker.

Figure 217: Extra Options page for the linker

USE COMMAND LINE OPTIONS

Additional command line arguments for the linker (not supported by the GUI) can be
specified here.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Library builder options
This chapter describes the XAR Library builder options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Output
XAR options are not available by default. Before you can set XAR options in the IAR
Embedded Workbench IDE, you must add the XAR Library Builder tool to the list of
categories. Choose Project>Options to display the Options dialog box, and select the
General Options category. On the Output page, select the Library option.

If you select the Library option, Library Builder appears as a category in the Options
dialog box. As a result of the build process, the XAR Library Builder will create a
library output file. Before you create the library you can set the XAR options.
U430-5

Part 7. Reference information 391

392
To set XAR options, select Library Builder from the category list to display the XAR
options.

Figure 218: XAR output options

To restore all settings to the default factory settings, click the Factory Settings button.

The Output file option overrides the default name of the output file. Enter a new name
in the Override default text box.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Debugger options
This chapter describes the C-SPY® options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 89.

In addition, options specific to the C-SPY FET debugger are described in the
chapter C-SPY® FET-specific debugging.

Setup
To set C-SPY options in the IAR Embedded Workbench IDE, choose Project>Options
to display the Options dialog box. Then select Debugger in the Category list. The
Setup page contains the generic C-SPY options.

Figure 219: Generic C-SPY options

To restore all settings to the default factory settings, click the Factory Settings button.

The Setup options specify the C-SPY driver, the setup macro file, and device
description file to be used, and which default source code location to run to.

DRIVER

Selects the appropriate driver for use with C-SPY, the Simulator driver or the FET
Debugger driver.
U430-5

Part 7. Reference information 393

394

Setup
Contact your distributor or IAR Systems representative, or visit the IAR Systems web
site at www.iar.com for the most recent information about the available C-SPY drivers.

RUN TO

Use this option to specify a location you want C-SPY to run to when you start the
debugger and after a reset.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for example function names.

If you leave the check-box empty, the program counter will contain the regular hardware
reset address at each reset.

SETUP MACROS

To register the contents of a setup macro file in the C-SPY startup sequence, select Use
macro file and enter the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

DEVICE DESCRIPTION FILE

Use this option to load a device description file that contains device-specific
information.

For details about the device description file, see Device description file, page 113.

Device description files for each MSP430 device are provided in the directory
430\config and have the filename extension ddf.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Debugger options
Extra Options
The Extra Options page provides you with a command line interface to the C-SPY
debugger.

Figure 220: Extra Options page for the C-SPY debugger

USE COMMAND LINE OPTIONS

Additional command line arguments for the C-SPY debugger (not supported by the
GUI) can be specified here.
U430-5

Part 7. Reference information 395

396

Plugins
Plugins
On the Plugins page you can specify C-SPY plugin modules to be loaded and made
available during debug sessions. Plugin modules can be provided by IAR Systems, as
well as by third-party suppliers. Contact your software distributor or IAR representative,
or visit the IAR Systems web site, for information about available modules.

Figure 221: C-SPY plugin options

By default, Select plugins to load lists the plugin modules delivered with the product
installation.

If you have any C-SPY plugin modules delivered by any third-party vendor, these will
also appear in the list.

The common\plugins directory is intended for generic plugin modules. The
430\plugins directory is intended for target-specific plugin modules.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
This chaptersection gives reference information about the C-SPY macros. First
a syntax description of the macro language is provided. Then, the available
setup macro functions and the pre-defined system macros are summarized.
Finally, each system macro is described in detail.

The macro language
The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return value. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. You can
collect your macro functions in a macro file (filename extension mac).

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has the following form:

macroName (parameterList)
{
 macroBody
}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.

PREDEFINED SYSTEM MACRO FUNCTIONS

The macro language also includes a wide set of predefined system macro functions
(built-in functions), similar to C library functions. For detailed information about each
system macro, see .
U430-5

Part 7. Reference information 397

398

The macro language
MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application space. It
can then be used in a C-SPY expression. For detailed information about C-SPY
expressions, see the chapter C-SPY expressions, page 123.For details about C-SPY
expressions, see the MSP430 IAR Embedded Workbench® IDE User Guide.

The syntax for defining one or more macro variables is:

__var nameList;

where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

Macro strings

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello!", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subString. The result can be a new macro string. You can
concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example str[3]. You can get
the length of a string using sizeof(str). Note that a macro string is not
NULL-terminated.

Expression What it means

myvar = 3.5; myvar is now type float, value 3.5.

myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 107: Examples of C-SPY macro variables
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char[]) to a macro string. For example, assume
the following definition of a C string in your application:

char const *cstr = "Hello";

Then examine the following examples:

__var str; /* A macro variable */
str = cstr /* str is now just a pointer to char */
sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */
str[1] /* 101, the ASCII code for 'e' */
str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 400.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions

expression;

For detailed information about C-SPY expressions, see C-SPY expressions, page
123.For details about C-SPY expressions, see the MSP430 IAR Embedded Workbench®
IDE User Guide.

Conditional statements

if (expression)
 statement

if (expression)
 statement
else
 statement

Loop statements

for (init_expression; cond_expression; update_expression)
 statement

while (expression)
 statement
U430-5

Part 7. Reference information 399

400

The macro language
do
 statement
while (expression);

Return statements

return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
 statement1
 statement2
 .
 .
 .
 statementN
}

FORMATTED OUTPUT

C-SPY provides different methods for producing formatted output:

where argList is a comma-separated list of C-SPY expressions or strings, and file is
the result of the __openFile system macro, see __openFile, page 407.

Examples

Use the __message statement, as in the following example:

var1 = 42;
var2 = 37;
__message "This line prints the values ", var1, " and ", var2,
" in the Log window.";

This should produce the following message in the Log window:

This line prints the values 42 and 37 in the Log window.

__message argList; Prints the output to the Debug Log window.

__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
Use __fmessage to write the output to the designated file, for example:

__fmessage myfile, "Result is ", res, "!\n";

Finally, use __smessage to produce strings, for example:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer".

Specifying display format of arguments

It is possible to override the default display format of a scalar argument (number or
pointer) in argList by suffixing it with a : followed by a format specifier. Available
specifiers are %b for binary, %o for octal, %d for decimal, %x for hexadecimal and %c for
character. These match the formats available in the Watch and Locals windows, but
number prefixes and quotes around strings and characters are not printed. Another
example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

This might produce:

The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%c;

would produce:

65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the %x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.
U430-5

Part 7. Reference information 401

402

Setup macro functions summary
Setup macro functions summary
The following table summarizes the available setup macro functions:

Note: If you define interrupts or breakpoints in a macro file that is executed at system
start (using execUserSetup) we strongly recommend that you also make sure that they
are removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see Simulating an interrupt, page 57.For an example, see the
tutorials in the MSP430 IAR Embedded Workbench® IDE User Guide.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

C-SPY system macros summary
The following table summarizes the pre-defined system macros:

Macro Description

execUserPreload Called after communication with the target system is established
but before downloading the target application.
Implement this macro to initialize memory locations and/or
registers which are vital for loading data properly.

execUserSetup Called once after the target application is downloaded.
Implement this macro to set up the memory map, breakpoints,
interrupts, register macro files, etc.

execUserReset Called each time the reset command is issued.
Implement this macro to set up and restore data.

execUserExit Called once when the debug session ends.
Implement this macro to save status data etc.

Table 108: C-SPY setup macros

Macro Description

__cancelAllInterrupts Cancels all ordered interrupts

__cancelInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

__closeFile Closes a file that was opened by __openFile

__disableInterrupts Disables generation of interrupts

__driverType Verifies the driver type

__enableInterrupts Enables generation of interrupts

Table 109: Summary of system macros
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
__evaluate Interprets the input string as an expression and
evaluates it.

__openFile Opens a file for I/O operations

__orderInterrupt Generates an interrupt

__popSimulatorInterruptExecu

tingStack

Informs the interrupt simulation system that an
interrupt handler has finished executing

__readFile Reads from the specified file

__readFileByte Reads one byte from the specified file

__readMemoryByte Reads one byte from the specified memory location

__readMemory8 Reads one byte from the specified memory location

__readMemory16 Reads two bytes from the specified memory location

__readMemory32 Reads four bytes from the specified memory location

__registerMacroFile Registers macros from the specified file

__resetFile Rewinds a file opened by __openFile

__setAdvancedTriggerBreak Sets an advanced trigger breakpoint

__setCodeBreak Sets a code breakpoint

__setConditionalBreak Sets a conditional breakpoint

__setDataBreak Sets a data breakpoint

__setRangeBreak Sets a range breakpoint

__setSimBreak Sets a simulation breakpoint

__sourcePosition Returns the file name and source location if current
execution location corresponds to a source location

__strFind Searches a given string for the occurrence of another
string

__subString Extracts a substring from another string

__toLower Returns a copy of the parameter string where all the
characters have been converted to lower case

__toString Prints strings

__toUpper Returns a copy of the parameter string where all the
characters have been converted to upper case

__writeFile Writes to the specified file

__writeFileByte Writes one byte to the specified file

__writeMemoryByte Writes one byte to the specified memory location

Macro Description

Table 109: Summary of system macros (Continued)
U430-5

Part 7. Reference information 403

404

Description of C-SPY system macros
Description of C-SPY system macros
HistoryThis section gives reference information about each of the C-SPY system
macros.

__cancelAllInterrupts

Syntax __cancelAllInterrupts()

Return value int 0

Description Cancels all ordered interrupts.

Applicability This system macro is only available in IAR C-SPY Simulator.

__cancelInterrupt

Syntax __cancelInterrupt(interrupt_id)

Parameter

Return value

Description Cancels the specified interrupt.

Applicability This system macro is only available in IAR C-SPY Simulator.

__writeMemory8 Writes one byte to the specified memory location

__writeMemory16 Writes a two-byte word to the specified memory
location

__writeMemory32 Writes a four-byte word to the specified memory
location

Macro Description

Table 109: Summary of system macros (Continued)

interrupt_id The value returned by the corresponding
__orderInterrupt macro call (unsigned long)

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 110: __cancelInterrupt return values
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
__clearBreak

Syntax __clearBreak(break_id)

Parameter

Return value int 0

Description Clears a user-defined breakpoint.

See also Defining breakpoints, page 129.For details about the breakpoint system, see the
MSP430 IAR Embedded Workbench® IDE User Guide.

__closeFile

Syntax __closeFile(filehandle)

Parameter

Return value int 0

Description Closes a file previously opened by __openFile.

__disableInterrupts

Syntax __disableInterrupts()

Return value

Description Disables the generation of interrupts.

Applicability This system macro is only available in IAR C-SPY Simulator.

break_id The value returned by any of the set breakpoint macros

filehandle The macro variable used as filehandle by the __openFile macro

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 111: __disableInterrupts return values
U430-5

Part 7. Reference information 405

406

Description of C-SPY system macros
__driverType

Syntax __driverType(driver_id)

Parameter

Return value

Description Checks to see if the current IAR C-SPY Debugger driver is identical to the driver type
of the driver_id parameter.

Example __driverType("sim")

If a simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__enableInterrupts

Syntax __enableInterrupts()

Return value

Description Enables the generation of interrupts.

Applicability This system macro is only available in IAR C-SPY Simulator.

driver_id A string corresponding to the driver you want to check for; one of
the following:
"sim" corresponds to the simulator driver
"fet" corresponds to the FET debugger driver

Result Value

Successful 1

Unsuccessful 0

Table 112: __driverType return values

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 113: __enableInterrupts return values
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
__evaluate

Syntax __evaluate(string, valuePtr)

Parameter

Return value

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to be valuePtr.

Example The following example assumes that the variable i is defined and has the value 5:

__evaluate("i + 3", &myVar)

The macro variable myVar is assigned the value 8.

__openFile

Syntax __openFile(file, access)

Parameters

Return value

string Expression string

valuePtr Pointer to macro variable storing the result

Result Value

Successful int 0

Unsuccessful int 1

Table 114: __evaluate return values

file The filename as a string

access The access type (string); one of the following:
"r" ASCII read
"w" ASCII write

Result Value

Successful The file handle

Unsuccessful An invalid file handle, which tests as False

Table 115: __openFile return values
U430-5

Part 7. Reference information 407

408

Description of C-SPY system macros
Description Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (*.pew or *.prj) is located. The argument to __openFile
can specify a location relative to this directory. In addition, you can use argument
variables such as $PROJ_DIR$ and $TOOLKIT_DIR$ in the path argument.

Example __var filehandle; /* The macro variable to contain */
 /* the file handle */
filehandle = __openFile("Debug\\Exe\\test.tst", "r");
if (filehandle)
{
 /* successful opening */
}

See also Argument variables summary, page 279.

__orderInterrupt

Syntax __orderInterrupt(specification, first_activation,
 repeat_interval, variance, infinite_hold_time,
 hold_time, probability)

Parameters

Return value The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.

Description Generates an interrupt.

Applicability This system macro is only available in IAR C-SPY Simulator.

specification The interrupt (string). The specification can either be the full
specification used in the device description file (ddf) or only the
name. In the latter case the interrupt system will automatically get
the description from the device description file.

first_activation The first activation time in cycles (integer)

repeat_interval The periodicity in cycles (integer)

variance The timing variation range in percent (integer between 0 and 100)

infinite_hold_time 1 if infinite, otherwise 0.

hold_time The hold time (integer)

probability The probability in percent (integer between 0 and 100)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
Example The following example generates a repeating interrupt using an infinite hold time first
activated after 4000 cycles:

__orderInterrupt("USART0RX_VECTOR", 4000, 2000, 0, 1, 0, 100);

__popSimulatorInterruptExecutingStack

Syntax __popSimulatorInterruptExecutingStack(void)

Return value This macro has no return value.

Description Informs the interrupt simulation system that an interrupt handler has finished executing,
as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

Applicability This system macro is only available in IAR C-SPY Simulator.

__readFile

Syntax __readFile(file, valuePtr)

Parameters

Return value

Description Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Example __var number;
if (__readFile(myFile, &number) == 0)
{

file A file handle

valuePtr A pointer to a variable

Result Value

Successful 0

Unsuccessful Non-zero error number

Table 116: __readFile return values
U430-5

Part 7. Reference information 409

410

Description of C-SPY system macros
 // Do something with number
}

__readFileByte

Syntax __readFileByte(file)

Parameter

Return value -1 upon error or end-of-file, otherwise a value between 0 and 255.

Description Reads one byte from the file file.

Example __var byte;
while ((byte = __readFileByte(myFile)) != -1)
{
 // Do something with byte
}

__readMemoryByte

Syntax __readMemoryByte(address, zone)

Parameters

Return value The macro returns the value from memory.

Description Reads one byte from a given memory location.

Example __readMemoryByte(0x0108, "Memory");

__readMemory8

Syntax __readMemory8(address, zone)

file A file handle

address The memory address (integer)

zone The memory zone name (string); for a list of available zones,
see Memory addressing, page 135
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
Parameters

Return value The macro returns the value from memory.

Description Reads one byte from a given memory location.

Example __readMemory8(0x0108, "Memory");

__readMemory16

Syntax __readMemory16(address, zone)

Parameters

Return value The macro returns the value from memory.

