MSP430 IAR Embedded

Workbench® IDE
User Guide

for Texas Instruments’
MSP430 Microcontroller Family

COPYRIGHT NOTICE
© Copyright 19962006 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of AR
Systems. The software described in this document is furnished under a license and may
only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, From Idea to Target, IAR Embedded Workbench, visualSTATE, IAR
MakeApp and C-SPY are trademarks owned by IAR Systems AB.

Texas Instruments is a registered trademark of Texas Instruments Incorporated.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Adobe and
Acrobat Reader are registered trademarks of Adobe Systems Incorporated. CodeWright
is a registered trademark of Starbase Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Fifth edition: March 2006

Part number: U430-5

This guide describes version 3.x of [AR Embedded Workbench® for Texas Instruments’
MSP430 microcontroller family.

Brief contents

TABIES ..o xxiii
FIGUIES oo Xxvii
Preface ..o XXXV
Part |. Product overview ... 1
Product introduction ... 3
Installed files ... 15
Part 2. Tutorials ... 23
Creating an application Project ... 25
Debugging using the IAR C-SPY® Debugger ..., 37
Mixing C and assembler modules ... 49
USING CH s 53
Simulating an INTErTUPL ... 57
Working with library modules ... 67
Part 3. Project management and building ... 71
The development environNMent ... 73
MaNAZING PrOJECLS ... 79
BUITAING ..o 89
EAItiNG ...oooo et 95
Part 4. Debugging ... 105
The IAR C-SPY® DebUZEEI ... 107

iv

Executing your application ... 117

Working with variables and expressions ... 123
USIiNg breakpointscoorriieiisessssisssessssesssseesssseens 129
Monitoring memory and registers ... 135
Using the C-SPY® macro Systemccccccccoooooooeemmmeeesssenssssersesseen. 143
Analyzing your application ... 151
Part 5. IAR C-SPY Simulator ... 157
Simulator-specific debugging ... 159
SIMUlating INtErTUPLScooooiiiieo e 177
Part 6. IAR C-SPY® FET debugger ... 189
Introduction to the IAR C-SPY® FET Debugger ... 191
C-SPY® FET-specific debugging ... 197
Design considerations for in-circuit programming 229
Part 7. Reference information ... 235
IAR Embedded Workbench® IDE referencecccccccccccccccnn. 237
C-SPY® Debugger reference ..., 313
GeNneral OPLIONS ..o 343
ComPpiler OPLIONS ... 351
Assembler OPLiONS ... 365
Custom build OPLIONS ... 373
Build actions OPLioNS ... 375
LiNKer OPLtIONSoooviiiici s 377

MSP430 IAR Embedded Workbench® IDE

User Guide

Brief contents °

Library builder options ... 391
Debugger OPLIONS ... 393
C-SPY® macros refere€nceoooooeoooeoeoeeeeeesssssessssssssssesssssees. 397
GIOSSANY ... 425
INAEX s 439

MSP430 IAR Embedded Workbench® IDE
Vi User Guide

Contents

TABIES ..ottt et XX111
Figures .. XXVl
Preface ... XXXV
Who should read this guide ... XXXV
How to use this guide
What this guide contains
Other documentation ...
Document conventions ... x1
Part |. Product overview ... 1
Product introdUction ... 3
The IAR Embedded Workbench IDE ... 3
An extensible and modular environmentc.cccceeeevievienienininennenne. 4
FRALUIES ..ttt 4
DOCUMENTAIONovveeieiieiieieeieetie st ere et e e sresteesteeaeesaesaaesseesaeenes 5
IAR C-SPY Debugger ... 5
General C-SPY Debugger featurescoceeeveeerreeneenienienienieniencenenne. 6
RTOS aWAarenessccccccevvevuevuieuieieiiieieieiesrese et enesnesnene 8
DOCUMENTALION <..evveviiiiiriieiieicteientetente sttt sresresae e eaes 8
IAR C-SPY Debugger systemsccocooeevniiinieinnccencnas 8
IAR C-SPY Simulator
IAR C-SPY FET DebUZEETcccecvevueiiiininiineniininieniececteeeeeneeneeneens 9
IAR C/C++ Compiler ... 10
FRALUIES ..c..eiviiiiiiiiiiiiicicieccec e 10
RUntime environmentcoccverererereneeieeeeeietereresesresiesiesienne 11
DOCUMENTAION ..ottt 11
TAR AssembIErccoooiiii e 11
FRATUIESeiieiiiiiicient ettt st 11
DOCUMENTALION ..ottt 11

vii

viii

TAR XLINK LINKEFocoooeieeeeeeeeeeeeeeeeeeeeeeeeee e 12

FRALUIES ...eeiviiiiiiiiiiiiiciccecc e 12
DOCUMENTALION ...cvvenieiiiiieriiriteiteitetetete ettt st sre e eneene 12

IAR XAR Library Builder and IAR XLIB Librarian 13
FRALUIES ..c.eoiviiiiiiiiiiiiicictec e 13
DOCUMENTALION ...cvveuveiiiiiereiriieiteieetetete ettt st st sre e 13

Installed files ... 15

Directory structure

ROOE QITECLOTY ..uveiiieiiiiieiieieteteeeee ettt
The 430 dIr€COTY ...ccveeiiriiriierieriee ettt s 16
The commOn AIr€CLOTYceuviieriiiiniintineeteeenieeetete e 17
File tYPES ... 18
Documentation ... 20
The user and reference UIdescccceeeeeerererieiieiieieneneneneseeeees 20
ONlNE NEIP .eoviiiiiiiieieeee et 21
TAR onthe Web ... 21
Part 2. Tutorials ... 23
Creating an application pProject ... 25
Setting UP @ NEW PrOjJECLc.ooovviiiiiiiiiccercee e 25
Creating a Workspace Windowccccceeeverenenieneeienieneneeneeneennens 25
Creating the NEW PrOJECTc.cevveieieriirierientinerie ettt ettt 26
Adding files to the PrOJECtccccoevererininininieieiercicierese e 28
Setting Project OPLIONSccvevvereerierererierieereetteeeientetetestestesieseesienne 29
Compiling and linking the application ... 31
Compiling the source filesc..ccoveerieniininieeiienenencnneeeecee 31
Viewing the St fileccccoeririninininiiiceeceeecceee 32
Linking the applicationccccceveeiririeieiiiieesesese e 34
Viewing the map file
Debugging using the IAR C-SPY® Debugger ..., 37
Debugging the application ... 37
Starting the debUZZETccceveriiriririiieeeee e 37

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents °

Organizing the windows

Inspecting SOUrce StateMENtScoceecververeeriienieenieeneenieeieeeeseennnes 38
Inspecting variablescccoveririerirnienieninenceeeeeeeteeree e 40
Setting and monitoring breakpointscc.cccceveeverenenenicnienicnienenne 42
Debugging in disassembly modeccceveeriinieniieniiinienieneeeene, 43
MONItOIING TEZISETS ...covvveureireieieienienterteereereeeeeeeiteretenesresaesresaenae 44

Monitoring memory

Viewing terminal I/Oc..ccoceviiiiiiiiiiiiieeeeee e 45

Reaching program eXitccccoceverereninininineeieiereieenrese e sieae 46

Mixing C and assembler modules ..., 49
Examining the calling convention ..., 49
Adding an assembler module to the project 50

Setting up the project

USING CHa e 53

Creating a C++ application ... 53

Compiling and linking the C++ applicationc..cecceceeveevierenenennene 53

Setting a breakpoint and eXecuting to itcceceeevererererenienenneene 54

Printing the Fibonacci NUMDETScccceceveeieieviiniiiiiniencncnenenenene 56

Simulating an iNTerruUPt ... 57
Adding an interrupt handler

The application—a brief desCriptioncccceceeererieeienencnenenennens 57

Writing an interrupt handlercoocoveeiiininiinnineeeeeeee 58

Setting UP the PrOJECTecvveevierierierienieriineertetee ettt 58

Setting up the simulation environment ... 58

Defining a C-SPY setup macro filec.cccecevvveriiinienienieneineeneenee, 59

Specifying C-SPY OPHONScccevverererinieieieieieierestene e 60

Building the Projectccceeererenenininenieieeeeseseee s 61

Starting the SIMUlatorcocovviiviiiiinieeeee e 61

Specifying a simulated INtEITUPtc.ccoveverirereeieierereenienenenee 62

Setting an immediate breakpointc.ceceeveeievierienenenenienieneneneene 63

Simulating the interrupt ... 64

Executing the appliCationceceeceeieieieierienienieneneneneneneeeeeene 64

Using macros for interrupts and breakpoints 65

Working with library modules ..., 67
Using libraries ... 67
Creating @ NEW PIOJECT ...ecueerueeruerrierrierieniienttenieesieenteeseeteseeeseeesseeneeas 68

Creating a library projectccccoeeeeevenenrenereeneeeeieneneneneneeenees 68

Using the library in your application projectcecceeveeveerueennnee 69

Part 3. Project management and building ... 71
The development environNMent ... 73
The IAR Embedded Workbench IDE ... 73
Running the IAR Embedded Workbench IDE ... 74

EXIHINE ©eoveentiiieieienteeteeeetee ettt st 75
Customizing the environment ... 75
Organizing the windows on the SCIEeNccceceevververrenierenienienienenne 75

Customizing the IDEccccccoiiiiiinininininceereeeseeeecen 76
Communicating with external toolSccceceeeririiriieiienienenenesees 77

MaNAZING PrOJECLS ... 79
The project model ... 79

How projects are organizedcoccveverereneneeieieeeieienienenenienne 79

Creating and managing WOTKSPACEScc.ceveeueruerereeienienieneeneeneennens 82

Navigating project files ..., 83
Viewing the WOrKSPaceccccoceveverinirieeieieicicicnencnc e 84