Description Reads a two-byte word from a given memory location.

Example __readMemory16(0x0108, "Memory");

__readMemory32

Syntax __readMemory32(address, zone)

Parameters

Return value The macro returns the value from memory.

Description Reads a four-byte word from a given memory location.

Example __readMemory32(0x0108, "Memory");

address The memory address (integer)

zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 135

address The memory address (integer)

zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 135

address The memory address (integer)

zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 135
U430-5

Part 7. Reference information 411

412

Description of C-SPY system macros
__registerMacroFile

Syntax __registerMacroFile(filename)

Parameter

Return value int 0

Description Registers macros from a setup macro file. With this function you can register multiple
macro files during C-SPY startup.

Example __registerMacroFile("c:\\testdir\\macro.mac");

See also Registering and executing using setup macros and setup files, page 147.For details about
the macro system, see the MSP430 IAR Embedded Workbench® IDE User Guide.

__resetFile

Syntax __resetFile(filehandle)

Parameter

Return value int 0

Description Rewinds a file previously opened by __openFile.

__setAdvancedTriggerBreak

Syntax __setAdvancedTriggerBreak(type, condition, access, action, mask
 cond_value)

Parameters All parameters are strings.

filename A file containing the macros to be registered (string)

filehandle The macro variable used as filehandle by the __openFile
macro

type The breakpoint type; either "Address", "Data", or "Register".

condition The breakpoint condition operator, either "==", ">=", "<=", or "!=".
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
Return value

Description Sets an advanced trigger breakpoint.

Applicability This macro can only be used with the FET Debugger version of C-SPY.

Example __var brk;
brk = __setAdvancedTriggerBreak("Register", ">=", "Write",
 "Trigger", "0x0000", "0x4000");
...
__clearBreak(brk);

See also Defining breakpoints, page 129 and Advanced trigger breakpoints, page 213. For details
about the breakpoint system, see the MSP430 IAR Embedded Workbench® IDE User
Guide.

access The memory access type. One of the following:
"Read"

"Write"

"ReadWrite"

"Fetch"

"FetchHold"

"NoFetch"

"NoFetchRead"

"NoFetchNoDMA"

"DMA"

"NoDMA"

"WriteNoDMA"

"NoFetchReadNoDMA"

"ReadNoDMA"

"ReadDMA"

"WriteDMA"

action The action type: "Break", "Trigger", or "BreakTrigger".

mask A 16-bit value that the breakpoint address or value will be masked with.

cond_value An extra conditional data value.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 117: __setAdvancedTriggerBreak return values
U430-5

Part 7. Reference information 413

414

Description of C-SPY system macros
__setCodeBreak

Syntax __setCodeBreak(location, count, condition, cond_type, action)

Parameters

Return value

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

Examples __setCodeBreak("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode()");

The following example sets a code breakpoint on the label main in your assembler
source:

__setCodeBreak("#main", 0, "1", "TRUE", "");

See also Defining breakpoints, page 129.For details about the breakpoint system, see the
MSP430 IAR Embedded Workbench® IDE User Guide.

location A string with a location description. This can be either:
A source location on the form {filename}.line.col (for
example {D:\\src\\prog.c}.12.9)
An absolute location on the form zone:hexaddress or simply
hexaddress (for example Memory:0x42)
An expression whose value designates a location (for example main)

count The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

condition The breakpoint condition (string)

cond_type The condition type; either “CHANGED” or “TRUE” (string)

action An expression, typically a call to a macro, which is evaluated when
the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 118: __setCodeBreak return values
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
__setConditionalBreak

Syntax __setConditionalBreak(location, type, operator, access, action,
 mask, cond_value, cond_operator,
 cond_access, cond_mask)

Parameters All parameters are strings.

Return value

Description Sets a conditional breakpoint.

location The breakpoint location. This can be either:
A source location on the form "{filename}.line.col" (for example
"{D:\\src\\prog.c}.12.9")

An absolute location on the form "zone:hexaddress" or simply
"hexaddress" (for example "Memory:0x42")

An expression whose value designates a location (for example
"my_global_variable").

A register (for example "R10")

type The breakpoint type; either "Address", "Data", or "Register".

operator The breakpoint operator, either "==", ">=", "<=", or "!=".

access The memory access type: "Read", "Write", "ReadWrite", or
"Fetch".

action The action type: "Break", "Trigger", or "BreakTrigger".

mask A 16-bit value that the breakpoint address or value will be masked with.

cond_value An extra conditional data value.

cond_operator The condition operator, either "==", ">=", "<=", or "!=".

cond_access The access type of the condition: "Read" or "Write".

cond_mask The mask value of the condition.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 119: __setConditionalBreak return values
U430-5

Part 7. Reference information 415

416

Description of C-SPY system macros
Applicability This macro can only be used with the FET Debugger version of C-SPY.

Example __var brk;
brk = __setConditionalBreak("R10", "Register", "0x5000", ">=",
 "Write", "Trigger", "0x0000", "0x4000", "<=", "Write",
 “0x00FF”);
...
__clearBreak(brk);

See also Defining breakpoints, page 129 and Conditional breakpoints, page 210. For details
about the breakpoint system, see the MSP430 IAR Embedded Workbench® IDE User
Guide.

 __setDataBreak

Syntax __setDataBreak(location, count, condition, cond_type, access,
 action)

Parameters
location A string with a location description. This can be either:

A source location on the form {filename}.line.col (for
example {D:\\src\\prog.c}.12.9), although this is not
very useful for data breakpoints

An absolute location on the form zone:hexaddress or simply
hexaddress (for example Memory:0x42)

An expression whose value designates a location (for example
my_global_variable).

count The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

condition The breakpoint condition (string)

cond_type The condition type; either “CHANGED” or “TRUE” (string)

access The memory access type: "R" for read, "W" for write, or "RW"
for read/write

action An expression, typically a call to a macro, which is evaluated when
the breakpoint is detected
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
Return value

Description Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

Applicability This system macro is only available in IAR C-SPY Simulator.

Example __var brk;
brk = __setDataBreak("Memory:0x4710", 3, "d>6", "TRUE",
 "W", "ActionData()");
...
__clearBreak(brk);

See also Defining breakpoints, page 129.For details about the breakpoint system, see the
MSP430 IAR Embedded Workbench® IDE User Guide.

__setRangeBreak

Syntax __setRangeBreak(start_loc, end_loc, end_cond, type, access,
 action, action_when)

Parameters All parameters are strings.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 120: __setDataBreak return values

start_loc The start location. This can be either:
A source location on the form "{filename}.line.col" (for example
"{D:\\src\\prog.c}.12.9")

An absolute location on the form "zone:hexaddress" or simply
"hexaddress" (for example "Memory:0x42")

An expression whose value designates a location (for example
"my_global_variable").

end_loc The end location. This can be either the same as for start_loc above or
the length of the range.

end_cond The type of end condition, either "Location", "Length", or
"Automatic".
U430-5

Part 7. Reference information 417

418

Description of C-SPY system macros
Return value

Description Sets a range breakpoint.

Applicability This macro can only be used with the FET Debugger version of C-SPY.

Example __var brk;
brk = __setRangeBreak("Memory:0x1240", "Memory:0x1360",
 "Location", "Address", "Fetch", "Trigger", "Inside");
...
__clearBreak(brk);

See also Defining breakpoints, page 129 and Range breakpoints, page 207. For details about the
breakpoint system, see the MSP430 IAR Embedded Workbench® IDE User Guide.

type The breakpoint type; either "Address" or "Data".

access The memory access type: "Read", "Write", "ReadWrite", or
"Fetch".

action The action type: "Break", "Trigger", or "BreakTrigger".

action_when Specifies if the action should happen at an access inside or outside of the
specified range, either "Inside" or "Outside".

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 121: __setRangeBreak return values
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
 __setSimBreak

Syntax __setSimBreak(location, access, action)

Parameters

Return value

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

Applicability This system macro is only available in the IAR C-SPY Simulator.

location A string with a location description. This can be either:
A source location on the form {filename}.line.col (for
example {D:\\src\\prog.c}.12.9), although this is not
very useful for simulation breakpoints.
An absolute location on the form zone:hexaddress or simply
hexaddress (for example Memory:0xE01E).
An expression whose value designates a location (for example
my_global_variable).

access The memory access type: "R" for read or "W" for write

action An expression, typically a call to a macro function, which is
evaluated when the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 122: __setSimBreak return values
U430-5

Part 7. Reference information 419

420

Description of C-SPY system macros
 __sourcePosition

Syntax __sourcePosition(linePtr, colPtr)

Parameters

Return value

Description If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind

Syntax __strFind(macroString, pattern, position)

Parameters

Return value The position where the pattern was found or -1 if the string is not found.

Description This macro searches a given string for the occurrence of another string.

Example __strFind("Compiler", "pile", 0) = 3
__strFind("Compiler", "foo", 0) = -1

See also Macro strings, page 398.

__subString

Syntax __subString(macroString, position, length)

linePtr Pointer to the variable storing the line number

colPtr Pointer to the variable storing the column number

Result Value

Successful Filename string

Unsuccessful Empty ("") string

Table 123: __sourcePosition return values

macroString The macro string to search in

pattern The string pattern to search for

position The position where to start the search. The first position is 0
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
Parameters

Return value A substring extracted from the given macro string.

Description This macro extracts a substring from another string.

Example __subString("Compiler", 0, 2)

The resulting macro string contains Co.

__subString("Compiler", 3, 4)

The resulting macro string contains pile.

See also Macro strings, page 398.

__toLower

Syntax __toLower(macroString)

Parameter macroString is any macro string.

Return value The converted macro string.

Description This macro returns a copy of the parameter string where all the characters have been
converted to lower case.

Example __toLower("IAR")

The resulting macro string contains iar.

__toLower("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 398.

macroString The macro string from which to extract a substring

position The start position of the substring. The first position is 0.

length The length of the substring
U430-5

Part 7. Reference information 421

422

Description of C-SPY system macros
__toString

Syntax __toString(C_string, maxlength)

Parameter

Return value Macro string.

Description This macro is used for converting C strings (char* or char[]) into macro strings.

Example Assuming your application contains the following definition:

char const * hptr = "Hello World!";

the following macro call:

__toString(hptr, 5)

would return the macro string containing Hello.

See also Macro strings, page 398.

__toUpper

Syntax __toUpper(macroString)

Parameter macroString is any macro string.

Return value The converted string.

Description This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

Example __toUpper("string")

The resulting macro string contains STRING.

See also Macro strings, page 398.

__writeFile

Syntax __writeFile(file, value)

string Any null-terminated C string

maxlength The maximum length of the returned macro string
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
Parameters

Return value int 0

Description Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __fmessage statement can do the same thing. The __writeFile macro is
provided for symmetry with __readFile.

__writeFileByte

Syntax __writeFileByte(file, value)

Parameters

Return value int 0

Description Writes one byte to the file file.

__writeMemoryByte

Syntax __writeMemoryByte(value, address, zone)

Parameters

Return value int 0

Description Writes one byte to a given memory location.

Example __writeMemoryByte(0x2F, 0x1F, "Memory");

file A file handle

value An integer

file A file handle

value An integer in the range 0-255

value The value to be written (integer)

address The memory address (integer)

zone The memory zone name (string); for a list of available zones,
see Memory addressing, page 135
U430-5

Part 7. Reference information 423

424

Description of C-SPY system macros
__writeMemory8

Syntax __writeMemory8(value, address, zone)

Parameters

Return value int 0

Description Writes one byte to a given memory location.

Example __writeMemory8(0x2F, 0x8020, "Memory");

__writeMemory16

Syntax __writeMemory16(value, address, zone)

Parameters

Return value int 0

Description Writes two bytes to a given memory location.

Example __writeMemory16(0x2FFF, 0x8020, "Memory");

__writeMemory32

Syntax __writeMemory32(value, address, zone)

Parameters

value The value to be written (integer)

address The memory address (integer)

zone The memory zone name (string); for a list of available zones,
see Memory addressing, page 135

value The value to be written (integer)

address The memory address (integer)

zone The memory zone name (string); for a list of available zones,
see Memory addressing, page 135

value The value to be written (integer)

address The memory address (integer)
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® macros reference
Return value int 0

Description Writes four bytes to a given memory location.

Example

__writeMemory32(0x5555FFFF, 0x8020, "Memory");

zone The memory zone name (string); for a list of available zones,
see Memory addressing, page 135
U430-5

Part 7. Reference information 425

426

Description of C-SPY system macros
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Glossary
Glossary

A
Absolute location
A specific memory address for an object specified in the
source code, as opposed to the object being assigned a location
by the IAR XLINK Linker.

Absolute segments
Segments that have fixed locations in memory before linking.

Address expression
An expression which has an address as its value.

Application
The program developed by the user of the IAR Systems toolkit
and which will be run as an embedded application on a target
processor.

Architecture
A term used by computer designers to designate the structure
of complex information-processing systems. It includes the
kinds of instructions and data used, the memory organization
and addressing, and the methods by which the system is
implemented. The two main architecture types used in
processor design are Harvard architecture and von Neumann
architecture.

Assembler directives
The set of commands that control how the assembler operates.

Assembler options
Parameters you can specify to change the default behavior of
the assembler.

Assembler language
A machine-specific set of mnemonics used to specify
operations to the target processor and input or output registers
or data areas. Assembler language might sometimes be
preferred over C/Embedded C++ to save memory or to
enhance the execution speed of the application.

Auto variables
The term refers to the fact that each time the function in which
the variable is declared is called, a new instance of the variable
is created automatically. This can be compared with the
behavior of local variables in systems using static overlay,
where a local variable only exists in one instance, even if the
function is called recursively. Also called local variables.
Compare Register variables.

B
Backtrace
Information that allows the IAR C-SPY® Debugger to show,
without any runtime penalty, the complete stack of function
calls wherever the program counter is, provided that the code
comes from compiled C functions.

Bank
See Memory bank.

Bank switching
Switching between different sets of memory banks. This
software technique is used to increase a computer's usable
memory by allowing different pieces of memory to occupy the
same address space.

Banked code
Code that is distributed over several banks of memory. Each
function must reside in only one bank.

Banked data
Data that is distributed over several banks of memory. Each
data object must fit inside one memory bank.

Banked memory
Has multiple storage locations for the same address. See also
Memory bank.

Bank-switching routines
Code that selects a memory bank.
U430-5

425

426
Batch files
A text file containing operating system commands which are
executed by the command line interpreter. In Unix, this is
called a “shell script” because it is the Unix shell which
includes the command line interpreter. Batch files can be used
as a simple way to combine existing commands into new
commands.

Bitfield
A group of bits considered as a unit.

Breakpoint
1. Code breakpoint. A point in a program that, when reached,
triggers some special behavior useful to the process of
debugging. Generally, breakpoints are used for stopping
program execution or dumping the values of some or all of the
program variables. Breakpoints can be part of the program
itself, or they can be set by the programmer as part of an
interactive session with a debugging tool for scrutinizing the
program's execution.

2. Data breakpoint. A point in memory that, when accessed,
triggers some special behavior useful to the process of
debugging. Generally, data breakpoints are used to stop
program execution when an address location is accessed either
by a read operation or a write operation.

3. Immediate breakpoint. A point in memory that, when
accessed, trigger some special behavior useful in the process of
debugging. Immediate breakpoints are generally used for
halting the program execution in the middle of a memory
access instruction (before or after the actual memory access
depending on the access type) while performing some
user-specified action. The execution is then resumed. This
feature is only available in the simulator version of C-SPY.

C
Calling convention
A calling convention describes the way one function in a
program calls another function. This includes how register
parameters are handled, how the return value is returned, and
which registers that will be preserved by the called function.
The compiler handles this automatically for all C and C++

functions. All code written in assembler language must
conform to the rules in the calling convention in order to be
callable from C or C++, or to be able to call C and C++
functions. The C calling convention and the C++ calling
conventions are not necessarily the same.

Cheap
As in cheap memory access. A cheap memory access either
requires few cycles to perform, or few bytes of code to
implement. A cheap memory access is said to have a low cost.
See Memory access cost.

Checksum
A computed value which depends on the contents of a block of
data and which is stored along with the data in order to detect
corruption of the data. Compare CRC (cyclic redundancy
checking).

Code banking
See Banked code.

Code model
The code model controls how code is generated for an
application. Typically, the code model controls behavior such
as how functions are called and in which code segment
functions will be located. All object files of an application
must be compiled using the same code model.

Code pointers
A code pointer is a function pointer. As many microcontrollers
allow several different methods of calling a function,
compilers for embedded systems usually provide the users
with the ability to use all these methods.

Do not confuse code pointers with data pointers.

Compilation unit
See Translation unit.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Glossary
Compiler function directives
The compiler function directives are generated by the compiler
to pass information about functions and function calls to the
IAR XLINK Linker. To view these directives, you must create
an assembler list file. These directives are primarily intended
for compilers that support static overlay, a feature which is
useful in smaller microcontrollers.

Compiler options
Parameters you can specify to change the default behavior of
the compiler.

Cost
See Memory access cost.

CRC (cyclic redundancy checking)
A number derived from, and stored with, a block of data in
order to detect corruption. A CRC is based on polynomials and
is a more advanced way of detecting errors than a simple
arithmetic checksum. Compare Checksum.

C-SPY options
Parameters you can specify to change the default behavior of
the IAR C-SPY Debugger.

Cstartup
Code that sets up the system before the application starts
executing.

C-style preprocessor
A preprocessor is either a stand-alone application or an
integrated part of a compiler, that performs preprocessing of
the input stream before actual compilation takes place. A
C-style preprocessor follows the rules set up in the ANSI
specification of the C language and implements commands
like #define, #if, and #include, which are used to handle textual
macro substitution, conditional compilation, and inclusion of
other files.

D
Data banking
See Banked data.

Data model
The data model specifies the default memory type. This means
that the data model typically controls one or more of the
following: The method used and the code generated to access
static and global variables, dynamically allocated data, and the
runtime stack. It also controls the default pointer type and in
which data segments static and global variables will be
located. A project can only use one data model at a time, and
the same model must be used by all user modules and all
library modules in the project.

Data pointers
Many microcontrollers have different addressing modes in
order to access different memory types or address spaces.
Compilers for embedded systems usually have a set of
different data pointer types so they can access the available
memory efficiently.

Data representation
How different data types are laid out in memory and what
value ranges they represent.

Declaration
A specification to the compiler that an object, a variable or
function, exists. The object itself must be defined in exactly
one translation unit (source file). An object must either be
declared or defined before it is used. Normally an object that is
used in many files is defined in one source file. A declaration
is normally placed in a header file that is included by the files
that use the object.

For example:

/* Variable "a" exists somewhere. Function
 "b" takes two int parameters and returns an
 int. */

extern int a;
int b(int, int);

Definition
The variable or function itself. Only one definition can exist
for each variable or function in an application. See also
Tentative definition.
U430-5

427

428
For example:

int a;
int b(int x, int y)
{
 return x + y;
}

Derivative
One of two or more processor variants in a series or family of
microprocessors or microcontrollers.

Device description file
A file used by the IAR C-SPY Debugger that contains various
device-specific information such as I/O registers (SFR)
definitions, interrupt vectors, and control register definitions.

Device driver
Software that provides a high-level programming interface to
a particular peripheral device.

Digital signal processor (DSP)
A device that is similar to a microprocessor, except that the
internal CPU has been optimized for use in applications
involving discrete-time signal processing. In addition to
standard microprocessor instructions, digital signal processors
usually support a set of complex instructions to perform
common signal-processing computations quickly.

Disassembly window
A C-SPY window that shows the memory contents
disassembled as machine instructions, interspersed with the
corresponding C source code (if available).

Dynamic initialization
Variables in a program written in C are initialized during the
initial phase of execution, before the main function is called.
These variables are always initialized with a static value,
which is determined either at compile-time or at link-time.
This is called static initialization. In Embedded C++, variables
might require initialization to be performed by executing code,
for example, running the constructor of global objects, or
performing dynamic memory allocation.

Dynamic memory allocation
There are two main strategies for storing variables: statically at
link-time, or dynamically at runtime. Dynamic memory
allocation is often performed from the heap and it is the size of
the heap that determines how much memory that can be used
for dynamic objects and variables. The advantage of dynamic
memory allocation is that several variables or objects that are
not active at the same time can be stored in the same memory,
thus reducing the memory need of an application. See also
Heap memory.

Dynamic object
An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory
that is dynamically allocated. Compare Static object.

E
EEPROM
Electrically Erasable, Programmable Read-Only Memory. A
type of ROM that can be erased electronically, and then be
re-programmed.

EPROM
Erasable, Programmable Read-Only Memory. A type of ROM
that can be erased by exposing it to ultraviolet light, and then
be re-programmed.

Embedded C++
A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that
performance and portability are particularly important in
embedded systems development was considered when
defining the language.

Embedded system
A combination of hardware and software, designed for a
specific purpose. Embedded systems are often part of a larger
system or product.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Glossary
Emulator
An emulator is a hardware device that performs emulation of
one or more derivatives of a processor family. An emulator can
often be used instead of the actual microcontroller and
connects directly to the printed circuit board—where the
microcontroller would have been connected—via a connecting
device. An emulator always behaves exactly as the processor it
emulates, and is used when debugging requires all systems
actuators, or when debugging device drivers.

Enumeration
A type which includes in its definition an exhaustive list of
possible values for variables of that type. Common examples
include Boolean, which takes values from the list [true, false],
and day-of-week which takes values [Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday].
Enumerated types are a feature of typed languages, including
C and Ada.

Characters, (fixed-size) integers, and even floating-point types
might be (but are not usually) considered to be (large)
enumerated types.

Exceptions
An exception is an interrupt initiated by the processor
hardware, or hardware that is tightly coupled with the
processor, for instance, a memory management unit (MMU).
The exception signals a violation of the rules of the
architecture (access to protected memory), or an extreme error
condition (division by zero).

Do not confuse this use of the word exception with the term
exception used in the C++ language (but not in Embedded
C++).

Expensive
As in expensive memory access. An expensive memory access
either requires many cycles to perform, or many bytes of code
to implement. An expensive memory access is said to have a
high cost. See Memory access cost.

Extended keywords
Non-standard keywords in C and C++. These usually control
the definition and declaration of objects (that is, data and
functions). See also Keywords.

F
Format specifiers
Used to specify the format of strings sent by library functions
such as printf. In the following example, the function call
contains one format string with one format specifier, %c, that
prints the value of a as a single ASCII character:

printf("a = %c", a);

G
General options
Parameters you can specify to change the default behavior of
all tools that are included in the IAR Embedded Workbench
IDE.

Generic pointers
Pointers that have the ability to point to all different memory
types in, for example, a microcontroller based on the Harvard
architecture.

H
Harvard architecture
A microcontroller based on the Harvard architecture has
separate data and instruction buses. This allows execution to
occur in parallel. As an instruction is being fetched, the current
instruction is executing on the data bus. Once the current
instruction is complete, the next instruction is ready to go. This
theoretically allows for much faster execution than a von
Neumann architecture, but there is some added silicon
complexity. Compare von Neumann architecture.

Heap memory
The heap is a pool of memory in a system that is reserved for
dynamic memory allocation. An application can request parts
of the heap for its own use; once memory has been allocated
from the heap it remains valid until it is explicitly released
back to the heap by the application. This type of memory is
U430-5

429

430
useful when the number of objects is not known until the
application executes. Note that this type of memory is risky to
use in systems with a limited amount of memory or systems
that are expected to run for a very long time.

Heap size
Total size of memory that can be dynamically allocated.

Host
The computer that communicates with the target processor.
The term is used to distinguish the computer on which the
debugger is running from the microcontroller the embedded
application you develop runs on.

I
IDE (integrated development environment)
A programming environment with all necessary tools
integrated into one single application.

Include file
A text file which is included into a source file. This is often
performed by the preprocessor.

Inline assembler
Assembler language code that is inserted directly between C
statements.

Inlining
An optimization that replaces function calls with the body of
the called function. This optimization increases the execution
speed and can even reduce the size of the generated code.

Instruction mnemonics
A word or acronym used in assembler language to represent a
machine instruction. Different processors have different
instruction sets and therefore use a different set of mnemonics
to represent them, such as, ADD, BR (branch), BLT (branch if
less than), MOVE, LDR (load register).

Interrupt vector
A small piece of code that will be executed, or a pointer that
points to code that will be executed when an interrupt occurs.

Interrupt vector table
A table containing interrupt vectors, indexed by interrupt type.
This table contains the processor's mapping between interrupts
and interrupt service routines and must be initialized by the
programmer.

Interrupts
In embedded systems, the use of interrupts is a method of
detecting external events immediately, for example a timer
overflow or the pressing of a button.

Interrupts are asynchronous events that suspend normal
processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by both
hardware (I/O, timer, machine check) and software
(supervisor, system call or trap instruction). Compare Trap.

Intrinsic
An adjective describing native compiler objects, properties,
events, and methods.

Intrinsic functions
1. Function calls that are directly expanded into specific
sequences of machine code. 2. Functions called by the
compiler for internal purposes (that is, floating point
arithmetic etc.).

K
Key bindings
Key shortcuts for menu commands used in the IAR Embedded
Workbench IDE.

Keywords
A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they
cannot be used as identifiers (in other words, user-defined
objects such as variables or procedures). See also Extended
keywords.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Glossary
L
L-value
A value that can be found on the left side of an assignment and
thus be changed. This includes plain variables and
de-referenced pointers. Expressions like (x + 10) cannot be
assigned a new value and are therefore not L-values.

Language extensions
Target-specific extensions to the C language.

Library
See Runtime library.

Linker command file
A file used by the IAR XLINK Linker. It contains command
line options which specify the locations where the memory
segments can be placed, thereby assuring that your application
fits on the target chip.

Because many of the chip-specific details are specified in the
linker command file and not in the source code, the linker
command file also helps to make the code portable.

In particular, the linker specifies the placement of segments,
the stack size, and the heap size.

Local variable
See Auto variables.

Location counter
See Program location counter (PLC).

Logical address
See Virtual address (logical address).

M
MAC (Multiply and accumulate)
A special instruction, or on-chip device, that performs a
multiplication together with an addition. This is very useful
when performing signal processing where many filters and
transforms have the form:

The accumulator of the MAC usually has a higher precision
(more bits) than normal registers. See also Digital signal
processor (DSP).

Macro
1. Assembler macros are user-defined sets of assembler lines
that can be expanded later in the source file by referring to the
given macro name. Parameters will be substituted if referred
to.

2. C macro. A text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of each
macro is then substituted for any occurrences of the macro
name in the rest of the translation unit.

3. C-SPY macros are programs that you can write to enhance
the functionality of the IAR C-SPY Debugger. A typical
application of C-SPY macros is to associate them with
breakpoints; when such a breakpoint is hit, the macro is run
and can for example be used to simulate peripheral devices, to
evaluate complex conditions, or to output a trace.

The C-SPY macro language is like a simple dialect of C, but is
less strict with types.

Mailbox
A mailbox in an RTOS is a point of communication between
two or more tasks. One task can send messages to another task
by placing the message in the mailbox of the other task.
Mailboxes are also known as message queues or message
ports.
U430-5

431

432
Memory access cost
The cost of a memory access can be in clock cycles, or in the
number of bytes of code needed to perform the access. A
memory which requires large instructions or many instructions
is said to have a higher access cost than a memory which can
be accessed with few, or small instructions.

Memory area
A region of the memory.

Memory bank
The smallest unit of continuous memory in banked memory.
One memory bank at a time is visible in a microcontroller’s
physical address space.

Memory map
A map of the different memory areas available to the
microcontroller.

Memory model
Specifies the memory hierarchy and how much memory the
system can handle. Your application must use only one
memory model at a time, and the same model must be used by
all user modules and all library modules.

Microcontroller
A microprocessor on a single integrated circuit intended to
operate as an embedded system. As well as a CPU, a
microcontroller typically includes small amounts of RAM,
PROM, timers, and I/O ports.

Microprocessor
A CPU contained on one (or a small number of) integrated
circuits. A single-chip microprocessor can include other
components such as memory, memory management, caches,
floating-point unit, I/O ports and timers. Such devices are also
known as microcontrollers.

Module
The basic unit of linking. A module contains definitions for
symbols (exports) and references to external symbols
(imports). When compiling C/C++, each translation unit
produces one module. In assembler, each source file can
produce more than one module.

N
Nested interrupts
A system where an interrupt can be interrupted by another
interrupt is said to have nested interrupts.

Non-banked memory
Has a single storage location for each memory address in a
microcontroller’s physical address space.

Non-initialized memory
Memory that can contain any value at reset, or in the case of a
soft reset, can remember the value it had before the reset.

Non-volatile storage
Memory devices such as battery-backed RAM, ROM,
magnetic tape and magnetic disks that can retain data when
electric power is shut off. Compare Volatile storage.

NOP
No operation. This is an instruction that does not perform
anything, but is used to create a delay. In pipelined
architectures, the NOP instruction can be used for
synchronizing the pipeline. See also Pipeline.

O
Operator
A symbol used as a function, with infix syntax if it has two
arguments (+, for example) or prefix syntax if it has only one
(for instance, bitwise negation, ~). Many languages use
operators for built-in functions such as arithmetic and logic.

Operator precedence
Each operator has a precedence number assigned to it that
determines the order in which the operator and its operands are
evaluated. The highest precedence operators are evaluated
first. Use parentheses to group operators and operands to
control the order in which the expressions are evaluated.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Glossary
P
Parameter passing
See Calling convention.

Peripheral
A hardware component other than the processor, for example
memory or an I/O device.

Pipeline
A structure that consists of a sequence of stages through which
a computation flows. New operations can be initiated at the
start of the pipeline even though other operations are already
in progress through the pipeline.

Pointer
An object that contains an address to another object of a
specified type.

#pragma
During compilation of a C/C++ program, the #pragma
preprocessing directive causes the compiler to behave in an
implementation-defined manner. This can include, for
example, producing output on the console, changing the
declaration of a subsequent object, changing the optimization
level, or enabling/disabling language extensions.