Displaying browse informationcccceceeveeereenienienienenenenenennens 85

Source code CoONtrol ... 86
Interacting with source code control SyStemsccceeveeererereruenne 86

BUIIAING ..o 89
Building your application ... 89

SEHNZ OPLOMNS ..ttt sttt ettt ettt ettt sbe b sbesreene 89

Building a Projectccoovviiiiiiiiiiiiiiiiic 91

Building multiple configurations in a batchc.ccccocveiiinenne 91

Correcting errors found during buildcccecoeveneneneninenenenenne 92

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents °

Building from the command line

Extending the tool chain ...,
Tools that can be added to the tool chainccccociiiinnn 93
Adding an external too]c.ccceveriririeninineeeeeeeee e 93
EAItiNg ...oooo e 95
Using the IAR Embedded Workbench editor 95
Editing a file
Using and adding code templatesc..coceeevererieieienienienenenenenne 99
Navigating in and between filesc.ccoceeieiriieiienenienienienenceiene 101
SEATCHING ..eeiiiiiiiieeeeee et 101
Customizing the editor environment ..., 101
Using an external @ditoroceeeeeeieieieienieriene e 102
Part 4. Debugging ..., 105
The IAR C-SPY® DebUZEEr ... 107
Debugger cONCEPLSocoooiiiiiiriee s 107
IAR C-SPY Debugger and target SyStemsc..cocceceeveecereeeeeenennes 107
Debugger
TArZEt SYSIEIM ..cuveeiieuiieieeiiieterite ettt ettt st sree bbb e eanenae 108
User appliCatiONc..coeverieriiriiieiieicteientetereereeieee et 108
TIAR C-SPY Debugger SYStEmMSccceeveeureurerieierierienienienenieneeeeeene 109
ROM-MONItOr PrOZIAIMN ...c.eveuirienieieierieteeeeeeeneereeereeeeee e sseaeenes 109
Third-party debUZEErsccceevverieieriinirierierieieierercrese e 109
The C-SPY environment ..o, 109
An integrated enVIrONMENtcceeveeveeeeieierierienienieneseseseeeeeens 109
Setting up the IAR C-SPY Debugger ..o 110
Choosing a debug drivVerc.coceeveeieieieieniiienenenesese e 110
Executing from IeSetcocevirierieriiniieieiieiieteie e

Using a setup macro file
Selecting a device description filec.cooevevenininiinenieneneeene 111

Loading plugin Mmodulescoceeieirieiiienienieniesieneniese e 112

Xi

Xii

Starting the IAR C-SPY Debugger ..., 112

Redirecting debugger output to a filecccovvvevieniininieniiiicniee 113
Adapting C-SPY to target hardwareccccoceviniincnnn. 113
Device description filec.cccceeevieeeinieieieieeneneneneseeeeeeene 113
Executing your application ... 117
Source and disassembly mode debugging 117
EXE@CULING ..ot
STED oottt ettt st
GO ettt et ettt
RUN t0 CUISOT ...ooviiiiiiiiiicicic
Highlightingcceoviiiiiiiiniieeceecese et
Using breakpoints t0 SEOPceeeeeeeuieierierienieneniesieseesieseeeeeeeeneens
Using the Break button to stop ...
StOp at PrOZram EXit ..ccveverierierierierienienieeeeeete et
Call stack information ... 121
Terminal input and output ..., 122
Working with variables and expressions ..., 123
C-SPY @XPIreSSiONScccooviuiiiiiiiirieirieetiee et eees 123
C symbols
ASSEMDIEr SYMDOISooviiviiiieiieiieiieieieeee et 124
Macro fUnCHONS ccoiviiiiiiiiiiiiiccc e 124
MaCTO Variablesccovveiiiiiiieircee e 124
Limitations on variable information ... 125
Effects of OptimizZationsc..coccvverererereiienienienieeseeeeeeeeeeeeens 125
Viewing variables and expressions ..o 126
Working with the WindOWsccceieiieiiiiiiiinere e 126
Using the trace SYSteMccccvvevueriereeieeeneeeeieneenreeresreeeeeeeeeenennenne 127
Viewing assembler variablesccccoceveviereninienenienienenieeeiene 128
USIiNg Breakpointsccoooiicrriiceisesessssisssessesssseesseseens 129
The breakpoint system ..., 129
Defining breakpointsccccocooioiiiiiicccccceee 129
Toggling a simple code breakpointc..ccccecevererereneneeeeneenuennens 130

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents °

Setting a breakpoint in the Memory window

Defining breakpoints using the dialog boXcc.ccoceeveeveriinieninnnne
Defining breakpoints using System macroscecceceeeeererueennnn
Viewing all breakpoints ...
Using the Breakpoint Usage dialog boXccccevvveveeneineniieniennenne
Monitoring memory and registers ... 135
Memory addressing ...
Using the Memory window
Working with registers ...
REZISIET ZrOUPS ..evvviiieiieiieiteieetee ettt st 138
Using the Stack window ... 140
Graphical stack diSplayccceceeveeieieiieiieieieneere e 140
Detecting stack oVerflowscccceeverienienieenienieeneecee e 141
Viewing the stack CONENLSccevveruerrieirieieieienerene e 141
Using the C-SPY® macro SySstem ... 143
The Macro SYSteMcccoiiiiice e 143
The Macro 1angUAZEccevverviruiriieiieiieieieetee et 144
The macro file ..o 144
Setup MACTO fUNCHONSevverierierieriiiieieterteteie et 145
Using C-SPY MaACros ..o s 145
Using the Macro Configuration dialog boxcccccccevevvieincncnene. 146
Registering and executing using setup macros and setup files 147
Executing macros using Quick Watchcccccevenininienininiencnene 148
Executing a macro by connecting it to a breakpoint 149
Analyzing your application ... 151
Function-level profiling
Using the profiler ...
COdE COVEIAGE ... s
Using Code Coverage

xiii

Xiv

Part 5. IAR C-SPY Simulator ... 157

Simulator-specific debugging ... 159
The IAR C-SPY Simulator introductioncococooevnenn. 159
FEALUIESeiiiiiiiie et e 159

Selecting the simulator drivercoccoeceeveeneenenneniienieneenceeene 159

Simulator Setup

Check for word access on odd addressccceccevevenereneneneenene 160
Simulator-specific menus ... 160
Simulator MENUcccccoiiiiiiiiiiiicee e 160
Using the trace system in the simulator 161
Trace WINAOW ...c..ccoeviiniiriiiiiiiiieicicicctcieeee e 162
Trace toOIbarcccoociiiiiiiiiiii 163
Function Trace Windowcccoceevieirieiieiieiieniene et 164
Trace EXpressions WindOWcccceoeererrierienieneenieenieeniesieeee e 164
Find In Trace Windowccccccoceeiiniiniininiinininineeeneeeeeereeeenne 165
Find in Trace dialog DOXcccceeiruieieieiiieieieie e 166
Memory access checking ... 167
Memory Access setup dialog bOXcccevvevverenininreninineereeenean 168
Edit Memory Access dialog DOXccceeeeieienienienenineneneeeeiene 170
Using breakpoints ...
Data breakpointscoccveverieririeririeietetcetetereeresresree e
Immediate breakpointsceceeeeveeieieieienienieniesesesesieseseseeeeene

Breakpoint Usage dialog box
SIMUIating INEEITUPLScoooooiie e 177

The C-SPY interrupt simulation system ...
Interrupt CharaCteriSticsc.eeereeieieuieieieieneriese e eeeeeeeeene
Interrupt SiMulation StALESccoevverererierieieierieresie e se e

Using the interrupt simulation system ..o
Target-adapting the interrupt simulation system
Interrupt Setup dialog DOX ...c.ccevueeuieiiieiiieieiee e
Edit Interrupt dialog boXc.ccoceveeiiiieiiiniiiiniiiinieeseeeeeeee

Forced interrupt WindOWc.ccoevueririnenininieieietcienesene e

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents °

C-SPY system macros for interruptsc.ceeeeeeeveeeerrenenenienienenne 184

Interrupt Log window

Simulating a simple interrupt

Part 6. IAR C-SPY® FET debugger ... 189

Introduction to the IAR C-SPY® FET Debugger ... 191

The FET C-SPY Debugger ..., 191
Differences between the C-SPY driversccccccevvveceeeciesieneeneenne 192
Hardware installation ... 193
MSP-FET430X 110 ..cuooiiieeiiieieieeieieieiteie et 193
MSP-FETA430PXX0 ...ccoovieiiieeiiieiiee ettt ettt 193
IAR J-Link or TI USB FET interface modulec..cccceevveriennene 193
Firmware upgrade ... 194
Getting started ... 194
Running a demo applicationc.ccocceevervienieneeneeneeniesiesee e 195

C-SPY® FET-specific debugging ... 197

Using breakpoints ...
Available breakpointsccceceeeeierierienienienenese et
Customizing the use of breakpoints
Range breakpointscccceeeeereeinieieieieieceesesene e
Conditional breakpointscceceeeeuieierieriesienienenesesesesese e
Advanced trigger breakpointsc.ccocevereeeeneenienenineneneneeene
Breakpoint Usage dialog box

Using state Storage ...
State Storage Control Windowcccccuevveieninieneninineneneneennn
State Storage Windowc..cocceoeeierienienieniininineneneeeeeeeeeeeeeenne

Using the SeqUENCEr ...t

Sequencer Control WindOWc.ccoceverereiieienienieneneneeeseeeeeeens

Xv

xvi

SLEPPING ..o 225

Programming flashccccooieiiiiiniiiiiiieece e 225
Single-stepping with active Interruptscccceceeveevervenvenreneneneeeenn 225
C-SPY FET communication ... 225
Releasing JTAGooouiiviiiiieeeceeeeeee ettt 226
Parallel port designatorsccccoeverererereneeeeieieneenrenesreeeeeeenes 226
Troubleshooting
Design considerations for in-circuit programming 229
Bootstrap loader ... 229
Device signals ... 229
EXternal POWEF ... 230
Signal connections for in-system programming 230
MSP-FET430X110
MSP-FET430Pxx0 (‘P120, ‘P140, ‘P410, ‘P440) ...ccovovvrvverrrinnee. 232
Part 7. Reference information ... 235
IAR Embedded Workbench® IDE referencecccccccccccccveiienn, 237
WINAOWS ..ot 237
IAR Embedded Workbench IDE windowccceeevereneneneeeene 238
WOrkspace WindOWccceeeuieieirieiinieieieienenene e eeeeeeeeene 240
Editor WiNAOWccooviiiiiiiiiciicceeeee e 248
Source Browser WindOWcccceeeieieieniinienienieniesiesiesieeeeicee e 253
Breakpoints WindOWcccecvevierienienieneneneninenenceceeeeeeeee e 255
Build WinAOW ...c..ooviiiiiiiinieieieeccceesee e 261
Find in Files WindOWcc.cocevieiiiieiiiieiinieneneneneneseeeeteeeie e 262
To0l Output WINAOWccveevieuieiiiiieiieiieieienienenenesiese e eeeeeeeeeeene 263
Debug Log WIndOWcceeeeieirieiiiieieicienenenesieniesiesie et 264

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents °

C-SPY WINAOWS ...