Pre-emptive multitasking
An RTOS task is allowed to run until a higher priority process
is activated. The higher priority task might become active as
the result of an interrupt. The term preemptive indicates that
although a task is allotted to run a given length of time (a
timeslice), it might lose the processor at any time. Each time
an interrupt occurs, the task scheduler looks for the highest
priority task that is active and switches to that task. If the
located task is different from the task that was executing before
the interrupt, the previous task is suspended at the point of
interruption.

Compare Round Robin.

Preprocessing directives
A set of directives that are executed before the parsing of the
actual code is started.

Preprocessor
See C-style preprocessor.

Processor variant
The different chip setups that the compiler supports. See
Derivative.

Program counter (PC)
A special processor register that is used to address instructions.
Compare Program location counter (PLC).

Program location counter (PLC)
Used in the IAR Assembler to denote the code address of the
current instruction. The PLC is represented by a special
symbol (typically $) that can be used in arithmetic expressions.
Also called simply location counter (LC).

PROM
Programmable Read-Only Memory. A type of ROM that can
be programmed only once.

Project
The user application development project.

Project options
General options that apply to an entire project, for example the
target processor that the application will run on.

Q
Qualifiers
See Type qualifiers.

R
R-value
A value that can be found on the right side of an assignment.
This is just a plain value. See also L-value.
U430-5

433

434
Real-time operating system (RTOS)
An operating system which guarantees the latency between an
interrupt being triggered and the interrupt handler starting, as
well as how tasks are scheduled. An RTOS is typically much
smaller than a normal desktop operating system. Compare
Real-time system.

Real-time system
A computer system whose processes are time-sensitive.
Compare Real-time operating system (RTOS).

Register constant
A register constant is a value that is loaded into a dedicated
processor register when the system is initialized. The compiler
can then generate code that assumes that the constants are
present in the dedicated registers.

Register
A small on-chip memory unit, usually just one or a few bytes
in size, which is particularly efficient to access and therefore
often reserved to function as a temporary storage area during
program execution.

Register locking
Register locking means that the compiler can be instructed that
some processor registers shall not be used during normal code
generation. This is useful in a number of situations. For
example, some parts of a system might be written in assembler
language to gain speed. These parts might be given dedicated
processor registers. Or the register might be used by an
operating system, or by other third-party software.

Register variables
Typically, register variables are local variables that have been
placed in registers instead of on the (stack) frame of the
function. Register variables are much more efficient than other
variables because they do not require memory accesses, so the
compiler can use shorter/faster instructions when working
with them. See also Auto variables.

Relocatable segments
Segments that have no fixed location in memory before
linking.

Reset
A reset is a restart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft
reset). A hard reset can usually not be distinguished from the
power-on condition, which a soft reset can be.

ROM-monitor
A piece of embedded software that has been designed
specifically for use as a debugging tool. It resides in the ROM
of the evaluation board chip and communicates with a
debugger via a serial port or network connection. The
ROM-monitor provides a set of primitive commands to view
and modify memory locations and registers, create and remove
breakpoints, and execute your application. The debugger
combines these primitives to fulfill higher-level requests like
program download and single-step.

Round Robin
Task scheduling in an operating system, where all tasks have
the same priority level and are executed in turn, one after the
other. Compare Pre-emptive multitasking.

RTOS
See Real-time operating system (RTOS).

Runtime library
A collection of useful routines, stored as an object file, that can
be linked into any application.

Runtime model attributes
A mechanism that is designed to prevent modules that are not
compatible to be linked into an application. A runtime attribute
is a pair constituted of a named key and its corresponding
value.

Two modules can only be linked together if they have the same
value for each key that they both define.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Glossary
S
Saturated mathematics
Most, if not all, C and C++ implementations use mod–2N
2-complement-based mathematics where an overflow wraps
the value in the value domain, that is, (127 + 1) = -128.
Saturated mathematics, on the other hand, does not allow
wrapping in the value domain, for instance, (127 + 1) = 127, if
127 is the upper limit. Saturated mathematics is often used in
signal processing, where an overflow condition would have
been fatal if value wrapping had been allowed.

Scheduler
The part of an RTOS that performs task-switching. It is also
responsible for selecting which task that should be allowed to
run. There are many different scheduling algorithms, but most
of them are either based on static scheduling (performed at
compile-time), or on dynamic scheduling (where the actual
choice of which task to run next is taken at runtime, depending
on the state of the system at the time of the task-switch). Most
real-time systems use static scheduling, because it makes it
possible to prove that the system will not violate the real-time
requirements.

Scope
The section of an application where a function or a variable can
be referenced by name. The scope of an item can be limited to
file, function, or block.

Segment
A chunk of data or code that should be mapped to a physical
location in memory. The segment can either be placed in RAM
(read-and-writeable memory) or in ROM (read-only memory).

Segment map
A set of segments and their locations.

Semaphore
A semaphore is a type of flag that is used for guaranteeing
exclusive access to resources. The resource can be a hardware
port, a configuration memory, or a set of variables. If several
different tasks have to access the same resource, the parts of
the code (the critical sections) that access the resource have to
be made exclusive for every task. This is done by obtaining the

semaphore that protects that resource, thus blocking all other
tasks from it. If another task wishes to use the resource, it also
has to obtain the semaphore. If the semaphore is already in use,
the second task has to wait until the semaphore is released.
After the semaphore is released, the second task is allowed to
execute and can obtain the semaphore for its own exclusive
access.

Severity level
The level of seriousness of the diagnostic response from the
assembler, compiler, or debugger, when it notices that
something is wrong. Typical severity levels are remarks,
warnings, errors, and fatal errors. A remark just points to a
possible problem, while a fatal error means that the
programming tool exits without finishing.

Short addressing
Many microcontrollers have special addressing modes for
efficient access to internal RAM and memory mapped I/O.
Short addressing is therefore provided as an extended feature
by many compilers for embedded systems. See also Data
pointers.

Side effect
An expression in C or C++ is said to have a side-effect if it
changes the state of the system. Examples are assignments to
a variable, or using a variable with the post-increment operator.
The C and C++ standards state that a variable that is subject to
a side-effect should not be used more that once in an
expression. As an example, this statement violates that rule:

*d++ = *d;

Signal
Signals provide event-based communication between tasks. A
task can wait for one or more signals from other tasks. Once a
task receives a signal it waits for, execution continues. A task
in an RTOS that waits for a signal does not use any processing
time, which allows other tasks to execute.
U430-5

435

436
Simulator
A debugging tool that runs on the host and behaves as similar
to the target processor as possible. A simulator is used to debug
the application when the hardware is unavailable, or not
needed for proper debugging. A simulator is usually not
connected to any physical peripheral devices. A simulated
processor is often slower, or even much slower, than the real
hardware.

Single stepping
Executing one instruction or one C statement at a time in the
debugger.

Skeleton code
An incomplete code framework that allows the user to
specialize the code.

Special function register (SFR)
A register that is used to read and write to the hardware
components of the microcontroller.

Stack frames
Data structures containing data objects as preserved registers,
local variables, and other data objects that need to be stored
temporary for a particular scope (usually a function).

Earlier compilers usually had a fixed size and layout on a stack
frame throughout a complete function, while modern
compilers might have a very dynamic layout and size that can
change anywhere and anytime in a function.

Stack segments
The segment or segments that reserve space for the stack(s).
Most processors use the same stack for calls and parameters,
but some have separate stacks.

Statically allocated memory
This kind of memory is allocated once and for all at link-time,
and remains valid all through the execution of the application.
Variables that are either global or declared static are allocated
this way.

Static object
An object whose memory is allocated at link-time and is
created during system startup (or at first use). Compare
Dynamic object.

Static overlay
Instead of using a dynamic allocation scheme for parameters
and auto variables, the linker allocates space for parameters
and auto variables at link time. This generates a worst-case
scenario of stack usage, but might be preferable for small chips
with expensive stack access or no stack access at all.

Structure value
A collecting names for structs and unions. A struct is a
collection of data object placed sequentially in memory
(possibly with pad bytes between them). A union is a
collection of data sharing the same memory location.

Symbol
A name that represents a register, an absolute value, or a
memory address (relative or absolute).

Symbolic location
A location that uses a symbolic name because the exact
address is unknown.

T
Target
1. An architecture. 2. A piece of hardware. The particular
embedded system you are developing the application for. The
term is usually used to distinguish the system from the host
system.

Task (thread)
A task is an execution thread in a system. Systems that contain
many tasks that execute in parallel are called multitasking
systems. Because a processor only executes one instruction
stream at the time, most systems implement some sort of
task-switch mechanism (often called context switch) so that all
tasks get their share of processing time. The process of
determining which task that should be allowed to run next is
called scheduling. Two common scheduling methods are
Pre-emptive multitasking and Round Robin.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Glossary
Tentative definition
A variable that can be defined in multiple files, provided that
the definition is identical and that it is an absolute variable.

Terminal I/O
A simulated terminal window in the IAR C-SPY Debugger.

Timeslice
The (longest) time an RTOS allows a task to run without
running the task-scheduling algorithm. It is possible that a task
will be allowed to execute during several consecutive
timeslices before being switched out. It is also possible that a
task will not be allowed to use its entire time slice, for example
if, in a preemptive system, a higher priority task is activated by
an interrupt.

Timer
A peripheral that counts independent of the program
execution.

Translation unit
A source file together with all the header files and source files
included via the preprocessor directive #include, with the
exception of the lines skipped by conditional preprocessor
directives such as #if and #ifdef.

Trap
A trap is an interrupt initiated by inserting a special instruction
into the instruction stream. Many systems use traps to call
operating system functions. Another name for trap is software
interrupt.

Type qualifiers
In standard C/C++, const or volatile. IAR compilers usually
add target-specific type qualifiers for memory and other type
attributes.

U
UBROF (Universal Binary Relocatable Object
Format)
File format produced by the IAR Systems programming tools.

V
Virtual address (logical address)
An address that needs to be translated by the compiler, linker
or the runtime system into a physical memory address before
it is used. The virtual address is the address seen by the
application, which can be different from the address seen by
other parts of the system.

Virtual space
An IAR Embedded Workbench Editor feature which allows
you to place the insertion point outside of the area where there
are actual characters.

Volatile storage
Data stored in a volatile storage device is not retained when the
power to the device is turned off. In order to preserve data
during a power-down cycle, you should store it in non-volatile
storage. This should not be confused with the C keyword
volatile. Compare Non-volatile storage.

von Neumann architecture
A computer architecture where both instructions and data are
transferred over a common data channel. Compare Harvard
architecture.

W
Watchpoints
Watchpoints keep track of the values of C variables or
expressions in the C-SPY Watch window as the application is
being executed.

X
XAR options
The set of commands that control how the IAR XAR Library
Builder operates.

XLIB options
The set of commands that control how the IAR XLIB Librarian
operates.
U430-5

437

438
XLINK options
Parameters you can specify to change the default behavior of
the IAR XLINK Linker.

Z
Zero-overhead loop
A loop in which the loop condition, including branching back
to the beginning of the loop, does not take any time at all. This
is usually implemented as a special hardware feature of the
processor and is not available in all architectures.

Zone
Different processors have widely differing memory
architectures. Zone is the term C-SPY uses for a named
memory area. For example, on processors with separately
addressable code and data memory there would be at least two
zones. A processor with an intricate banked memory scheme
might have several zones.
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index

Index
A
absolute location, definition of . 425
absolute segments, definition of . 425
Access Type (Breakpoints dialog box) 172, 174
Action (Breakpoints dialog box) 172, 174, 257
Additional include directories (assembler option). 369
Additional include directories (compiler option) 359
address expression, definition of . 425
address range check, specifying in XLINK. 383
advanced trigger breakpoints, setting 213
Allow C-SPY-specific output file (XLINK option) 379
Allow erase/write access to locked flash memory
(FET debugger option) . 199
Always generate output (XLINK option) 382
application

built outside the IDE . 113
definition of . 425
testing . 92, 151

architecture, definition of . 425
argument variables . 304

in #include file paths 359, 369, 387
summary . 279

asm (filename extension) . 18
assembler

command line version . 73
documentation . 20

on the Help menu . 309
features . 11

assembler comments, text style in editor. 97
assembler directives . 68

definition of . 425
text style in editor . 97

assembler labels, viewing . 128
assembler language, definition of 425
assembler list files

compiler call frame information, including 358
conditional information, specifying 368
cross-references, generating. 368

format . 51
generating . 367
header, including . 367
lines per page, specifying. 368
tab spacing, specifying. 368

Assembler mnemonics (compiler option) 358
assembler options . 365

definition of . 425
Additional include directories 369
Cross-reference . 368
Defined symbols . 370
Diagnostics . 370
Enable multibyte support . 365
Generate debug info. 367
Include header . 367
Include listing . 368
Language . 365
Lines/page . 368
List. 367
Macro quote characters . 366
Max number of errors . 371
Output . 366
Preprocessor. 369
Tab spacing . 368
User symbols are case sensitive 365

assembler output, including debug information 366
assembler preprocessor . 369
Assembler Reference Guide (Help menu). 309
assembler symbols

defining . 370
using in C-SPY expressions . 124

assembler variables, viewing. 128
assert, in built applications . 81
assumptions, programming experience xxxv
Attach to running target (C-SPY Download option) 199
Auto indent (editor option) . 292
auto variables, definition of. 425
Auto window . 324

context menu . 324
U430-5

439

440
Automatic (compiler option). 352
Autostep settings dialog box (Debug menu) 338
a43 (filename extension) . 18

B
backtrace information

definition of . 425
generated by compiler . 121

bank switching, definition of. 425
banked code, definition of. 425
banked data, definition of . 425
banked memory, definition of . 425
bank-switching routines, definition of. 425
Batch Build. 91
Batch Build Configuration dialog box (Project menu) . . . 285
Batch Build dialog box (Project menu) 284
batch files

definition of . 426
specifying in Embedded Workbench IDE 78, 305

bin, common (subdirectory) . 17
bin, 430 (subdirectory) . 16
bitfield, definition of . 426
blocks, in C-SPY macros . 400
bold style, in this guide . xl
bookmarks

adding . 101
showing in editor . 292

Break (button). 121, 315
breakpoint condition, example . 131
Breakpoint Usage dialog box (Simulator menu) 175, 216

using . 133
breakpoints . 120

advanced triggers (FET Debugger) 213
code, example . 414
conditional

in FET Debugger . 209
using . 217

conditional, example . 63

connecting a C-SPY macro . 149
consumers . 134
data . 171

example. 413, 416–418
definition of . 426
immediate . 173

example. 63
in Memory window . 137
in the simulator . 170
listing all . 133
range, using in FET . 206
setting

in memory window . 130
using system macros . 132
using the dialog box . 130

settings. 282
single-stepping if not available. 111
system, description of . 129
toggling . 130
viewing . 132

Breakpoints dialog box
Advanced Trigger . 213
Code . 256
Conditional . 209
Data . 171
Immediate . 173
Log . 258
Range. 206

Breakpoints window (View menu) 255
Buffered terminal output (XLINK option) 379
-build (iarbuild command line option) 92
Build Actions Configuration (Build Actions options) 375
build configuration

creating . 82
definition of . 81

Build window (View menu) . 261
building

commands for . 91
from the command line . 92
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
options . 296
the process . 89