Editing in C-SPY WinNdOWSccceoiruiriniiieiieieieiesieie e
IAR C-SPY Debugger main window ...
Disassembly WINAOWc..ccccoereriririiniiiiieicieiereseereee e
MEMOTY WINAOWoviniiiiiiniieiieiieiteiietet ettt st eieeeene
RegiSter WINAOWcc..oiiiviiiieiieieeiceieeie ettt
Watch WINAOWcviiiiiiiiiiiiiieieicccce et
Locals WINAOWocuovuiriieiiiiieiieiieieieeteee et
Auto window
Live Watch WindOWcccooiririninieiieieicieceee e
Quick Watch Windowccceviiiieriieieeiecieceeee e
Call Stack WINAOWccoeoviviiiiiiiiiieiiciciciciercrcie e
Terminal [/O WINAOWcccvirinininininieieieceresese e
Code Coverage WindOWcccceceeueeieieieienienieniesiesiesiesiesieseeseeneens

Profiling window

Stack WINAOWoouiuiiiiiiiiiiiieic e

LCD WINAOW ...ttt

C-SPY MENUS ..ottt

DEebUZ MENU ...ttt
GeNeral OPLIONS ..o 343
TAFGELt ..o 343
DIEVICE ettt s sttt 343
Floating-pOiNntccccvevievienenieneninenennecteeeteeete e 344
Position-independent COdeccceeeririeieienieneneneneneeeeeeeeene 344
Hardware multiplierccccoeieieieiiieieieesesese et 344

xvii

xviii

Library Configuration ... 346
LIDTATY eniiiiiiiieeieee ettt st
Library fileocccoiiiiiiiiiiiiiiic e
Configuration file

Library OPtions ...
Printf formatterccocooiiiiiiiiiiii

Scanf formatter ...

Stack/HEAP ...
Override defaultccccoevininininiiiicc e
STACK SIZE ...t
HEAP SIZ& vt

MISRA € ettt
Enable MISRA C
L0g MISRA C SENEZS ..cveeieiiieierieeiieniieeitenieesieenieesteesie e 349
Set active MISRA C1ulescocooeviriviiniiiiiiniiicneeeeeeeeeceene 349

ComPIler OPLIONS ... 351

LanGUAZEc.ooooiiirc s
LangUAZE ..c..ooveeiiiiiiiieteeeeee et
Require prototypes ...
Language conformancec..ececeeieienienieneneneneneneneeeeeeieneens 352
Plain 'char' IS ..ovoviiiiieiee e 353
Enable multibyte SUPPOTItcovevieiniiiiiiiieiienieneeretesicee e 353
Enable IAR migration preprocessor eXtensionseeceeeeerereenne 353

COUE ... e 354
R4 UtiliZAtionccoovviiiiiiiiiiciiicicccrcce e 354
RS UHHZALION oottt 354
Reduce Stack USAZecccevveveiririiniieiieiieieiee et 354
20-bit context SAVE ON INLETTUPL ..evvvereeerueerierieerieerieeieeieseeniee s 355

OPLtiMIZAtioNS ...
Optimizations

OULPUL ..ottt
Module type

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents °

Generate debug informationcecceceeeeieievienienenienieneneneeeeeene 357
LISt ot 358
Output LSt fIlE c.eeoveeeieiieiiieicerere e 358
Output assembIer filecccocererirerieiiiiieecceseeeeeeeeeee 358
Preprocessor ... 359
Ignore standard include direCtoriesc..coevvererereeereneeeeeenennes 359

Additional include directories

Preinclude filecccooeviiiiinininiiiciiieicicc e
Defined Symbolsccceevevierinininenininecteieceeee e
Preprocessor output to filec.ccoceeeeeeirieieiiciinenneneeeecene
DIagnOSLiCSccoieiiiiiiiiiccc s
Enable remarksc.ccocveveriniiini e
Suppress these diagnostiCscccevveeereereenieneneneneneneeeeeeeeeeeenee
Treat these as 1emarkscccoceevvevieiiiiiininiinennciecceeeen
Treat these as Warningscccceceeveeveeeeieieienieneneneneneeeeeeeeeeeens
Treat theSE @S EITOTS ceveveuererrerererireereriereerererensereeeseseereseeseeseneennes
Treat all Warnings as €ITOTScoceevverieriereeneeneeneeeeeeseesreseesieenne 362
MISRA € et e 362
Override general MISRA C SEttingsccceeceveeeeeienienienenenennenes 363
Set active MISRA Crulesccooceviiiiiiiiiiiiiiiiiiiiccccceeen 363
EXtra OPtiONS ..ot 363
Use command 1ine OPtionsceceeueeuieieierienierieneneneneseeeeieeens 363
Assembler OPLiONS ... 365
LanGUAZE ..o s 365
User symbols are Case SENSILVEeevvevververiereeneenieenieenienieeeennenne 365
Enable multibyte SUPPOIT ..c..ccveveeruirririnieiieiieieieeenteie e 365
Macro qUOLE ChATACLETS ...cc.evueeueruieiieiieiieieieie sttt et 366
OULPUL ...ttt 366
Generate debug informationcecceceeeeieieiienienenienencneneceeeene 367
LSt e 367
Include header ..o 367
INCIUAE LISLINEG ..evveniiniiiiiiniiiieieeteeeeee e 368
Include Cross-TeferenCecoeviririeirieieieierie e 368

Xix

XX

Lines/page

Tab SPACINGeeviiiieiieiieetet ettt ettt 368
Preprocessor ... 369
Ignore standard include dir€ctoriescccvvevererereneneneereeeeneens 369
Additional include direCtoriesccccocvviviniiiiiniiiiiiiiiciene 369
Defined Symbolscccevievierininininininecccceeee e 370
Diagnostics
Max number Of €ITorsccccooiiiiiiiiiiiiii 371
EXtra OPtiONS ..ot 371
Use command 1ine OPtionsc..ceceeeeueeieieienienenieneneneneeeeeeeens 371
Custom build OPLIONS ... 373
Custom Tool Configuration ... 373
Build actions OPLioNs ... 375
Build Actions Configuration ...
Pre-build command linecccccooiiiiiiiiiiiicce
Post-build command linecccooooiiiiiiniiice

EXtra OULPUL ..o s 380

HAefiNe ... s 381
Define symbolccccoevirininiiiiiccccc e 381

DiIagnostiCs ..o s 382
AIWays ZENErate OULPULocveeruierierrtieieeieetenteseeneeesteenteeneeeeenenas 382
Segment overlap Warningsc.ccocceceeveeerreeeenienienreneneneneseenenenne 382
No global type checKingc.ccoceeererieenininieienienicnese e 382
RaNGE ChECKS ...ouviiiiiiiiiiiciiteeteet et

Warnings/EITOTSccccouevueriiminininiieiieieieieteseeete et eeeseeeene

Generate linker listing

MSP430 IAR Embedded Workbench® IDE
User Guide

Contents °

Override default program entrycccceceverereeeereeneenienenenenennes 386

Search pathsc.cocverirnen e

Raw binary imMagecccceeeevieiiinienieeie ettt
ProCeSSING ..o

Fill unused code memory ...

The checksum calculationcocevievieieiiiiiiiinininencnnccieee

EXtra OPtiONS ..ot

Use command 1ine OPtionsc..ceceeeeueeieieienienenieneneneneeeeeeeens

SEUP MACTOS ..ovviiiiiiiiiiiieiiei it 394

Device description filecocceoeevieniiniinininininieeeeeeercenenee 394

Extra OPLtioNns ..o 395
Use command lin€ OPLioNScc.ccerueeeeerieineninierieinreieeneeeneeenes 395
PIUGINS ..o 396
C-SPY® macros reference ..o 397
The macro language ..., 397
MaCTO fUNCHONS .e.ueeueiniiieiiiietieteeieeitete ettt 397
Predefined system macro functionsccccecceeveriveriieniienieneeneenne 397

MacCro Variablesccccoerinirinininieieecteccee e 398

MaACTO SLALETNENLSeeuvemrenriririntieiietietteiteiteitet e steseesiesieseeeseeseeseene 399
Formatted OULPULooieriiiiieiieieeceee ettt 400
Setup macro functions SUMMArY ..o 402
C-SPY system macros SUmmary ... 402
Description of C-SPY system macrosccocccoovnenineniennes 404

XXi

xxii

MSP430 IAR Embedded Workbench® IDE
User Guide

Tables

1: Typographic conventions used in this UIAEc..cccevverrerriereinenininirieeeeceee x1
27 FIIE LYPES ettt sttt ettt st s b e bttt a ettt be st naeas 18
3: General settings for Project]ccocoiviriririiieieieeeeeee et 29
4: Compiler options fOr ProjECt]ceceevievierierenenieneneneeeeteteeee e 30
5: Compiler options fOr PrOJECE2eeeeieierierienieniintieteetteitete e ste et see e ereeeeneens 50
6: Project options for Embedded CH++ tutorialccccoeeeeeeieiecienieciinencnenenenene 54
7: Interrupts dialog DOX ..eeveeueeiiniiniinieniinteri ettt 62
8: Breakpoints dialog DOXccceeeeieiiiiiiieieieiesteseste ettt 63
9: XLINK options for a library projectc.cecceceeveeveeveenienenenienenenecieieneenesennens 68
10: Command shells 78
11: iarbuild.exe command lin€ OPLIONScevveeruirrierrierienieeienteneeniteneeree e 92
12: C-SPY assembler symbols eXPressionsccccoeverererereeneeeenienuenuenenenennes 124
13: Handling name conflicts between hardware registers and assembler labels 124
14: Project options for enabling profilingccocceeveriierieniieniienienieneenceneeens 151
15: Project options for enabling code COVETAgeccevvererereneneeieieierenrennennes 154
16: Description of Simulator menu commands

17: Trace Window COIUMNSc.cccoeciiiiiiiiinienienieicieeeeee s 162
18: Trace toolbar COMMANASccceeerieiriiiiierienenere ettt 163
19: Toolbar buttons in the Trace Expressions Windowcccceceeeeevenencnennnene. 165
20: Function buttons in the Memory Access Setup dialog boXcccceeeverveveeneee 169
21: MEMOTY ACCESS LYPES ..veuververvirrirtieriereeieentetentententessesteeteetrenessessessessessessesseeneens 172
22: Breakpoint CONAItIONScccoveeeierieierienieieseeteeteete ettt seesieeseene 173
23: MEMOTY ACCESS LYPES ..eerveerienieeiieieriertesitenttesteeieeteesesssesitesseesseenseesesnseensens 174
24: Characteristics of a forced INterruptc..coceveeeerierieniininineeeeeercreeesene e 183
25: Description of the Interrupt Log WindOWccccecevviririeiieiienieneneneneneneeene 185
26: Timer INtETTUPEL SELLINES .uveeverrerieriiereenieenteerteeteeite st e eteeste et eteeeeetesaeesaeeseeens 187
27: Simulator and FET differences

28: Project options for FET C eXampleccccocevererereeienieniinenencneneeeeeeeeeeenee 195
29: Project options for FET assembler eXamplec.ccccceveevieieieienienienienenenene 196
30: Emulator menu COmMMANAScoceeeeeriirieienienienienieneneeeeeeeteeeeeseeseeresresvennes 202
31: Available hardware breakpointscceoerererereneneneneeeeeeeeseeeeeeresre e 204

xxiii

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

MSP430 IAR Embedded Workbench® IDE
xxiv User Guide

Range breakpoint start value tyPescccceveeveerierieneninineneeieieeeiesie e sienne 207
Range breakpoint LYPESeevereerieriieniieriieie ettt sttt ae e 208
Range breakpoint aCCESS LYPESccueeveeuirueeieieierienienierenie ettt 208
Conditional break at I0Cation tYPESceceeveeeeierierueniinininieieieeeteniesiesieseenne 210
Conditional breakpoint LYPESeecveeeerierierieiniieienierte et 211
Conditional breakpoint condition OPEratorsc.ceceeeeeeeerrerrerrerierierienienenne 211

Conditional breakpoint access types

Conditional breakpoint CONdition LYPEScceereeruerieerierienienieneeieeiesee e
Advanced triggers break at location types
AdVanCed tHIZEET LYPES ...eeuveverierierierierienieeeetetete sttt sbe ettt ettt saesee e nee
Advanced trigger condition OPETALOrSc.ceereerieerreerueriuereerreneesieenieenieeniennne
Columns in State Storage WindOWc.ccoceverererininireeeeeeteeeneesresneseeaes
Sequencer Settings - €XaAMPIEc.ceceeuieierierenerenenerere et
State Storage Control settings - €Xamplec.ccoeceeveerirrierrieniienienieneeneeneenee
IAR Embedded Workbench IDE menu bar

Workspace window context menu coOmmandsc.coeververereneeeeeeneenenenne 242

Description of source code control commandsccceeverveeieierieriesienienenenne 243
Description of source code control StAeSccecvererererereeeeeenieneenenenennes 244
Description of commands on the editor window context menuceeeueee 250
Editor keyboard commands for insertion point navigationc.ceeceeeereeneene 251
Editor keyboard commands for SCrollingc..cccceeeevvevienienieneninenicnencneennn
Editor keyboard commands for selecting teXtcccecuevuerierienenenenenieneneene
Information in Source Browser windowcccecieieiniiieniiniincnenenenenene

Source Browser window context menu commands

Breakpoints window context menu commandscceevereerererenenenienenneene

Breakpoint CONAItIONScoveriirieeniiiiiiienienitescete ettt s 258
Log breakpoint CONAItIONSccceeveeieriereneneneneneeteeeeeteeetete e 259
LOCALION LYPES ..ottt ettt sttt et ettt ettt sae b b ene 260
File menu commandsccccooiiiiiiiiiiiii s 265
Edit menu commands ..o 267
Find dialog DOX OPHIONSccuevvirieriiriiriiiieiieietee ettt s 270

Replace dialog BOX OPONSccveeriiiriiiniieiirieeiectecete et 270

Incremental Search function bUuttonscccceeeeiieeiiieeiieeeiee e 273

View menu COMMANAScc.eeeevieieiieeieieeitieeiteeeeteeeteeeeteeeeteeeeaeeeseeeereeenseeeenneas 275

66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
7.
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

Tables 4

Project menu commands ...

ArgumMENt VAriabIEsccceeviiriiriiiiiiienie ettt 279
Configurations for project dialog boX OptionSc.cceceeveeeevienierienienenenenenne. 280
New Configuration dialog bOX OPHONScc.evververereeienienieieneneneneeeeeereeenee 281
Description of Create New Project dialog boXcccocevviviiiniiiniiniiniinceneee 282
Project Option CALEZOTIESc..coverviruirrirririeriieiieireteteniesiesie st est e eeeeaesaennenes
Description of the Batch Build dialog box ...

Description of the Edit Batch Build dialog boXccccevieveiiiniinienieneieene 285
Tools Menu COMMANAScc.evviriiriiriiriiiieieietetetetete ettt sae e 286
External Editor OPtIONSccccoevererieriiieieteteniesteteete ettt 287
Key Bindings page OPLiONScccueviereeniinierniienieeie ettt st esie e enee 289
Editor page OPLIONS ...c..coviriiriieiriieiieiieiieectetentente ettt s 291
Editor Colors and Fonts page Optionsc.cceceeveereerienienveniineneneeieieneenienienne 295
Project Page OPLONScceevieriiiieeieeieeieete sttt ettt sttt et e 296
Debugger Page OPHONSc.coveuieiiieieienerenererieree ettt 297
Register FIlter OPLIONScccoeverieriiriiiieieieieiesesteeteeteeetet e 299
Terminal I/O OPLONSocueiviiiiiiieiieeiesteetee ettt ettt ae e 300
Configure Tools dialog BOX OPLIONScccocevererereriririeieieicccesereeees
Command SHEllSccooeieriiiririeee e e
Window menu commandsc..coceeeeieieniiniiniininiiee e
Help menu commandscoceeveieieiienenenenininteeeteeeeeeeeesre e
Editing in C-SPY WINAOWScceetiiiiiiiiiininienieeiteieetceie ettt
C-SPY MENU ..ot
Disassembly window operations ...

Disassembly context menu commandscoeeereererenrenieieniesiesieniesesenenne 317
Memory WindOW OPETAtIONScc.eevverrierrierienienitenieenieenieenteeneesareessesineseesieenee 318
Commands on the memory window CONteXt MENUcccceuevvevervenrenrenrenenenes 319
Fill dialog box options

Memory fill operations

Watch window context menu commandscoceeveeeeiereienienienenenienienienenne 323
Effects of display format setting on different types of expressionsc......... 323
Profiling Window COIUMNSccceviriirieieieieiesie ettt 332
Stack WINAOW COIUMNS ...c.evuiiuiiiiiiiiiienenener ettt 334
LCD WINdOW SEIHNEZSeeververiienienierieieienieniesteeteeteeseeteeseeseetestessessesteseesaessesseene 336

XXV

XXVi

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:

MSP430 IAR Embedded Workbench® IDE

User Guide

Debug menu commandsccccouevueriereneneneneneneeeee e 337

L0g file OPLIONSoouiiiiiiiiiieieeeeeeeeeet ettt sttt 340
Assembler list file OPtIONScoccevveierieiiirieninienece e 368
XLINK range check Optionscccceovevierierierenenenenieceeeeeeeeeeesresresie e 383
XLINK LISt file OPONS ...cevieiiiiiiiieieniieeiteeiteieei ettt 384
XLINK list file format Optionscccovevverierenenenininenieeeieeesereeresreeneenes 385
XLINK checksum algorithms

Examples of C-SPY macro variablesccccovevienennieneniienienieniencecene, 398
C-SPY SEUP MACTOS ..c.ververuieiienieietiniintenienitertertete ettt s sre s sbesre b eenene 402
Summary of SYStEIM MACTOSceveueeieierienienienienienieeieeteeieeteeetesee e seeseesneeneas 402
__cancellnterrupt return Valuesccccoveevierrieeiienienieneenceie et 404
__disableInterrupts return ValUesc..cocceeeerereneriniieierenreienreseneneneene 405
__driverType return VAIUEScccecceevierienienienieneneneeieeieeeeeeterere e saeene 406
__enablelnterrupts return Valuescooceeveeieriienieniienieneeeeeere e 406
__evaluate return values