C
C comments, text style in editor . 97
C compiler. See compiler
C function information, in C-SPY. 121
C keywords, text style in editor. 97
C symbols, using in C-SPY expressions 123
C variables, using in C-SPY expressions 123
c (filename extension). 18
call chain, displaying in C-SPY . 121
Call stack information. 121
Call Stack window . 121, 326

context menu . 327
example . 62

calling convention, definition of . 426
__cancelAllInterrupts (C-SPY system macro) 404
__cancelInterrupt (C-SPY system macro). 404
category, in Options dialog box. 90, 283
cfg (filename extension) . 18, 295
characters, in assembler macro quotes 366
cheap memory access, definition of 426
Check for word access on odd address (C-SPY option) . . 160
Check In Files, dialog box . 246
Check Out Files, dialog box . 247
checksum

definition of . 426
generating in XLINK . 388

-clean (iarbuild command line option) 92
__clearBreak (C-SPY system macro) 405
CLIB. 11

documentation . xxxix, 21
Close Workspace (File menu) . 266
__closeFile (C-SPY system macro) 405
code

banked, definition of . 425
skeleton, definition of . 436

testing . 92
code coverage

commands . 330
context menu . 330
using . 154
viewing . 155

Code Coverage window . 329
code generation

assembler . 365
compiler, features. 10

code integrity . 86
code memory, filling unused . 388
code model, definition of . 426
Code page (compiler options) . 354
code pointers, definition of . 426
code templates, using in editor . 99
command line options,
specifying in Embedded Workbench IDE 78, 305
command prompt icon, in this guide xl
Common Fonts (IDE Options dialog box) 288
common (directory) . 17
compiler

command line version . 4, 73
documentation . 11, 20
features . 10

compiler call frame information
including in assembler list file 358

compiler diagnostics . 358
suppressing . 361

compiler function directives, definition of 427
compiler list files

assembler mnemonics, including 358
example . 32
generating . 358
source code, including . 358

compiler options . 351
definition of . 427
setting in Embedded Workbench, example 29
Additional include directories 359
Assembler mnemonics . 358
U430-5

441

442
Automatic . 352
Code . 354
Defined symbols . 360
Diagnostics . 360
Diagnostics (in list file) . 358
Disable language extensions . 352
Embedded C++ . 352
Enable multibyte support . 353
Enable remarks . 361
Extended Embedded C++ . 352
Generate debug information. 357
Ignore standard include directories 359, 369
Include compiler call frame information 358
Include source . 358
Language . 351
Language conformance . 352
List. 358
MISRA C. 362
Module type. 357
Object module name . 357
Optimizations. 355
Output . 356
Output assembler file . 358
Output list file . 358
Plain ‘char’ is. 353
Preinclude file . 360
Preprocessor. 359
Preprocessor output to file . 360
Reduce stack usage . 354
Relaxed ISO/ANSI . 352
Require prototypes. 352
R4 utilization . 354
R5 utilization . 354
Strict ISO/ANSI. 352
Suppress these diagnostics . 361
Treat all warnings as errors . 362
Treat these as errors . 362
Treat these as remarks . 361
Treat these as warnings . 362

20-bit context save on interrupt 355
compiler output

debug information, including . 357
module name . 357

compiler preprocessor. 359
Compiler Reference Guide (Help menu). 309
compiler symbols, defining. 360
computer style, typographic convention xl
conditional breakpoints

setting . 209
conditional breakpoints, example . 63
conditional statements, in C-SPY macros 399
Conditions (Breakpoints dialog) 173, 258
Config options (XLINK). 386
Configuration file (general option) 347
Configurations for project dialog box (Project menu) 280
Configure Auto Indent (IDE Options dialog box) 292
Configure Tools (Tools menu) . 303
Configure Viewers dialog box (Tools menu). 307
config, common (subdirectory) . 17
config, 430 (subdirectory). 16
Connection (C-SPY FET option) 200
context menus

Call Stack window . 327
Disassembly window . 317
Editor window . 249
Editor window tab . 249
Memory window . 319
Messages window . 261–264
Source Browser window . 254
Source Code Control . 243
Watch window . 322
Workspace window . 241, 255

conventions, typographic . xl
copyright. ii
cost. See memory access cost
cpp (filename extension) . 18
CPU registers, definitions . 111
CPU variant, definition of . 428
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
CRC, definition of. 427
Create New Project dialog box (Project menu) 282
Cross-reference (assembler option). 368
cross-references, in map files . 35
Cstartup, definition of . 427
current position, in C-SPY Disassembly window 316
cursor, in C-SPY Disassembly window. 316
CUR_DIR (argument variable) 279
CUR_LINE (argument variable) 279
custom build . 93

using . 93
custom tool configuration . 93
Custom Tool Configuration (Custom Build options). 373
C++ comments, text style in editor 97
C++ keywords, text style in editor 97
C++ tutorial . 53
C-SPY

characteristics
FET Debugger. 191

debugger systems. 8
overview . 108

environment overview . 109
IDE reference information . 313
overview . 5
plugin modules, loading. 112
setting up . 110
Simulator . 159
starting the debugger . 112

C-SPY Download options
Attach to running target . 199

C-SPY drivers
simulator . 159

C-SPY expressions . 123
evaluating. 126
in C-SPY macros . 399
Quick Watch, using . 126
Tooltip watch, using. 126
Watch window, using . 126

C-SPY macros . 143, 397

blocks. 400
conditional statements . 399
C-SPY expressions . 399
dialog box . 338

using . 146
examples . 144

checking status of register. 148
checking the status of WDT 148
creating a log macro . 149

execUserExit . 402
execUserSetup, example . 59, 65
executing . 145

connecting to a breakpoint 149
using Quick Watch . 148
using setup macro and setup file 147

functions . 124, 397
loop statements . 399
macro statements . 399
setup macro file

definition of . 145
executing. 147

setup macro function
definition of . 145
execUserPreload . 402
execUserReset. 402
execUserSetup . 402
summary . 402

using . 143
variables. 124, 398
__closeFile. 405
__driverType . 406
__evaluate . 407
__openFile . 407
__orderInterrupt . 408–409
__readFileByte. 409
__readFileByte (system macro) 410
__readMemoryByte . 410
__registerMacroFile. 412
__resetFile . 412
U430-5

443

444
__setCodeBreak. 414
__setDataBreak . 416
__setSimBreak. 418
__sourcePosition . 419
__strFind . 420
__subString . 420
__toLower . 421
__toString . 421
__toUpper . 422
__writeFile. 422
__writeFileByte . 423
__writeMemoryByte . 423
__writeMemory16 . 424
__writeMemory32 . 424
__writeMemory8 . 423

C-SPY menus
Emulator (FET) . 201

C-SPY options . 283, 393
Check for word access on odd address. 160
definition of . 427
Device description file . 394
Driver. 393
Plugins . 396
Run to . 111, 394
Setup . 160, 393
Setup macros . 394
Simulator Setup . 160

C-SPY windows
Auto . 324
Call Stack. 326
Code Coverage. 154, 329
Disassembly. 315
Find in Trace . 165
Function Trace . 164
LCD. 335
Live Watch. 324
Locals . 323
main . 109
Memory . 318

using . 136
Profiling . 330
Register . 321

example. 44
using . 138

Stack . 332
Terminal I/O . 328

example. 46
Trace . 162
Trace Expressions . 164
Watch. 322

C-style preprocessor, definition of 427
C/C++ syntax styles, options . 295

D
data breakpoints . 171
data model, definition of . 427
data pointers, definition of . 427
data representation, definition of. 427
dbg (filename extension). 18
dbgt (filename extension) . 18
ddf (filename extension) . 18, 112
Debug info with terminal I/O (XLINK option) 328
debug information

generating in assembler . 367
in compiler, generating . 357

Debug information for C-SPY (XLINK option) 378
Debug Log window (View menu) 264
Debug menu . 337
Debug protocol (C-SPY FET option) 200
debugger concepts, definitions of 107
debugger drivers

FET . 192
simulator . 159

debugger system overview . 108
Debugger (IDE Options dialog box) 297
debugging projects

externally built applications . 113
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
in disassembly mode, example. 43
declaration, definition of . 427
default installation path. 15
#define options (XLINK) . 381
#define statement, in compiler . 360
Define symbol (XLINK option) . 381
Defined symbols (assembler option) 370
Defined symbols (compiler option). 360
definition, definition of . 427
demo application, running with C-SPY FET. 195
dep (filename extension) . 18
derivative, definition of . 428
description (interrupt property) . 182
design considerations (FET)

boot-strap loader . 229
device signals. 229
external power . 230

development environment, introduction 73
Device description file (C-SPY option). 394
device description files . 16, 112

definition of . 113, 428
memory zones . 114, 135
modifying . 115
register zone. 114, 135
specifying interrupts . 408

device driver, definition of . 428
Device (target option) . 343
diagnostics

compiler
including in list file . 358
suppressing . 361

XLINK, suppressing . 383
Diagnostics (assembler options) . 370
Diagnostics (compiler option). 360
Diagnostics (XLINK option) . 382
dialog boxes

Advanced Trigger . 213
Autostep settings (Debug menu) 338
Batch Build Configuration (Project menu). 285

Batch Build (Project menu) . 284
Breakpoint Usage (Simulator menu) 175, 216
Check In Files (Project menu) 246
Check Out Files (Project menu) 247
Code breakpoints (Breakpoints window) 256
Common fonts (IDE Options dialog box) 288
Conditional breakpoints . 209
Configurations for project (Project menu) 280
Configure Auto Indent (IDE Options dialog box) 292
Configure Viewers (Tools menu) 307
Create New Project (Project menu) 282
Data breakpoints (Breakpoints window) 171
Debugger (IDE Options dialog box) 297
Edit Filename Extensions (Tools menu). 306
Edit Interrupt (Interrupt Setup dialog box). 182
Edit Memory Access (Memory Access
Setup dialog box) . 170
Editor Colors and Fonts (IDE Options dialog box) . . . 295
Editor Setup Files (IDE Options dialog) 294
Editor (IDE Options dialog box) 291
Embedded Workbench Startup (Help menu) 311
Enter Location (Breakpoints dialog box) 260
External Editor (IDE Options dialog box) 287
Filename Extensions Overrides (Tools menu) 306
Filename Extensions (Tools menu) 305
Fill (Memory window). 320
Find in Files (Edit menu) . 271
Find in Trace (Edit menu) . 166
Find (Edit menu) . 270
Immediate breakpoints (Breakpoints window). 173
Incremental Search (Edit menu). 273
Interrupt Setup (Simulator menu) 180
Key Bindings (IDE Options dialog box) 289
LCD settings (LCD window) . 336
Log breakpoints (Breakpoints window) 258
Log File (Debug menu) . 340
Macro Configuration (Debug menu) 338
Memory Access Setup (Simulator menu). 168
Messages (IDE Options dialog box) 290
New Configuration (Project menu) 281
U430-5

445

446
Options (Project menu) . 283
Range breakpoints . 206
Register Filter (IDE Options dialog box) 298
Replace (Edit menu) . 270
Select SCC Provider (Project menu) 245
Sequencer Control (Emulator menu) 223
Set Log file (Debug menu). 338
Source Code Control (IDE Options dialog box). 300
Stack (IDE Options dialog box) 301
Template (Edit menu) . 274
Terminal I/O Log File (Debug menu). 341
Terminal I/O (IDE Options dialog box) 299

digital signal processor, definition of 428
directories

common\bin . 17
common\config . 17
common\doc . 17
common\plugins . 18
common\src . 18
compiler include files. 369
settings. 19
430\bin. 16
430\config . 16
430\doc . 16
430\drivers . 16
430\FET_examples . 16
430\inc . 16
430\lib . 17
430\plugins . 17
430\src . 17
430\tutor . 17

directory structure. 15
Disable language extensions (compiler option). 352
Disable memory cache (C-SPY FET option) 200
__disableInterrupts (C-SPY system macro) 405
disassembly mode debugging, example 43
Disassembly window . 315

context menu . 317
definition of . 428

disclaimer . ii
DLIB. 11

documentation . xxxix, 21
specifying . 346

DLIB library functions, reference information 96
dni (filename extension) . 18–19
do (macro statement) . 399
dockable windows. 75
document conventions. xl
documentation . 15

assembler . 11
compiler. 11
MISRA C. 21
online . 16–17
other guides . xxxix
overview . xxxvi
product. 20
runtime libraries. 21
this guide . xxxv
XLIB . 13
XLINK. 12

doc, common (subdirectory) . 17
doc, 430 (subdirectory) . 16
drag-and-drop

of files in Workspace window . 83
text in editor window . 97

Driver (C-SPY option) . 393
drivers, 430 (subdirectory) . 16
__driverType (C-SPY system macro) 406
DSP. See digital signal processor
Dynamic Data Exchange (DDE). 102

calling external editor . 287
dynamic initialization, definition of 428
dynamic memory allocation, definition of 428
dynamic object, definition of . 428
d43 (filename extension). 18
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
E
Edit Filename Extensions dialog box (Tools menu) 306
Edit Interrupt dialog box (Simulator menu) 182
Edit Memory Access dialog box . 170
Edit menu . 267
editing source files . 95
edition, user guide. ii
editor

code templates . 99
commands . 97
customizing the environment . 101
external . 102
features . 5
indentation . 98
keyboard commands . 251
matching parentheses and brackets 99
options . 291
shortcut to functions. 101, 249
splitter controls . 248
status bar, using in . 99
using . 95

Editor Colors and Fonts (IDE Options dialog box) 295
Editor Setup Files (IDE Options dialog) 294
editor setup files, options . 294
Editor window . 248

context menu . 249
tab, context menu. 249

Editor (IDE Options dialog box). 291
EEC++ syntax (compiler option) 352
EEPROM, definition of. 428
Embedded C++

definition of . 428
syntax, enabling in compiler . 352

Embedded C++ Technical Committee xxxix
Embedded C++ (compiler option) 352
embedded system, definition of . 428
Embedded Workbench

editor . 95

exiting from . 75
layout . 75
main window . 74, 238
reference information. 237
running. 74
version number, displaying . 309

Embedded Workbench Startup dialog box (Help menu) . . 311
Embedded Workbench User Guide (Help menu) 309
Emulator menu . 201
emulator (C-SPY version)

definition of . 429
third-party . 4

Enable MISRA C (general option) 349
Enable multibyte support (assembler option) 365
Enable multibyte support (compiler option) 353
Enable remarks (compiler option). 361
Enable Virtual Space (editor option) 292
enabled transformations, in compiler 356
__enableInterrupts (C-SPY system macro) 406
Enter Location (Breakpoints dialog box) 260
enumeration, definition of. 429
EOL character (editor option) . 291
EPROM, definition of . 428
Erase main and Information memory
(FET debugger option) . 199
Erase main memory (FET debugger option) 199
error messages

compiler. 362
XLINK. 383

__evaluate (C-SPY system macro) 407
ewd (filename extension) . 18
ewp (filename extension) . 18
eww (filename extension) . 18, 75
EW_DIR (argument variable) . 279
examples

assembler
mixing C and assembler . 49
running project with C-SPY FET 196
viewing list file . 51

breakpoints . 42
U430-5

447

448
executing up to . 42
setting

using dialog box. 63
using macro . 65

C example, running with C-SPY FET 195
calling convention, examining . 49
compiling. 31
conditional breakpoint triggering state storage. 217
C-SPY macros . 144
C/C++ and assembler, mixing . 50
ddf file, using . 61
debugging a program . 37
disassembly mode debugging. 43
function calls, displaying in C-SPY 62
interrupts

timer . 186
using macro. 65

linking
a compiler program. 34
viewing the map file . 35

macros
checking status of register. 148
checking status of WDT . 148
creating a log macro . 149
for interrupts and breakpoints 65
using Quick Watch . 148