OpenFile return VAlUEScccceeeieieiieiiiiieneeeeeeee et 407

__readFile return valuesccccocvevievieiiiniiniininiiiincceeeeecrcreeee e 409
__setAdvancedTriggerBreak return valuesccccoceceevvevienienenencnicnencennens 413
__setCodeBreak return VAIUEScc..eeoivvvieiiiiiiiieeciieieeeeceeeeeeeeeee e eevaeeeeeennees 414
__setConditionalBreak return valuesc..cocceceevirieiiiieniinieneneneneneneeens 415
__setDataBreak return Valuesccccooeverinieriiiiininieiecieeneneseseeeeene 417
__setRangeBreak return Valuesc..coccooeverenininieieieeiesieee e 418
__setSimBreak return valuesccccceviiininininiiniiiceeeee
__sourcePosition return values

Figures

1 DIFECLOTY SITUCLUIE ...cuviuveuvieiniieeeeteeieenteitentetentestesteete st et et essessessesteseeseesseeseeseeneens 15
2: Create New Project dialog DOXccceeieirieieieiiieieesesiesie ettt 26
3: WOrTKSPace WINAOWc..ccuevieriiniinininiiniintetetetetctestete ettt sae e sae e 27
4: New Workspace dialog DOXcoceeeeerieieienienienienieniesiesieeieee ettt 27
5: Adding files t0 PrOJECt] ...c.ceiiriiriiiiriiririeeieeeteee ettt 28
6: Setting ZeNeral OPLIONS ...c..co.evueeutiiiriirierientietieteereetee ettt et ste st e stesre e bt eseeeeneens 29
7: Setting COMPIIET OPLIONS ...c.veuieiiiiriiriirieeteeeetce ettt neens 30
8: ComPilation MESSAZEc.eeeeuierierierierierienie ettt ettt ettt sbe ettt eat et ebetenee 31
9: Workspace window after compilationcccceceeevevvevienenenenienienenieiecneneneens 32
10: Setting the option Scan for Changed Files 33
11: XLINK options dialog box fOr projectlcccoeceeveeniineinerienienieneeneeneeieenee 34
12: The C-SPY Debugger main WiNdOWccccoceverierinininieieieieiieeererenrennennenne 38
13: Stepping N C-SPY ..ot 39
14: Using Step Into in C-SPY ..ooiiiiiieeeteeee e e 40
15: Inspecting variables in the Auto window

16: Watching variables in the Watch window ...

17: Setting BreakPOINScc.c.evieriiriinieeierieetesite sttt et ettt st e st e ste e esaesaneeaee 42
18: Debugging in disassembly MOAEc.ccoerereriiniinininieieieeceeeeecrerereieee 43
19: REZISIET WINAOW ..cevitiiiiiniiiiiniieiieiieiteiteteteste sttt ettt et sae e 44
20: MONItOTING MEMOTY ..uveeuviererrerirerirenieerieenteerseesseestesaresseesieesseesseesseessessessesssenses 44
21: Displaying memory contents as 16-bit UNILScceeeevuerierenenenenreeeniererennenne 45
22: Output from the I/O OPErationscccceeerereeieiierierienienenenenieeeeeete e 46
23: Reaching program exXit in C-SPYccccooiiiiiiiiiiiiieiieeeceeeeee e 46
24: Assembler settings for creating a list filec..ccceceeviinininininininiiiiicncnee 51
25: Setting a breakpoint in CPPEULOT.CPP ..o.vevvevevieniiniininencniicececeecceseree e 54
26: Inspecting the function Callscceoieieierierieniinierene ettt 55
27: Printing Fibonacci sequences . 56
28: Specifying setup macro filec.ccoerereririniniiieieieecse et 61
29: Inspecting the INLEITUPL SELLNZS ...evvverveerieereerierierierieetenieenieerteeteeeeeareseaesaeenaes 63
30: Printing the Fibonacci values in the Terminal I/O windowcccccccevenenenne 65
31: TAR Embedded Workbench IDE wWindowc.ccccocoiiiiiniiiiniincncecne 74

XXVii

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

MSP430 IAR Embedded Workbench® IDE
xxviii User Guide

Configure Tools dialog box

Customized TOOIS MENUccueviiriiiriiiiiiieiceeee e
Examples of workspaces and Projectsco.ceceevuerueruerrenrenereeeerenuenenienienieneene 80
Displaying a project in the Workspace Windowcccceceeeeieieiiiieicncncnennene 84
Workspace WindOW—an OVEIVIEWcccuercuirierienienieenieenieenieeiesreseesieesieeseees 85
GENETAl OPLIONS ..c..eiuieuiiiiiiiiitinteeie ettt ettt b et ettt nesne st et 90
Editor window

Parentheses matching in editor WindOWcoccoveerienennienieniencencececeeeeen 99
Editor window Status DArccceeoiiiiiiniiniinieniinie ettt 99
Editor window code template MENUccceeverueeerenineeieieieieneeniesieseseesieene 100
Specifying external command line €ditorc..ccoceeviiriiriiiniinienieneeeeeee 102
External editor DDE SEtHNESc.ccceeiruiriiiierienienenenteteeeeeteecresreereeie e 103
IAR C-SPY Debugger and target SYStemScccceveeruervervenreneneneeieeenienienenee 108
Viewing assembler variables in the Watch windowcccccocevinininincnine 128
Breakpoint on a function callcccocooivininiininniiiccen 130
Breakpoint Usage dialog DOXc.ccovevuerierinininininieiieieiet ettt siene 133
Zones in C-SPY

Memory window

Memory Fill dialog DOX ...ccceerereiiiiiieienereeeeet ettt 137
REZIStEr WINAOW ...ouviiiiiiiiiiiecieeceteste ettt et 138
Register FIlter PAZEc.coeeiririiiieicicieierienen ettt 139
StACK WINAOW ..ttt ettt et 140
Macro Configuration dialog DOXccccceeieieieieiieiieieieieiesesie e sieeeeeeene 147
Quick Watch window

Profiling WindOWcc.coeiiiinininieieteeeeee ettt s
Graphs in Profiling Windowcccevieieiieiienieneneseecseeeeee e 153
Function details WindOWcccccoeeiininenenininineeteteeeeeeee e 153
Code COVerage WildOWc.cceereeuieienieienienienieete ettt ettt ete et ste st e sieebeene 155
Simulator menu ...

Trace WINAOW ...ovviriiiiiiiiiiiiiiicicteet ettt ettt st
TTACE tOOIDATviieiiiirieitieieee ettt ettt ettt sae e sbe e
Function Trace WindOWccceeieiiiiniiniiniiniinieieieieieret et 164
Trace EXpressions WindOWc.coccoueruinininiinieinieieienerenienseseesiesiesieseesueene 164
Find In Trace WindOWccccoeviirieniininiiniteieieeiceit ettt 165

66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
7.
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

Figures ___o

Find in Trace dialog box

Memory Access Setup dialog DOXcocveviiriinieiiiiiiiienieee e 168
Edit Memory Access dialog box
Data breakpoints dialog DOXccccoevviruirinieinininieieieteesesese e
Immediate breakpoints PAZEccceeverrieriiriienienienierteeeeee et
Breakpoint Usage dialog DOXcccccevvirininininiininicicictciectcc e
Simulated interrupt configuration
Simulation states - eXample 1ccocoviiriiniiniineiie e
Simulation states - eXamPple 2ccccoceeiriiiieiiinininne e
Interrupt Setup dialog DOX ...cc.eoeeiiiiiiiiiiieeeeee e
Edit Interrupt dialog DOXcooveiierriiiiinierienieeieeeeteste et
Forced INterrupt WinAOWcc.ccevievieneneninenenentntececceeeeteeereee e
Interrupt Log WindOW ...c..coeviriiriiiiiiieieeteeee ettt

COomMMUNICAION OVEIVIEW ...veiiviieiiieriieeeireeieeeeseesseeesseeessseesseesseeenseesssseessens

FET debugger SEtUP OPLIONSccvevverierierierieririieiteieeteteeetesrenresne e s sneeanenne
FET debugger breakpoint OPtiONSccceeeeereeieieieieieieienienieniesiesiesieseeeneene 200

Emulator MENUcccviiiiiiiiiiiicciieeie ettt et e saaeeiaeeennees

Range breakpoints dialog box
Conditional breakpoints dialog DOXcccceverererereriiiieieieiee e
Advanced trigger dialog DOXcoceeviiiiiriiiiiiiiie e
Breakpoint Usage dialog DOXccccoevirininininiinineciciceciccneneseeseesecseeeneen
State Storage Control WindOWccceecvevierierieneneneneneeteeetee et

State Storage WInAOWcc.ccevieriierieriiiriieniente sttt ettt ieesieenee

Sequencer Control window (advanced setup)
JTAG signal connection (MSP-FET430X110) ..cccecveieienienienenenenenieneneeene
JTAG signal connection (MSP-FET430PXX0) ...ccceovviviiniiniininieeienieneeneene
IAR Embedded Workbench IDE Windowcc.ccceceeierienicniencncncncnenencenn.
TIAR Embedded Workbench IDE tooIbarcccccoevirininieieienienienieneneeene
IAR Embedded Workbench IDE window status bar
WOTKSPACe WINAOWcoviiiiiiiiiiiiiieiieiicicientetee ettt st
Workspace Window CONEXE MENUec.erueruereierienienienienieneeeteeseeiteeetesesiesiesienee
Source Code Control MENUcc.ccuevieiiriiiiiiiiieienenene et
Select Source Code Control Provider dialog boXc.cccceeevvevvininencncncnenne.
Check In File dialog DOXcccoviririiriiiieieietesieseseiceteeeee ettt

XXiX

XXX

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:

MSP430 IAR Embedded Workbench® IDE

User Guide

Check Out File dialog box

Editor WINAOWcocoiiiiriiiiiiiiiiiiicicicteiestesesetc ettt
Editor window tab conteXt MENUccccevevererierereneeieietenieneeneeseneeneeeneen 249
Editor windOw CONEXE MIEIIUeeuerueruieieieienieniententeetceieeieete e tetesre e sre b 249
Source BrowSser WINAOWcccccueeieiiiiniininienienienenenenecteeeienesre e 253
Source Browser window CONteXt MENUcc.coceverereeieeerenienieneneneneneennen 254
Breakpoints window

Breakpoints window CONtEXt MENUcc.ceeveruierierniienienieeienieenieeneeeieeeeeeeenees 255
Code breakpOints PAZEcoeeveeureeeieniiniineniiniteeetteteetetete et s eee 257
Log breakpoints PAZEc..coceveeieieieieierienieniesiesteseeetcetee ettt esbe e 258
Enter Location dialog DOXcooeiviiiiiiriieiienieieeceieee et 260
Build window (message WiNAOW)ccceeeeeeuieieieiereienieneneneneneneeveeneens 261
Build window CONtEXt MENU ..c..eeueeuierierieierienienientenieeiceieeee et sre e 261
Find in Files window (message Window)c.ccoeeeveriieevienieneeneeneenieeieene 262
Find in Files window CONEXt MENU ...c..ccevirieriieieieieieienienienieneenreeeeneeneeneen 262
Tool Output window (message WindOW)ccceeereeeeeeienienieneeneenenrensenennes 263
Tool Output WindOw CONtEXE MENUeouverurereiiriernieerierieerenireneereeereeeseeereenees
Debug Log window (message window)

Debug Log windOow CONtEXt MENMU ...c..ervevereereerierienieetieieeieieeeneenieeessessesneenes

FALe MENUooviiiiiiiiiiiiiicctccc e

Edit MENU ..ottt ettt
Find in Files dialog DOXcocieiiiiiiiniiiiieniesiesiec s
Incremental Search dialog BOXcc.eeveriiiriiriiniiniieeece e
Template dialog box

VIEW IMICTIUL ..uteuiinieitiniieieetteit ettt ettt ettt et ettt et et e et e b sb e s b b e ebeebeensenee
PrOJect MENU ..c..ooiiiiiiiiiiiiieeteeee ettt
Configurations for project dialog bOXccceveverervenineenieieicnieneeeeeeeee
New Configuration dialog box

Create New Project dialog box

Batch Build dialog DOXc.cccuevuiriiriiniininiiniieieieieicrcrctestesese e
Edit Batch Build dialog DOXcccuevieiiriinienieninerienieecee e
TOOLS MENUooviiiiiiiiiiiiiiicietete s
External Editor page with command line Settingscccccceevvereneneneneneenene 287
Common FONtS PAZEcceeveruiiriiniieiieieeieecete sttt ettt 288

Figures ___o

134: Key Bindings page

135: MESSAZES PAZE w.vvevrenreereeieeieeteetesitesttesteeseetestesatesutesseenbeenseensessesasesseesanens
136: EdItOT PAZE ..evevieeeiieiieiieiieieictestesteste sttt ettt ettt sbe bbb
137: Configure Auto Indent dialog bOXccccovevererereniniriiiececcccceee 293
138: Editor Setup Files PAZEcoveeviiriiiierieiieeeeeeeteetet et s 294
139: Editor Colors and FONts PAgeccccoveverererereneniriiieieieietesresresveereeneenes 295
140: Projects page

141 DEDUZLET PAZE ...eervveeieniieniieieniieete sttt sttt ettt et st sit e s bt e bt e b eatesanesaeesanens 297
142: Register FIIter PAZE ...ccveeviiiiiiinienienieriericrerceectetetccter e 298
143: Terminal I/O PAZEcceevveuieiiriiieienenerierereeeeeete ettt 299
144: Source Code CONtrol PAZEcovveeveerierierierierieeieete ettt 300
145: SHACK PAZE .vevvirieritieiieieeieet ettt ettt 301
146: Configure Tools dialog DOXcccevievieririnienininereteete s 303
147: Customized TOOIS MENUc.cceviiriiriiririiiiiiiiiieerereeeee e 305
148: Filename Extensions dialog bOXc..coccecvverviiniiniinieniinieniiienencsrceeeeeeeeenns 305
149: Filename Extension Overrides dialog DOXc.ccoceveevienieienienenenicncnencnenes 306
150: Edit Filename Extensions dialog DOXcccccovieriineniiiinieniienieneeecieeeeeene 306
151: Configure Viewers dialog box

152: Edit Viewer Extensions dialog DOXc.ccccceverereririninienienienieneieseeeeeieeienes 307
153: WINAOW MEIU ...ouviiiiiiiiiiiieiieieietee ettt 308
154: Embedded Workbench Startup dialog boXc.cccceevevvivinininininincnicncnnnn 311
155: C-SPY debug tOOIDATccceeuiiiiieieienienierie ettt

156: C-SPY Disassembly WiNAOWcccceeiirieniiniinienienieeteneesitenieere e

157: Disassembly window context menu

158: MEMOTY WINAOWoouiiiieiiiiirieniesiesienient ettt ettt ettt st
159: Memory windowW CONEXE MENUevverureriierieerieenieererrestesieesseeseesesreseesanens

160: Fill dialOg DOX ...ovivieiieiieiieiiciicieteicntenienere sttt
161: RegISEr WINAOW ...c.eeuiieieiiiieiieieieniesiestesie ettt ettt
162: Watch window

163: Watch WindOW CONEXE MENUeoveveriirerererierieeteieetetetestenesresresresre e saeenes

164: LoCals WINAOWoeuiriiiiiiiieiieiieieieiesieste ettt ettt ettt
165: AULO WINAOW ..ovviiiiiiiiiiiiiieiicieeteesesee ettt
166: Live Watch WINAOWc.ccoeiiiiniiniiniiniininenectcteteceeeeterererere e

167: Quick WatCh WInAOWcceeiiieiiieiiiiieieeeeciese et beeae e

XXXi

xxxii

168:
169:
170:
171:
172:
173:
174:
175:
176:
177:
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:

MSP430 IAR Embedded Workbench® IDE

User Guide

Call Stack window

Call Stack Window CONtEXt MENUc..cceevuerierieniirieniniirieieteteeereresrese e 327
Terminal I/O WINAOWcc.coceviiiiiiiiiiiiiicien sttt 328
Ctr] COAES MENU ...t e 328
Change Input Mode dialog DOXcc.covveriienieriiniienienieeieeeeteeeceeee e 328
Code Coverage WidOWcccecuevueruirienieninininenceteiteieesteteseesresressesre e senene
Code coverage context menu

Profiling WindOWcccuoviiiiiiiiiiiecee ettt
Profiling CONEXt MEIUeoveiuiiiiieiinienienienereneeie ettt
StACK WINAOW ..ottt
Stack window context menu

LCD WINAOWoviiiiiiiiiiiiiicccet s
LCD Settings dialog DOXcccceoeeirierienienienieneneriesee ettt
DEDUZ MENU ..oiiiiiiiiiiieieeiteeiet ettt ettt sae e
Autostep settings dialog box

Macro Configuration dialog box

Log File dialog DOX ...c..oooviiiiriiiiiniieiceieeieeeee et
Terminal I/O Log File dialog box

TAIZEt OPLIONS ..eeuieeiiieiietieiteitet ettt ettt ettt b e bbb b e ene
OULPUL OPLIOMS .evvveeuieriieieeriteitete et ete ettt stt et e st etesatesateseeesaeesbeenseesesaseenees 345
Library Configuration OPtiONScccceceeererererieieteienieneneneneesreesesseeneennes 346
Library Options PAZEcc.eeeerierierienienienienienieeieeieett ettt sbe bbb eaeennens
StaCK/HEAP PAZE ..evveeieiiieiieieeie ettt sttt et
MISRA C general options

Compiler [anguage OPtIONSccueveierierierierenenieneettetete ettt sbe b b 351
Compiler COde OPLIONScovivuiiriiiiiiiieieeteeie ettt 354
Compiler optimiZations OPLIONScc.coververuerererieeeeieeeteteresrenreeresresreeeeeaes 355
Compiler OULPUL OPLIONSc.eeuieieierierierierierieeieeieete ettt sb e e ne 356
Compiler list file OPLIONScceeviieriirriiriiiierierteree et 358
Compiler preprocessor OPONSc..cvverveererereeeeietentetententenresresesresreeseenenne 359
Compiler diagnostiCs OPLIONScceerueruerieriererenienietetete e see et 361
MISRA C cOMPILET OPLONS .uvveuiiiniieiieiieniteniieritenteenieesie et ettt e eseeees 362
Extra Options page for the cOmpilerc..cocvveveeiiriniinnienienenininenneeenee 363
Assembler 1anguage OPLiONSccuevueruereriereneniiniietetete et 365

Figures ___o

202: Choosing macro quote characters

203: Assembler OULPUL OPLIONSecuverueeriterieerierieeierieenitenteeteetesitesieesaeenseeseeesesneens
204: Assembler list file OPONScc.eeeeieiiieiiriiriieeeeeeeeeeeeeee e
205: Assembler preprocessor options

206: Assembler diagnostiCS OPLIONScecueerverieriieriierierieeieniteneenieere e ereseesieens 370
207: Extra Options page for the assemblerccceveeveriniriiniininiicnicienenenenene 371