Memory window, using . 44
memory, monitoring. 44
performing tasks without stopping execution. 131
project

adding files . 28
creating . 25–26

reaching program exit . 46
registers, monitoring . 44
Scan for Changed Files (editor option), using 33
setting project options . 29
state storage, using. 216
stepping . 38
Terminal I/O, displaying . 46

tracing incorrect function arguments 131
using libraries . 67
variables

setting a watch point . 41
watching in C-SPY . 40

viewing compiler list files . 32
workspace, creating a new . 25

exceptions, definition of . 429
execUserExit (C-SPY setup macro) 402
execUserPreload (C-SPY setup macro). 402
execUserReset (C-SPY setup macro) 402
execUserSetup (C-SPY setup macro) 402

example . 59, 65
Executable (output directory) . 345
executing a program up to a breakpoint 42
execution history, tracing . 127
execution time, reducing . 151
EXE_DIR (argument variable) 279
Exit (File menu) . 75
exit, of user application. 121
expensive memory access, definition of 429
expressions. See C-SPY expressions
Extended Embedded C++, enabling in compiler. 352
extended keywords, definition of 429
extended linker command line file. See linker command file
extensions. See filename extensions or language extensions
External Editor (IDE Options dialog box). 287
external editor, using. 102
Extra Options

for assembler . 371, 390, 395
for compiler . 363

Extra Output (XLINK options) . 380

F
factory settings

restoring default settings . 91
XLINK. 392
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
features
assembler . 11
compiler . 10
editor . 5
source code control . 4
XLIB . 13

FET Debugger
design considerations . 229
functionality

state storage . 216
stepping. 225

FET Debugger driver, features . 9
FET_examples, 430 (subdirectory) 16
file extensions. See filename extensions
File menu . 265
file types

device description . 16
specifying in Embedded Workbench. 112

documentation . 16
header . 16
include . 16
library . 17
linker command file templates . 16
macro . 111, 394
map . 384
project templates . 16
readme . 16–17
special function registers description files 16
syntax coloring configuration. 16

filename extensions. 18
asm . 18
a43 . 18
c . 18
cfg . 18, 295
cpp . 18
dbg. 18
dbgt . 18
ddf . 18, 112
dep . 18

dni . 18–19
d43. 18
ewd . 18
ewp . 18
eww . 18, 75
fmt . 19
h. 19
i . 19
inc . 19
ini. 19
lst . 19
mac . 19, 111, 144
map . 19–20
pbd. 19
pbi . 19
prj . 19
r43 . 19
sfr. 19

register definitions for C-SPY. 114
s43 . 19
wsdt . 19
xcl . 19
xlb . 19

Filename Extensions dialog box (Tools menu) 305
Filename Extensions Overrides dialog box (Tools menu) . 306
files

adding to a project . 28
checking in and out . 87
compiling, example . 31
editing . 95
navigating among. 83
readme.htm . 20

$FILE_DIR$ (argument variable) 279
$FILE_FNAME$ (argument variable) 279
$FILE_PATH$ (argument variable) 279
Fill dialog box. 320

using . 137
Fill pattern (XLINK option) . 388
Fill unused code memory (XLINK option) 388
U430-5

449

450
Find dialog box (Edit menu) . 270
Find in Files dialog box (Edit menu). 271
Find in Files window (View menu) 262
Find in Trace (dialog box). 166
Find in Trace (window). 165
Find (button) . 239
first activation time (interrupt property) 182

definition of . 178
floating windows . 75
Floating-point (target option) . 344
fmt (filename extension) . 19
for (macro statement) . 399
Forced Interrupt window (Simulator menu) 183
format specifiers, definition of . 429
Format (XLINK option) . 378
formats

assembler list file . 51
compiler list file . 32
C-SPY input. 8
standard IEEE (floating-point) 344
XLINK output

default, overriding. 379, 381
specifying . 378

function calls, displaying in C-SPY 62
function level profiling . 151
Function Trace (C-SPY window) 164
function trace, definition of. 161
functions

C-SPY running to when starting 111, 394
intrinsic, definition of. 430
shortcut to in editor windows. 101, 249

G
general options . 343

definition of . 429
specifying, example . 29
Library Configuration . 346
Library Options . 347

MISRA C. 349
Output . 345
Stack/Heap options . 348
Target . 343

Generate checksum (XLINK option) 388
Generate debug info (assembler option) 367
Generate debug information (compiler option) 357
Generate extra output file (XLINK option) 380
Generate linker listing (XLINK option) 384
generating extra output file . 379
generic pointers, definition of . 429
Getting started, using the C-SPY FET 194
glossary. 425
Go to function (editor button) 101, 249
Go to (button) . 239
Go (button) . 315
Go (Debug menu) . 120
groups, definition of . 81

H
h (filename extension). 19
hardware breakpoints in FET debugger 204
Hardware multiplier (target option) 344
Harvard architecture, definition of 429
header files . 16

quick access to . 101
heap memory, definition of . 429
Heap size (general option) . 348
heap size, definition of . 430
Help menu . 309

Assembler Reference Guide. 309
Compiler Reference Guide. 309
Embedded Workbench User Guide 309
IAR MISRA C Reference Guide 309
Linker and Library Tools Reference Guide 309
Product updates . 309

highlighting, in C-SPY . 120
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
hold time (interrupt property) . 183
definition of . 178

host, definition of . 430

I
i (filename extension) . 19
IAR Assembler Reference Guide . 20
IAR Compiler Reference Guide . 20
IAR Linker and Library Tools Reference Guide 21
IAR MISRA C Reference Guide (Help menu) 309
IAR Systems web site . 21
iarbuild, building from the command line 92
IarIdePm.exe. 74
icons in this guide

command prompt . xl
lightbulb. xl
tools . xl

IDE . 3–4
definition of . 430

IEEE format, floating-point values 344
if else (macro statement) . 399
if (macro statement) . 399
Ignore standard include directories (compiler option)359, 369
illegal memory accesses, checking for 167
immediate breakpoints . 173
inc (filename extension) . 19
Include compiler call frame
information (compiler option). 358
include files. 16

assembler, specifying path . 369
compiler, specifying path 359, 369
definition of . 430
XLINK, specifying path. 387

Include header (assembler option) 367
Include listing (assembler option) 368
Include source (compiler option) 358
Include suppressed entries (XLINK option) 385
Incremental Search dialog box (Edit menu) 273

inc, 430 (subdirectory) . 16
Indent Size (editor option) . 291
indentation, in editor . 98
information, product . 20
inherited settings, overriding. 90
ini (filename extension) . 19
inline assembler, definition of . 430
inlining, definition of . 430
input

redirecting to Terminal I/O window 328
special characters in Terminal I/O window 328

input formats, C-SPY . 8
insertion point, shortcut key for moving 97
installation path, default . 15
installed files. 15

documentation . 16–17
executable . 17
include . 16
library . 17

instruction mnemonics, definition of. 430
Integrated Development Environment (IDE). 3–4

definition of . 430
Intel-extended, C-SPY input format 8, 109
Internet, IAR Systems web site . 21
Interrupt Log window (Simulator menu). 185
Interrupt Setup dialog box (Simulator menu) 180
interrupt system, using device description file 180
interrupt vector table, definition of 430
interrupt vector, definition of . 430
interrupts

adapting C-SPY system for target hardware 180
definition of . 430
in device description file . 114
nested, definition of . 432
options . 182
simulated, definition of . 177
timer, example . 186
using system macros . 184

intrinsic functions, definition of . 430
U430-5

451

452
intrinsic, definition of . 430
ISO/ANSI C

compiler adhering to . 352
library compliance with . 11

italic style, in this guide . xl

K
Key bindings (IDE Options dialog box) 289
key bindings, definition of . 430
key summary, editor . 251
keywords, definition of . 430

L
labels (assembler), viewing. 128
Language conformance (compiler option) 352
language extensions

definition of . 431
disabling in compiler . 352

language facilities, in compiler . 10
Language (assembler options). 365
Language (compiler options) . 351
layout, of Embedded Workbench . 75
LCD Settings dialog box (LCD window) 336
LCD window . 335
librarian. See XLIB
libraries, creating a project for . 68
libraries, runtime. 11
library builder. See XAR
Library Configuration (general options) 346
Library file (general option) . 346
library files . 13, 17
library functions

configurable . 17
reference information. 96

library modules
example . 68
specifying in compiler . 357

using . 67
Library Options (general options) 347
Library (general option) . 346
library, definition of . 434
lib, 430 (subdirectory). 17
lightbulb icon, in this guide. xl
#line directives, generating

in compiler. 360
Lines/page (assembler option) . 368
Lines/page (XLINK option) . 385
Linker and Library Tools Reference Guide (Help menu) . 309
linker command file

definition of . 431
path, specifying . 387
specifying in XLINK . 386
templates . 16

Linker command file (XLINK option) 386
linker. See XLINK
list files

assembler . 51
compiler runtime information, including. 358
conditional information, specifying 368
cross-references, generating 368
header, including. 367
lines per page, specifying . 368
tab spacing, specifying . 368

compiler
assembler mnemonics, including 358
example. 32
generating . 358
source code, including . 358

option for specifying destination 346
XLINK

generating . 384
including segment map . 384
specifying lines per page. 385

List (assembler options) . 367
List (compiler options) . 358
List (XLINK options) . 384
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
$LIST_DIR$ (argument variable) 279
Live Watch window . 324

context menu . 325–326
lms.log, licence management system log file 310
local variables. See auto variables
Locals window . 323

context menu . 324
location counter, definition of . 433
-log (iarbuild command line option) 92
Log File dialog box (Debug menu) 340
Log MISRA C settings (general option) 349
logical address, definition of . 437
loop statements, in C-SPY macros 399
lst (filename extension). 19
L-value, definition of . 431

M
mac (filename extension) 19, 111, 144
Macro Configuration dialog box (Debug menu) 338
macro files, specifying . 111, 394
Macro quote characters (assembler option). 366
macro statements . 399
macros

definition of . 431
executing . 145
system . 397
using . 143

MAC, definition of . 431
mailbox (RTOS), definition of . 431
main function, C-SPY running to when starting 111, 394
main.s99 (assembler tutorial file) . 67
-make (iarbuild command line option) 92
managing projects. 4
map files . 384

example . 35
viewing . 35

map (filename extension) . 19–20
Max number of errors (assembler option) 371

memory
filling unused . 388
filling with value . 137
monitoring . 136

example. 44
memory access checking. 167, 169
memory access cost, definition of 432
Memory Access Setup dialog box (Simulator menu) 168
memory accesses, illegal. 167
memory area, definition of . 432
memory bank, definition of. 432
memory map . 168

definition of . 432
memory model, definition of. 432
memory usage, summary of . 385
Memory window. 318

context menu . 319
operations . 318
using . 136

memory zones. 135
in device description file . 114

menu bar . 238
C-SPY-specific. 314

menus
Debug . 337
Edit . 267
Emulator (FET) . 201
File. 265
Help . 309
Project . 277
Simulator . 160
Tools . 286
View. 275
Window . 308

Messages window, amount of output 290
Messages (IDE Options dialog box) 290
microcontroller, definition of . 432
microprocessor, definition of . 432
migration, from earlier IAR compilers xxxix, 353
U430-5

453

454
MISRA C, documentation . 21
MISRA C (compiler options) . 362
MISRA C (general options) . 349
module map, in map files . 35
module name, specifying in compiler 357
Module summary (XLINK option) 385
Module type (compiler option) . 357
MODULE (assembler directive) . 68
modules

definition of . 432
including local symbols in input 380
maintaining . 67

Module-local symbols (XLINK option) 380
Motorola, C-SPY input format 8, 109
Multiply and accumulate, definition of 431
multitasking, definition of. 433

N
Navigate Backward (button) . 239
NDEBUG, preprocessor symbol . 81
nested interrupts, definition of . 432
New Configuration dialog box. (Project menu). 281
Next Bookmark (button) . 239
Next Statement (button) . 315
No global type checking (XLINK option). 382
non-banked memory, definition of 432
non-initialized memory, definition of 432
non-volatile storage, definition of 432
NOP, definition of . 432

O
object files, specifying output directory 346
Object module name (compiler option). 357
OBJ_DIR (argument variable) 279
online documentation

guides. 16–17, 309
help . 309

online help . 21
Open Workspace (File menu) . 266
__openFile (C-SPY system macro). 407
operator precedence, definition of. 432
operators, definition of . 432
optimization levels . 355
optimization models . 355
Optimizations page (compiler options) 355
Optimizations (compiler option) . 355
optimizations, effects on variables 125
options

typographic convention . xl
assembler . 365
Custom Build . 373, 375
Custom Tool Configuration . 373
C-SPY . 283, 393
editor . 291
general . 29, 343
setup files for editor . 294
XAR . 391
XLINK. 377

Options dialog box (Project menu) 283
using . 90

output
assembler

including debug information 366
compiler

including debug information 357
preprocessor, generating . 360

formats. 378
debug (ubrof) . 378

from C-SPY, redirecting to a file 113
generating extra file . 379
XLINK

generating . 382
specifying filename. 377
specifying filename on extra output 380

Output assembler file (compiler option) 358
Output file (XLINK option) . 377
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
Output format (XLINK option). 379, 381
Output list file (compiler option) 358
Output (assembler option). 366
Output (compiler options). 356
Output (general options) . 345
Output (XAR options) . 391
Output (XLINK options). 377
Override general MISRA C settings (compiler option) . . . 363

P
parameters, typographic convention xl
parentheses and brackets, matching (in editor) 99
part number, of user guide . ii
paths

assembler include files . 369
compiler include files. 359
relative, in Embedded Workbench 83, 251
source files . 251
XLINK include files . 387

pbd (filename extension). 19
pbi (filename extension) . 19
peripheral units

definitions . 111
device-specific . 114

peripherals, definition of . 433
pew (filename extension) . 19
pipeline, definition of . 433
Plain ‘char’ is (compiler option) . 353
plugin modules (C-SPY), loading 112
Plugins (C-SPY options). 396
plugins, common (subdirectory) . 18
plugins, 430 (subdirectory) . 17
pointers, definition of . 433
Position-independent code (target option). 344
#pragma directive, definition of . 433
precedence, definition of. 432
preemptive multitasking, definition of 433
Preinclude file (compiler option) 360

preprocessor
definition of. See C-style preprocessor

preprocessor directives
definition of . 433
text style in editor . 97

Preprocessor output to file (compiler option) 360
Preprocessor (assembler option) . 369
preprocessor (compiler options) . 359
prerequisites, programming experience. xxxv
Printf formatter (general option) . 347
prj (filename extension) . 19
probability (interrupt property) . 183

definition of . 178
Processing options (XLINK) . 388
processor variant, definition of . 433
product information, obtaining detailed 310
product overview

assembler . 11
compiler. 10
C-SPY Debugger . 5
directory structure . 15
documentation . 20
file types . 18
IAR Embedded Workbench IDE 3
XAR . 13
XLIB . 13
XLINK. 12