208: Custom tool options

209: Build actions options

210: XLINK output file OPtIONSccceevveierieniiniinininiinieeeeeeetesresesre e 377
211: XLINK extra output file OPtiONSccceeeeeeereriririnieieteieesesenee s 380
212: XLINK defined symbols OPLIONScccverviriieriieneiiienienienieeieeieeee e 381
213: XLINK diagnostiCs OPLIONScc.cecveeeeerenreniinientenenrenreeteieeeenesesessesiensesnenne 382
214: XLINK 1St file OPtIONS ..ccueeueruerieriieiiieieienieieteeeeieeteettetee et 384
215: XLINK cONfig OPLONSocuviriiiiieieeniieieeie ettt sttt 386
216: XLINK processing OPtONSc.ceceecvereruerierererreneeeereeeeneensessensessessessesennes 388
217: Extra Options page for the HNKETccccoveverinienininininieieieeieesenienee 390
218: X AR OULPUL OPLIONS ...eeiiiiieiieiieieeieeie ettt sttt ettt sttt ae e saeesinens 392
219: Generic C-SPY options

220: Extra Options page for the C-SPY debuggercccoceveeniecinenninccnccennes 395
221: C-SPY Plugin OPLONSeeieriieriiirieiieeieniienite sttt st e e seesanens 396

XXXiii

MSP430 IAR Embedded Workbench® IDE
xxxiv User Guide

Preface

Welcome to the MSP430 IAR Embedded Workbench® IDE User Guide. The
purpose of this guide is to help you fully utilize the features in MSP430 IAR
Embedded Workbench with its integrated Windows development tools for
the MSP430 microcontroller. The IAR Embedded Workbench IDE is a very
powerful Integrated Development Environment that allows you to develop and
manage a complete embedded application project.

The user guide includes product overviews and reference information, as well
as tutorials that will help you get started. It also describes the processes of
editing, project managing, building, and debugging.

Who should read this guide

You should read this guide if you want to get the most out of the features and tools
available in the IAR Embedded Workbench IDE. In addition, you should have a working
knowledge of:

o The C or C++ programming language

e Application development for embedded systems

o The architecture and instruction set of the MSP430 microcontroller (refer to the
chip manufacturer's documentation)

o The operating system of your host computer.

Refer to the MSP430 IAR C/C++ Compiler Reference Guide, MSP430 IAR Assembler
Reference Guide, and IAR Linker and Library Tools Reference Guide for more
information about the other development tools incorporated in the IAR Embedded
‘Workbench IDE.

How to use this guide

If you are new to using this product, we suggest that you start by reading Part 1. Product
overview to give you an overview of the tools and the functions that the IAR Embedded
Workbench IDE can offer.

XXXV

What this guide contains

If you already have had some experience using IAR Embedded Workbench, but need
refreshing on how to work with the IAR development tools, Part 2. Tutorials is a good
place to begin. The process of managing projects and building, as well as editing, can
be found in Part 3. Project management and building, page 71, whereas information
about how to use the C-SPY® Debugger can be found in Part 4. Debugging, page 105.

If you are an experienced user and need this guide only for reference information, see
the reference chapters in Part 7. Reference information and the online help system
available from the IAR Embedded Workbench Help menu.

Finally, we recommend the Glossary if you should encounter any unfamiliar terms in
the IAR Systems user and reference guides.

What this guide contains

Below is a brief outline and summary of the chapters in this guide.

Part I. Product overview

This section provides a general overview of all the IAR development tools so that you
can become familiar with them:

® Product introduction provides a brief summary and lists the features offered in each
of the IAR Systems development tools—IAR Embedded Workbench® IDE, IAR
C/C++ Compiler, IAR Assembler, IAR XLINK Linker, IAR XAR Library Builder,
IAR XLIB Librarian, and IAR C-SPY Debugger—for the MSP430 microcontroller.

e [Installed files describes the directory structure and the types of files it contains. The
chapter also includes an overview of the documentation supplied with the IAR
development tools.

Part 2. Tutorials

The tutorials give you hands-on training in order to help you get started with using the
tools:

o Creating an application project guides you through setting up a new project,
compiling your application, examining the list file, and linking your application.
The tutorial demonstrates a typical development cycle, which is continued with
debugging in the next chapter.

® Debugging using the IAR C-SPY® Debugger explores the basic facilities of the
debugger.

o Mixing C and assembler modules demonstrates how you can easily combine source
modules written in C with assembler modules. The chapter also demonstrates how
the compiler can be used for examining the calling convention.

MSP430 IAR Embedded Workbench® IDE
xxxvi User Guide

Preface __4

o Using C++ shows how to create a C++ class, which creates two independent
objects. The application is then built and debugged.

e Simulating an interrupt shows how you can add an interrupt handler to the project
and how this interrupt can be simulated using C-SPY facilities for simulated
interrupts, breakpoints, and macros.

o Working with library modules demonstrates how to create library modules.

Part 3. Project management and building
This section describes the process of editing and building your application:

o The development environment introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for
customizing the environment to meet your requirements.

® Managing projects describes how you can create workspaces with multiple projects,
build configurations, groups, source files, and options that helps you handle
different versions of your applications.

e Building discusses the process of building your application.

e [Editing contains detailed descriptions about the IAR Embedded Workbench editor,
how to use it, and the facilities related to its usage. The final section also contains
information about how to integrate an external editor of your choice.

Part 4. Debugging
This section gives conceptual information about C-SPY functionality and how to use it:

® The IAR C-SPY® Debugger introduces some of the concepts that are related to
debugging in general and to the IAR C-SPY Debugger in particular. It also
introduces you to the C-SPY environment and how to setup, start, and configure
C-SPY to reflect the target hardware.

e Executing your application describes how you initialize the IAR C-SPY Debugger,
the conceptual differences between source and disassembly mode debugging, the
facilities for executing your application, and finally, how you can handle terminal
input and output.

o Working with variables and expressions defines the syntax of the expressions and
variables used in C-SPY, as well as the limitations on variable information. The
chapter also demonstrates the different methods for monitoring variables and
expressions.

e Using breakpoints describes the breakpoint system and the different ways to define
breakpoints.

® Monitoring memory and registers shows how you can examine memory and
registers.

o Using the C-SPY® macro system describes the C-SPY macro system, its features,
for what purposes these features can be used, and how to use them.

e Analyzing your application presents facilities for analyzing your application.

XXXVii

What this guide contains

Part 5. IAR C-SPY Simulator

o Simulator-specific debugging describes the functionality specific to the simulator.

e Simulating interrupts contains detailed information about the C-SPY interrupt
simulation system and how to configure the simulated interrupts to make them
reflect the interrupts of your target hardware.

Part 6. IAR C-SPY® FET debugger

e Introduction to the IAR C-SPY® FET Debugger introduces you to the C-SPY
Emulator Debugger. The chapter briefly shows the difference in functionality
provided by the different debugger systems.

o C-SPY® FET-specific debugging describes the additional options, menus, and
features provided by the C-SPY FET driver.

® Design considerations for in-circuit programming describes the design
considerations related to the bootstrap loader, device signals, and external power if
you want to use C-SPY with your own hardware.

Part 7. Reference information

® AR Embedded Workbench® IDE reference contains detailed reference information
about the development environment, such as details about the graphical user
interface.

o C-SPY® Debugger reference provides detailed reference information about the
graphical user interface of the IAR C-SPY Debugger.

e General options specifies the target, output, library, heap, stack, and MISRA C
options.

o Compiler options specifies compiler options for language, code, output, list file,
preprocessor, diagnostics, and MISRA C.

® Assembler options describes the assembler options for language, output, list,
preprocessor, and diagnostics.

o Custom build options describes the options available for custom tool configuration.

® Build actions options describes the options available for pre-build and post-build
actions.

e Linker options describes the XLINK options for output, defining symbols,
diagnostics, list generation, setting up the include paths, input, and processing.

® Library builder options describes the XAR options available in the Embedded
Workbench.

® Debugger options gives reference information about generic C-SPY options.

o C-SPY® macros reference gives reference information about C-SPY macros, such
as a syntax description of the macro language, summaries of the available setup
macro functions, and pre-defined system macros. Finally, a description of each
system macro is provided.

MSP430 IAR Embedded Workbench® IDE

xxxvii User Guide

Preface __4

Glossary

The glossary contains definitions of programming terms.

Other documentation

The complete set of IAR development tools for the MSP430 microcontroller are
described in a series of guides. For information about:

e Programming for the MSP430 IAR C/C++ Compiler, refer to the MSP430 IAR
C/C++ Compiler Reference Guide

o Programming for the MSP430 IAR Assembler, refer to the MSP430 IAR Assembler
Reference Guide

e Using the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian, refer to the IAR Linker and Library Tools Reference Guide

o Using the IAR DLIB Library, refer to the DLIB Library Reference information,
available in the MSP430 IAR Embedded Workbench IDE online help system.

o Using the IAR CLIB Library, refer to the JAR C Library Functions Reference
Guide, available in the MSP430 IAR Embedded Workbench IDE online help
system.

e Porting application code and projects created with a previous version of the
MSP430 IAR Embedded Workbench IDE, refer to the MSP430 IAR Embedded
Workbench Migration Guide.

e Developing safety-critical applications using the MISRA C guidelines, refer to the
IAR Embedded Workbench® MISRA C Reference Guide.

All of these guides are delivered in hypertext PDF or HTML format on the installation
media. Some of them are also delivered as printed books. Note that additional
documentation might be available on the Help menu depending on your product
installation.

Recommended web sites:

o The Texas Instruments web site, www.ti.com, contains information and news about
the MSP430 microcontrollers.

o The IAR Systems web site, www.iar.com, holds application notes and other
product information.

e Finally, the Embedded C++ Technical Committee web site,
www.caravan.net/ec2plus, contains information about the Embedded C++
standard.

XXXiX

Document conventions

xI

Document conventions

This book uses the following typographic conventions:

Style

Used for

computer

parameter

[option]
{option}
alblc
bold

reference

=
&

Text that you type or that appears on the screen.