Product updates (Help menu) . 309
profiling information. 151
Profiling (window) . 330

using . 151
program counter, definition of. 433
program execution, in C-SPY . 117
program location counter, definition of 433
programming experience. xxxv
Project Make, options . 296
Project menu . 277
project model . 79
project options, definition of . 433
U430-5

455

456
Project page (IDE Options dialog box) 296
projects

adding files to . 82, 277
example. 28

build configuration, creating . 82
building . 91

in batches . 91
compiling, example . 31
creating . 26, 82

example. 68
definition of . 80, 433
excluding groups and files . 82
files

checking in and out . 87
moving . 83

for debugging externally built applications 113
groups, creating . 82
managing . 4, 79
organization . 79
removing items . 83
setting options . 89
source code control . 86
testing . 92
version control systems . 86
workspace, creating . 82

$PROJ_DIR$ (argument variable) 279
$PROJ_FNAME$ (argument variable) 279
$PROJ_PATH$ (argument variable) 279
PROM, definition of . 433
PUBLIC (assembler directive) . 68

Q
qualifiers, definition of. See type qualifiers
Quick Watch

executing C-SPY macros . 148
using . 126

Quick Watch window (View menu) 325

R
Range breakpoints dialog box (Edit menu) 206
Range checks (XLINK option) . 383
Raw binary image (XLINK option) 387
__readFile (C-SPY system macro) 409
__readFileByte (C-SPY system macro) 410
reading guidelines. xxxv
readme files. 16–17

readme.htm . 20
__readMemoryByte (C-SPY system macro) 410
__readMemory16 (C-SPY system macro) 411
__readMemory32 (C-SPY system macro) 411
__readMemory8 (C-SPY system macro) 410
real-time operating system, definition of. 434
real-time system, definition of . 434
Reduce stack usage (compiler option). 354
reference information

C-SPY IDE . 313
guides. 20
IAR Embedded Workbench . 237
typographic convention . xl

register constant, definition of. 434
Register Filter (IDE Options dialog box) 298
register groups . 138

application-specific, defining . 139
predefined, enabling. 138

register locking, definition of . 434
register variables, definition of . 434
Register window . 321

example . 44
using . 138

register zone . 114
registered trademarks . ii
__registerMacroFile (C-SPY system macro). 412
registers

definition of . 434
in device description file . 114

relative paths. 83, 251
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
Relaxed ISO/ANSI (compiler option) 352
release notes . 17
relocatable segments, definition of 434
remarks

compiler diagnostics . 361
Remove trailing blanks (editor option) 292
repeat interval (interrupt property) 182

definition of . 178
Replace dialog box (Edit menu) . 270
Replace (button) . 239
Require prototypes (compiler option) 352
Reset (button) . 315
Reset (Debug menu), example . 46
__resetFile (C-SPY system macro) 412
reset, definition of . 434
restoring default factory settings . 91
Retain unchanged memory (FET debugger option). 199
return (macro statement) . 400
ROM-monitor, definition of 109, 434
root directory . 15
Round Robin, definition of . 434
RTOS awareness (C-SPY plugin module). 112
RTOS, definition of. 434
Run to Cursor (button) . 315
Run to Cursor, description . 120
Run to (C-SPY option) . 111, 394
runtime libraries . 11

definition of . 434
documentation . 21

runtime model attributes
definition of . 434
in map files . 35

R-value, definition of . 433
R4 utilization (compiler option) . 354
r43 (filename extension) . 19
R5 utilization (compiler option) . 354

S
saturated mathematics, definition of 435
Save All (File menu). 266
Save As (File menu) . 266
Save Workspace (File menu). 266
Save (File menu). 266
Scan for Changed Files (editor option) 292

using . 33
Scanf formatter (general option) . 348
SCC. See source code control systems
scheduler (RTOS), definition of . 435
scope, definition of . 435
scrolling, shortcut key for . 97
Search paths (XLINK option) . 387
searching in editor windows . 101
Segment map (XLINK option) . 384
segment map, definition of . 435
Segment overlap warnings (XLINK option) 382
segment parts, including all in list file. 385
segments

definition of . 435
overlap errors, reducing . 382
range checks, controlling . 383
section in map files . 36

Select SCC Provider (dialog box) 245
selecting text, shortcut key for . 97
semaphores, definition of . 435
Sequencer Control window (Emulator menu) 223
Set active MISRA C rules (compiler option) 363
Set active MISRA C rules (general option) 349
Set Log file dialog box (Debug menu) 338
__setCodeBreak (C-SPY system macro). 414
__setDataBreak (C-SPY system macro) 416
__setSimBreak (C-SPY system macro) 418
settings (directory) . 19
Setup macros (C-SPY option). 394
U430-5

457

458
setup macros, in C-SPY. See C-SPY macros
Setup (C-SPY FET options) 198, 200
Setup (C-SPY options) . 160, 393
severity level, definition of . 435
SFR

definition of . 436
header files. 16

sfr (filename extension) . 19
shifts.s43 (assembler tutorial file) . 68
short addressing, definition of. 435
shortcut keys . 97
Show Bookmarks (editor option) 292
Show Line Number (editor option) 292
Show right margin (editor option). 291
side-effect, definition of . 435
signals, definition of . 435
simulating interrupts, enabling/disabling 181
simulator

definition of . 436
features . 9

Simulator menu. 160
Simulator Setup (C-SPY options) 160
size optimization. 355
Size (Breakpoints dialog) . 172, 257
sizeof . 123
skeleton code, definition of . 436
Source Browser window context menu 254
Source Browser window (View menu) 253
Source Browser, using . 85
source code

including in compiler list file . 358
templates . 99

Source Code Control context menu. 243
source code control systems . 86
Source Code Control (IDE Options dialog box) 300
source code control, features. 4
source file paths . 83, 251
source files

adding to a project . 28

editing . 95
managing in projects . 81

__sourcePosition (C-SPY system macro) 419
special function registers (SFR)

definition of . 436
description files . 16, 114
header files. 16
using as assembler symbols . 124

speed optimization . 355
src, common (subdirectory) . 18
src, 430 (subdirectory) . 17
stack frames, definition of. 436
stack segments, definition of. 436
Stack size (general option) . 348
Stack window . 332

using . 140
Stack (IDE Options dialog box) . 301
Stack/Heap (general options) . 348
State Storage Control (Emulator menu) 218
State Storage window (Emulator menu) 220
state storage, using . 216
static objects, definition of . 436
Static overlay map (XLINK option) 385
static overlay, definition of . 436
statically allocated memory, definition of 436
status bar. 240
stdin and stdout

redirecting to C-SPY window 122
redirecting to file . 122

Step Into (button) . 315
example . 40

Step Into, description . 118
Step Out (button) . 315
Step Out, description. 119
Step Over (button) . 315
Step Over, description. 119
step points, definition of . 118
stepping . 118

definition of . 436
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
example . 38
using C-SPY FET . 225

Stop Debugging (button). 315
__strFind (C-SPY system macro) 420
Strict ISO/ANSI (compiler option) 352
strings, text style in editor . 97
structure value, definition of . 436
__subString (C-SPY system macro) 420
support, technical . 22
Suppress all warnings (XLINK option). 383
Suppress download (FET debugger option) 199
Suppress these diagnostics (compiler option) 361
Suppress these diagnostics (XLINK option) 383
symbolic location, definition of . 436
symbols

See also user symbols
defining in assembler . 370
defining in compiler . 360
defining in XLINK. 381
definition of . 436
in input modules . 380
using in C-SPY expressions . 123

syntax coloring
configuration files . 16
in editor . 97

Syntax Highlighting (editor option) 291
syntax highlighting, in editor window. 97
System breakpoints on (C-SPY FET option) 201
system macros. 397
s43 (filename extension) . 19

T
Tab Key Function (editor option) 291
Tab Size (editor option). 291
Tab spacing (assembler option). 368
Target options

Device . 343
Floating-point . 344

Hardware multiplier . 344
Position-independent code . 344
specifying . 343

target system, definition of . 108
Target VCC (C-SPY FET option) 200
Target (general options) . 343
target, definition of . 436
$TARGET_BNAME$ (argument variable) 279
$TARGET_BPATH$ (argument variable) 279
$TARGET_DIR$ (argument variable) 279
$TARGET_FNAME$ (argument variable) 279
$TARGET_PATH$ (argument variable) 279
task, definition of . 436
technical support. 22
Template dialog box (Edit menu) 274
tentative definition, definition of . 437
terminal I/O

definition of . 437
simulating . 378

Terminal I/O Log File dialog box (Debug menu) 341
Terminal I/O window . 122, 328

example of using . 46
Terminal I/O (IDE Options dialog box) 299
terminology. 425
testing, of code . 92
thread, definition of. 436
timer interrupt, example . 186
timer, definition of . 437
timeslice, definition of . 437
Toggle Bookmark (button) . 239
Toggle Breakpoint (button) . 239
toggle breakpoint, example . 42, 64
__toLower (C-SPY system macro) 421
tool chain

extending . 93
specifying . 26

Tool Output window (View menu) 263
toolbar. 239

debug . 314
U430-5

459

460
Trace . 163
$TOOLKIT_DIR$ (argument variable) 279
tools icon, in this guide . xl
Tools menu . 286
tools, user-configured . 303
__toString (C-SPY system macro) 421
__toUpper (C-SPY system macro) 422
Trace

toolbar . 163
window . 162

Trace Expressions (window) . 164
trace, definition of. 127
trademarks . ii
transformations, enabled in compiler 356
translation unit, definition of. 437
trap, definition of . 437
Treat all warnings as errors (compiler option). 362
Treat these as errors (compiler option) 362
Treat these as errors (XLINK option) 383
Treat these as remarks (compiler option) 361
Treat these as warnings (compiler option). 362
Treat these as warnings (XLINK option) 383
tutor, 430 (subdirectory) . 17
type qualifiers, definition of . 437
type-checking . 10, 12

disabling at link time . 382
typographic conventions . xl

U
UBROF. 8, 12

definition of . 437
Universal Binary Relocatable Object Format. See UBROF
Use Code Templates (editor option) 294
Use Custom Keyword File (editor option) 294
Use virtual breakpoints (C-SPY FET option) 201
user application, definition of . 108
User symbols are case sensitive (assembler option) 365

V
variables

auto . 425
effects of optimizations . 125
information, limitation on . 125
using in arguments . 304
using in C-SPY expressions . 123
watching in C-SPY . 126

example. 40
variance (interrupt property) . 182

definition of . 178
Verify download (FET debugger option). 199
version control systems. 86
version number, of Embedded Workbench 309
View menu . 275
virtual address, definition of . 437
virtual space, definition of . 437
volatile storage, definition of . 437
von Neumann architecture, definition of 437

W
warnings

compiler. 362
XLINK. 383

Warnings/Errors (XLINK option) 383
Watch window . 322

context menu . 322
using . 126

watchpoints
definition of . 437
setting . 40

web sites, recommended . xxxix
web site, IAR Systems . 21
while (macro statement) . 399
Window menu. 308
windows

See also C-SPY windows
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
Breakpoints . 255
Build . 261
Debug Log . 264
Editor . 248
Find in Files . 262
Forced Interrupt . 183
Interrupt Log . 185
organizing on the screen . 75
Quick Watch . 325
Source Browser . 253
Tool Output . 263
Workspace . 240

With I/O emulation modules (XLINK option) 378
using . 122

With runtime control modules (XLINK option) 378
Workspace window. 240

context menu . 241, 255
drag-and-drop of files . 83
example . 27

workspaces
creating . 26, 82
using . 82

__writeFile (C-SPY system macro) 422
__writeFileByte (C-SPY system macro) 422
__writeMemoryByte (C-SPY system macro) 423
__writeMemory16 (C-SPY system macro) 424
__writeMemory32 (C-SPY system macro) 424
__writeMemory8 (C-SPY system macro) 423
wsdt (filename extension) . 19
www.iar.com. 21

X
XAR . 67

documentation . 21
overview . 13

XAR options
definition of . 437
Output . 391

xcl (filename extension) . 19
xlb (filename extension) . 19
XLIB. 67

documentation . 21
features . 13
options, definition of . 437
overview . 13

XLINK
command line version . 73
diagnostics, suppressing. 383
documentation . 21
example . 34
overview . 12

XLINK list files
generating . 384
including segment map . 384
specifying lines per page . 385

XLINK options . 377, 388
definition of . 438
factory settings. 392
Allow C-SPY-specific output file 379
Always generate output . 382
Buffered terminal output . 379
Config . 386
Debug information for C-SPY 378
Define symbol . 381
Diagnostics . 382
Extra Output . 380
Fill pattern . 388
Fill unused code memory. 388
Format . 378
Generate checksum . 388
Generate extra output file. 380
Generate linker listing . 384
Include suppressed entries . 385
Lines/page . 385
Linker command file . 386
List. 384
Module summary . 385
U430-5

461

462
Module-local symbols . 380
No global type checking . 382
Output . 377
Output file . 377
Output format . 379, 381
Range checks . 383
Raw binary image . 387
Search paths. 387
Segment map . 384
Segment overlap warnings . 382
Static overlay map . 385
Suppress all warnings . 383
Suppress these diagnostics . 383
Treat these as errors . 383
Treat these as warnings . 383
Warnings/Errors . 383
With I/O emulation modules . 378
With runtime control modules 378

XLINK output
overriding default format 379, 381

XLINK symbols, defining. 381

Z
zero-overhead loop, definition of 438
zone

definition of . 438
in C-SPY . 135

Symbols
 . 198
#define options (XLINK) . 381
#define statement, in compiler . 360
#line directives, generating in compiler 360
#pragma directive, definition of . 433
CUR_DIR (argument variable) 279
CUR_LINE (argument variable) 279
EW_DIR (argument variable) . 279

EXE_DIR (argument variable) 279
$FILE_DIR$ (argument variable) 279
$FILE_FNAME$ (argument variable) 279
$FILE_PATH$ (argument variable) 279
$LIST_DIR$ (argument variable) 279
OBJ_DIR (argument variable) 279
$PROJ_DIR$ (argument variable) 279
$PROJ_FNAME$ (argument variable) 279
$PROJ_PATH$ (argument variable) 279
$TARGET_BNAME$ (argument variable) 279
$TARGET_BPATH$ (argument variable) 279
$TARGET_DIR$ (argument variable) 279
$TARGET_FNAME$ (argument variable) 279
$TARGET_PATH$ (argument variable) 279
$TOOLKIT_DIR$ (argument variable) 279
__cancelAllInterrupts (C-SPY system macro) 404
__cancelInterrupt (C-SPY system macro). 404
__clearBreak (C-SPY system macro) 405
__closeFile (C-SPY system macro) 405
__disableInterrupts (C-SPY system macro) 405
__driverType (C-SPY system macro) 406
__enableInterrupts (C-SPY system macro) 406
__evaluate (C-SPY system macro) 407
__fmessage (C-SPY macro statement) 400
__message (C-SPY macro statement) 400
__openFile (C-SPY system macro). 407
__orderInterrupt (C-SPY system macro). 408–409
__readFile (C-SPY system macro) 409
__readFileByte (C-SPY system macro) 410
__readMemoryByte (C-SPY system macro) 410
__readMemory16 (C-SPY system macro) 411
__readMemory32 (C-SPY system macro) 411
__readMemory8 (C-SPY system macro) 410
__registerMacroFile (C-SPY system macro). 412
__resetFile (C-SPY system macro) 412
__setCodeBreak (C-SPY system macro). 414
__setDataBreak (C-SPY system macro) 416
__setSimBreak (C-SPY system macro) 418
__smessage (C-SPY macro statement) 400
U430-5

MSP430 IAR Embedded Workbench® IDE
User Guide

Index
__sourcePosition (C-SPY system macro) 419
__strFind (C-SPY system macro) 420
__subString (C-SPY system macro) 420
__toLower (C-SPY system macro) 421
__toString (C-SPY system macro) 421
__toUpper (C-SPY system macro) 422
__writeFile (C-SPY system macro) 422
__writeFileByte (C-SPY system macro) 422
__writeMemoryByte (C-SPY system macro) 423
__writeMemory16 (C-SPY system macro) 424
__writeMemory32 (C-SPY system macro) 424
__writeMemory8 (C-SPY system macro) 423

Numerics
20-bit context save on interrupt (compiler option) 355
430 (directory) . 16
U430-5

463

	Brief contents
	Contents
	Tables
	Figures
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Product overview
	Part 2. Tutorials
	Part 3. Project management and building
	Part 4. Debugging
	Glossary

	Other documentation
	Document conventions

	Part 1. Product overview
	Product introduction
	The IAR Embedded Workbench IDE
	An extensible and modular environment
	Features
	Project management
	Source code control
	Window management
	The text editor

	Documentation

	IAR C-SPY Debugger
	General C-SPY Debugger features
	Source and disassembly level debugging
	Single-stepping on a function call level
	Code and data breakpoints
	Monitoring variables and expressions
	Container awareness
	Call stack information
	Powerful macro system
	Additional general C-SPY Debugger features

	RTOS awareness
	Documentation

	IAR C-SPY Debugger systems
	IAR C-SPY Simulator
	Features

	IAR C-SPY FET Debugger
	Features

	IAR C/C++ Compiler
	Features
	Code generation
	Language facilities
	Type checking

	Runtime environment
	Documentation

	IAR Assembler
	Features
	Documentation

	IAR XLINK Linker
	Features
	Documentation

	IAR XAR Library Builder and IAR XLIB Librarian
	Features
	Documentation

	Installed files
	Directory structure
	Root directory
	The 430 directory
	The 430\bin directory
	The 430\config directory
	The 430\doc directory
	The 430\drivers directory
	The 430\FET_examples directory
	The 430\inc directory
	The 430\lib directory
	The 430\plugins directory
	The 430\src directory
	The 430\tutor directory

	The common directory
	The common\bin directory
	The common\config directory
	The common\doc directory
	The common\plugins directory
	The common\src directory

	File types
	Documentation
	The user and reference guides
	MSP430 IAR Embedded Workbench® IDE User Guide
	MSP430 IAR C/C++ Compiler Reference Guide
	MSP430 IAR Assembler Reference Guide
	IAR Linker and Library Tools Reference Guide
	DLIB Library Reference information
	CLIB Library Reference Guide
	IAR Embedded Workbench® MISRA C Reference Guide

	Online help
	IAR on the web

	Part 2. Tutorials
	Creating an application project
	Setting up a new project
	Creating a Workspace window
	Creating the new project
	Adding files to the project
	Setting project options

	Compiling and linking the application
	Compiling the source files
	Viewing the list file
	Linking the application
	Output format
	Linker command file
	Linker map file

	Viewing the map file

	Debugging using the IAR C-SPY® Debugger
	Debugging the application
	Starting the debugger
	Organizing the windows
	Inspecting source statements
	Inspecting variables
	Using the Auto window
	Setting a watchpoint

	Setting and monitoring breakpoints
	Executing up to a breakpoint

	Debugging in disassembly mode
	Monitoring registers
	Monitoring memory
	Viewing terminal I/O
	Reaching program exit

	Mixing C and assembler modules
	Examining the calling convention
	Adding an assembler module to the project
	Setting up the project
	Viewing the assembler list file

	Using C++
	Creating a C++ application
	Compiling and linking the C++ application
	Setting a breakpoint and executing to it
	Looking at the function calls

	Printing the Fibonacci numbers

	Simulating an interrupt
	Adding an interrupt handler
	The application-a brief description
	Writing an interrupt handler
	Setting up the project

	Setting up the simulation environment
	Defining a C-SPY setup macro file
	Specifying C-SPY options
	Building the project
	Starting the simulator
	Specifying a simulated interrupt
	Setting an immediate breakpoint

	Simulating the interrupt
	Executing the application

	Using macros for interrupts and breakpoints

	Working with library modules
	Using libraries
	The Main.s43 program
	The library routines
	Creating a new project
	Creating a library project
	Using the library in your application project

	Part 3. Project management and building
	The development environment
	The IAR Embedded Workbench IDE
	Running the IAR Embedded Workbench IDE
	Double-clicking the workspace filename

	Exiting

	Customizing the environment
	Organizing the windows on the screen
	Using docked versus floating windows
	Organizing windows

	Customizing the IDE
	Communicating with external tools
	Adding command line commands

	Managing projects
	The project model
	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files

	Creating and managing workspaces
	Drag and drop
	Source file paths

	Navigating project files
	Viewing the workspace
	Displaying browse information

	Source code control
	Interacting with source code control systems
	Setting up an SCC project in the SCC client application
	Connecting projects in IAR Embedded Workbench
	Viewing the SCC states
	Configuring the source code control system

	Building
	Building your application
	Setting options
	Using the Options dialog box

	Building a project
	Building multiple configurations in a batch
	Correcting errors found during build
	Building from the command line

	Extending the tool chain
	Tools that can be added to the tool chain
	Adding an external tool

	Editing
	Using the IAR Embedded Workbench editor
	Editing a file
	Accessing reference information for DLIB library functions
	Using and customizing editor commands and shortcut keys
	Splitting the editor window into panes
	Dragging and dropping of text
	Syntax coloring
	Automatic text indentation
	Matching brackets and parentheses
	Displaying status information

	Using and adding code templates
	Enabling code templates
	Inserting a code template in your source code
	Adding your own code templates

	Navigating in and between files
	Searching

	Customizing the editor environment
	Using an external editor

	Part 4. Debugging
	The IAR C-SPY® Debugger
	Debugger concepts
	IAR C-SPY Debugger and target systems
	Debugger
	Target system
	User application
	IAR C-SPY Debugger systems
	ROM-monitor program
	Third-party debuggers

	The C-SPY environment
	An integrated environment

	Setting up the IAR C-SPY Debugger
	Choosing a debug driver
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules
	The IAR C-SPY RTOS awareness plugin modules

	Starting the IAR C-SPY Debugger
	Executable files built outside of the Embedded Workbench
	Redirecting debugger output to a file

	Adapting C-SPY to target hardware
	Device description file
	Memory zones
	Registers
	Interrupts
	Modifying a device description file

	Executing your application
	Source and disassembly mode debugging
	Executing
	Step
	Go
	Run to Cursor
	Highlighting
	Using breakpoints to stop
	Using the Break button to stop
	Stop at program exit

	Call stack information
	Terminal input and output
	Directing stdin and stdout to a file

	Working with variables and expressions
	C-SPY expressions
	C symbols
	Using sizeof

	Assembler symbols
	Macro functions
	Macro variables

	Limitations on variable information
	Effects of optimizations

	Viewing variables and expressions
	Working with the windows
	Using the Quick Watch window

	Using the trace system
	The Trace window and its browse mode
	Searching in the trace data

	Viewing assembler variables

	Using breakpoints
	The breakpoint system
	Defining breakpoints
	Toggling a simple code breakpoint
	Setting a breakpoint in the Memory window
	Defining breakpoints using the dialog box
	Tracing incorrect function arguments
	Performing a task with or without stopping execution

	Defining breakpoints using system macros
	Defining breakpoints at C-SPY startup using a setup macro file

	Viewing all breakpoints
	Using the Breakpoint Usage dialog box
	Breakpoint consumers

	Monitoring memory and registers
	Memory addressing
	Using the Memory window
	Memory window operations
	Memory Fill
	Setting a breakpoint in the Memory window

	Working with registers
	Register groups
	Enabling predefined register groups
	Defining application-specific groups

	Using the Stack window
	Graphical stack display
	Detecting stack overflows
	Viewing the stack contents

	Using the C-SPY® macro system
	The macro system
	The macro language
	Example

	The macro file
	Setup macro file

	Setup macro functions

	Using C-SPY macros
	Using the Macro Configuration dialog box
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint

	Analyzing your application
	Function-level profiling
	Using the profiler
	Profiling information is displayed in the window.
	Viewing the figures
	Producing reports

	Code coverage
	Using Code Coverage
	Viewing the figures
	What parts of the code are displayed?
	Producing reports

	Part 5. IAR C-SPY Simulator
	Simulator-specific debugging
	Simulator Setup
	Simulator-specific menus
	Using the trace system in the simulator
	Trace window
	Trace toolbar
	Function Trace window
	Trace Expressions window
	Find In Trace window
	Find in Trace dialog box

	Memory access checking
	Memory Access setup dialog box
	Use ranges based on
	Use manual ranges
	Memory access checking
	Buttons

	Edit Memory Access dialog box
	Memory range
	Access type

	Using breakpoints
	Data breakpoints
	Data breakpoints dialog box

	Immediate breakpoints
	Immediate breakpoints dialog box

	Breakpoint Usage dialog box

	Simulating interrupts
	The C-SPY interrupt simulation system
	Using the interrupt simulation system
	Target-adapting the interrupt simulation system
	Interrupt Setup dialog box
	Edit Interrupt dialog box
	Forced interrupt window
	C-SPY system macros for interrupts
	Defining simulated interrupts at C-SPY startup using a setup file
	Interrupt simulation in a multi-task system

	Interrupt Log window

	Simulating a simple interrupt

	Part 6. IAR C-SPY® FET debugger
	Introduction to the IAR C-SPY® FET Debugger
	The FET C-SPY Debugger
	Differences between the C-SPY drivers

	Hardware installation
	MSP-FET430X110
	MSP-FET430Pxx0
	IAR J-Link or TI USB FET interface module

	Firmware upgrade
	Getting started
	Running a demo application
	C Example
	Assembler example

	C-SPY® FET-specific debugging
	Options for debugging using the C-SPY FET debugger
	Setup
	Download control
	Attach to running target
	Disable memory cache
	Connection
	Debug protocol
	Target VCC

	Breakpoints
	Use virtual breakpoints
	System breakpoints on

	Emulator menu
	Using breakpoints
	Available breakpoints
	Hardware and virtual breakpoints
	System breakpoints

	Customizing the use of breakpoints
	Periodically monitoring data
	Using breakpoints when programming flash memory

	Range breakpoints
	Start value
	Range delimiter
	Type
	Access type
	Action
	Action when

	Conditional breakpoints
	Break At location
	Type
	Operator
	Access
	Mask
	Condition
	Action

	Advanced trigger breakpoints
	Break At location
	Type
	Operator
	Mask
	Value
	Access type
	Action

	Breakpoint Usage dialog box

	Using state storage
	State Storage Control window
	Enable state storage
	Buffer wrap around
	Reset
	Trigger action
	Storage action on
	State storage triggers

	State Storage Window
	Update
	Automatic update
	Automatic restart
	Append data

	Using the sequencer
	Sequencer Control window

	Stepping
	C-SPY FET communication
	Releasing JTAG
	Parallel port designators
	Troubleshooting

	Design considerations for in-circuit programming
	Bootstrap loader
	Device signals
	External power
	Signal connections for in-system programming
	MSP-FET430X110
	MSP-FET430Pxx0 (‘P120, ‘P140, ‘P410, ‘P440)

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	A

	Index
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

	Part 7. Reference information
	IAR Embedded Workbench® IDE reference
	Windows
	IAR Embedded Workbench IDE window
	Menu bar
	Toolbar
	Status bar

	Workspace window
	Workspace window context menu
	Source Code Control menu
	Source code control states

	Editor window
	Split commands
	Go to function
	Editor window tab context menu
	Editor window context menu
	Source file paths
	Editor key summary

	Source Browser window
	Source Browser window context menu

	Breakpoints window
	Breakpoints window context menu

	Build window
	Find in Files window
	Tool Output window
	Debug Log window

	Menus
	File menu
	Edit menu
	View menu
	Project menu
	Argument variables summary

	Tools menu
	Tools menu commands
	Specifying command line commands or batch files

	Window menu
	Window menu commands

	Help menu

	C-SPY® Debugger reference
	C-SPY windows
	Editing in C-SPY windows
	IAR C-SPY Debugger main window
	Menu bar
	Debug toolbar

	Disassembly window
	Disassembly window operations
	Disassembly context menu

	Memory window
	Memory window operations
	Memory window context menu
	Data coverage display
	Fill dialog box

	Register window
	Watch window
	Watch window context menu

	Locals window
	Locals window context menu

	Auto window
	Auto window context menu

	Live Watch window
	Live Watch window context menu

	Quick Watch window
	Quick Watch window context menu

	Call Stack window
	Call Stack window context menu

	Terminal I/O window
	Code Coverage window
	Code coverage commands

	Profiling window
	Profiling commands
	Profiling columns

	Stack window
	The stack drop-down menu
	The graphical stack bar
	The Stack window columns
	The Stack window context menu

	LCD window
	LCD Settings dialog box

	C-SPY menus
	Debug menu

	General options
	Target
	Output
	Library Configuration
	Library Options
	Stack/Heap
	MISRA C

	Compiler options
	Language
	C
	Embedded C++
	Extended Embedded C++
	Automatic

	Code
	Optimizations
	Output
	List
	Preprocessor
	Diagnostics
	MISRA C
	Extra Options

	Assembler options
	Language
	Output
	List
	Preprocessor
	Diagnostics
	Extra Options

	Custom build options
	Build actions options
	Linker options
	Output
	Override default
	Debug information for C-SPY
	With runtime control modules
	With I/O emulation modules
	Buffered terminal output
	Allow C-SPY-specific extra output file
	Other
	Module-local symbols

	Extra Output
	#define
	Diagnostics
	Suppress all warnings
	Suppress these diagnostics
	Treat these as warnings
	Treat these as errors

	List
	Segment map
	Symbols
	Module summary
	Include suppressed entries
	Static overlay map
	File format
	Lines/page

	Config
	Processing
	Fill pattern
	Generate checksum

	Extra Options

	Library builder options
	Debugger options
	Setup
	Extra Options
	Plugins

	C-SPY® macros reference
	The macro language
	Macro functions
	Predefined system macro functions
	Macro variables
	Macro strings

	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output

	Setup macro functions summary
	C-SPY system macros summary
	Description of C-SPY system macros