A label representing the actual value you should type as part of a
command.

An optional part of a command.
A mandatory part of a command.
Alternatives in a command.

Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

A cross-reference within this guide or to another guide.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Table 1: Typographic conventions used in this guide

MSP430 IAR Embedded Workbench® IDE
User Guide

Part |. Product overview

This part of the MSP430 IAR Embedded Workbench® IDE User Guide
includes the following chapters:

e Product introduction

e Installed files.

- .hmuiuhhhi

AARAre

Product introduction

The IAR Embedded Workbench® IDE is a very powerful Integrated
Development Environment, that allows you to develop and manage complete
embedded application projects. It is a development platform, with all the
features you would expect to find in your everyday working place.

This chapter describes the IAR Embedded Workbench IDE and provides a
general overview of all the tools that are integrated in this product.

The IAR Embedded Workbench IDE

The IAR Embedded Workbench IDE is the framework where all necessary tools are
seamlessly integrated:

The highly optimizing MSP430 IAR C/C++ Compiler

The MSP430 IAR Assembler

The versatile IAR XLINK Linker

The IAR XAR Library Builder and the IAR XLIB Librarian

A powerful editor

A project manager

A command line build utility

IAR C-SPY® debugger, a state-of-the-art high-level language debugger.

IAR Embedded Workbench is available for a large number of microprocessors and
microcontrollers in the 8-, 16-, and 32-bit segments, allowing you to stay within a
well-known development environment also for your next project. It provides an
easy-to-learn and highly efficient development environment with maximum code
inheritance capabilities, comprehensive and specific target support. IAR Embedded
Workbench promotes a useful working methodology, and thus a significant reduction of
the development time can be achieved by using the IAR Systems tools. We call this
concept “Different Architectures. One Solution.”

If you want detailed information about supported target processors, contact your
software distributor or your IAR representative, or visit the IAR Systems web site
www.iar.com for information about recent product releases.

Part |. Product overview

The IAR Embedded Workbench IDE

AN EXTENSIBLE AND MODULAR ENVIRONMENT

Although the IAR Embedded Workbench IDE provides all the features required for a
successful project, we also recognize the need to integrate other tools. Therefore the IAR
Embedded Workbench IDE can be easily adapted to work with your favorite editor and
source code control system. The IAR XLINK Linker can produce a large number of
output formats, allowing for debugging on most third-party emulators. Support for
RTOS-aware debugging can also be added to the product.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

FEATURES

The IAR Embedded Workbench IDE is a flexible integrated development environment,
allowing you to develop applications for a variety of different target processors. It
provides a convenient Windows interface for rapid development and debugging.

Project management

The IAR Embedded Workbench IDE comes with functions that will help you to stay in
control of all project modules, for example, C or C++ source code files, assembler files,
include files, and other related modules. You create workspaces and let them contain one
or several projects. Files can be grouped, and options can be set on all levels—project,
group, or file. Changes are tracked so that a request for rebuild will retranslate all
required modules, making sure that no executable files contain out-of-date modules. The
following list shows some additional features:

e Project templates to create a project that can be built and executed out of the box for
a smooth development startup

Hierarchical project representation

Source browser with an hierarchical symbol presentation

Options can be set globally, on groups of source files, or on individual source files
The Make utility recompiles, reassembles, and links files only when necessary
Text-based project files

Custom Build utility to expand the standard tool chain in an easy way

Command line build with the project file as input.

Source code control

Source code control (SCC)—or revision control—is useful for keeping track of different
versions of your source code. IAR Embedded Workbench can identify and access any
third-party source code control system that conforms to the SCC interface published by
Microsoft.

MSP430 IAR Embedded Workbench® IDE

4 User Guide

Product introduction °

Window management

To give you full and convenient control of the placement of the windows, each window
is dockable and you can optionally organize the windows in tab groups. The system of
dockable windows also provides a space-saving way to keep many windows open at the
same time. It also makes it easy to rearrange the size of the windows.

The text editor

The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor, including unlimited undo/redo and
automatic completion. In addition, it provides functions specific to software
development, like coloring of keywords (C/C++, assembler, and user-defined), block
indent, and function navigation within source files. It also recognizes C language
elements like matching brackets. The following list shows some additional features:

o Context-sensitive help system that can display reference information for DLIB
library functions

o Syntax of C or C++ programs and assembler directives shown using text styles and

colors

Powerful search and replace commands, including multi-file search

Direct jump to context from error listing

Multibyte character support

Parenthesis matching

Automatic indentation

Bookmarks

Unlimited undo and redo for each window.

DOCUMENTATION

The MSP430 IAR Embedded Workbench IDE is documented in the MSP430 IAR
Embedded Workbench® IDE User Guide (this guide). There is also help and hypertext
PDF versions of the user documentation available online.

IAR C-SPY Debugger

The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the IAR Systems compilers and assemblers, and
it is completely integrated in the IAR Embedded Workbench IDE, providing seamless
switching between development and debugging. This will give you possibilities such as:

e Editing while debugging. During a debug session, corrections can be made directly
into the same source code window that is used to control the debugging. Changes
will be included in the next project rebuild.

Part |. Product overview 5

IAR C-SPY Debugger

e Setting source code breakpoints before starting the debugger. Breakpoints in source
code will be associated with the same piece of source code even if additional code is
inserted.

The IAR C-SPY Debugger consists both of a general part which provides a basic set of
C-SPY features, and of a driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides a user
interface—special menus, windows, and dialog boxes—to the functions provided by the
target system, for instance, special breakpoints.

Contact your software distributor or IAR Systems representative for information about
available C-SPY drivers. You can also find information on the IAR website,
www.iar.com.

Depending on your product installation, IAR C-SPY Debugger is available with a
simulator driver and optional drivers for hardware debugger systems.

For a brief overview of the available C-SPY drivers, see IAR C-SPY Debugger systems,
page 8.

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire tool chain, the output provided by the compiler
and linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you. The IAR C-SPY Debugger offers the general features
described in this section.

Source and disassembly level debugging

The IAR C-SPY Debugger allows you to switch between source and disassembly
debugging as required, for both C or C++ and assembler source code.

Debugging the C or C++ source code provides the quickest and easiest way of verifying
the program logic of your application whereas disassembly debugging lets you focus on
the critical sections of your application, and provides you with precise control over the
hardware. In Mixed-Mode display, the debugger also displays the corresponding C/C++
source code interleaved with the disassembly listing.

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function calls—inside
expressions, as well as function calls being part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging C++
code, where numerous extra function calls are made, for example to object constructors.

MSP430 IAR Embedded Workbench® IDE

6 User Guide

Product introduction °

The debug information also presents inlined functions as if a call was made, making the
source code of the inlined function available.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest. You
can set a code breakpoint to investigate whether your program logic is correct. You can
also set a data breakpoint, to investigate how and when the data changes. Finally, you
can add conditions and connect actions to your breakpoints.

Monitoring variables and expressions

‘When you work with variables and expressions you are presented with a wide choice of
facilities. Any variable and expression can be evaluated in one-shot views. You can
easily both monitor and log values of a defined set of expressions during a longer period
of time. You have instant control over local variables, and real-time data is displayed
non-intrusively. Finally, the last referred variables are displayed automatically.

Container awareness

‘When you run your application in the IAR C-SPY Debugger, you can view the elements
of library data types such as STL lists and vectors. This gives you a very good overview
and premium debugging opportunities when you work with C++ STL containers.

Call stack information

The MSP430 IAR C/C++ Compiler generates extensive call stack information. This
allows C-SPY to show, without any runtime penalty, the complete stack of function calls
wherever the program counter is. You can select any function in the call stack, and for
each function you get valid information for local variables and registers available.

Powerful macro system

The IAR C-SPY Debugger includes a powerful internal macro system, to allow you to
define complex sets of actions to be performed. C-SPY macros can be used solely or in
conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY Debugger features

This list shows some additional features:

o A modular and extensible architecture allowing third-party extensions to the
debugger, for example, real-time operating systems, peripheral simulation modules,
and emulator drivers

Part |. Product overview 7

IAR C-SPY Debugger systems

Threaded execution keeps the IDE responsive while running the target application
Automatic stepping

Source browser provides easy navigation to functions, types and variables
Extensive type recognition of variables

Configurable registers (CPU and peripherals) and memory windows

Dedicated Stack window

Support for code coverage and function level profiling

Optional terminal I/O emulation

UBROF, Intel-extended, and Motorola input formats supported.

RTOS AWARENESS
The IAR C-SPY Debugger supports Real-time OS awareness debugging.

RTOS plugin modules can be provided by IAR, as well as by third-party suppliers.
Contact your software distributor or IAR representative, alternatively visit the AR
Systems web site, for information about supported RTOS modules.

DOCUMENTATION

The IAR C-SPY Debugger is documented in the MSP430 IAR Embedded Workbench®
IDE User Guide (this guide). Generic debugger features are described in Part 4.
Debugging, whereas features specific to each debugger driver are described in Part 5.
IAR C-SPY Simulator, and Part 6. IAR C-SPY® FET debugger. There are also help and
hypertext PDF versions of the documentation available online.

IAR C-SPY Debugger systems

At the time of writing this guide, the IAR C-SPY Debugger for the MSP430
microcontroller is available with drivers for the following target systems:

e Simulator
e FET Debugger

Contact your software distributor or IAR representative for information about available
C-SPY drivers. You can also find information on the IAR Systems web site,
www.iar.com.

For further details about the concepts that are related to the IAR C-SPY Debugger, see
Debugger concepts, page 107. In the following sections you can find general
descriptions of the different drivers.

MSP430 IAR Embedded Workbench® IDE

8 User Guide

Product introduction °

IAR C-SPY SIMULATOR

The C-SPY simulator driver simulates the functions of the target processor entirely in
software. With this driver, the program logic can be debugged long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

Features

In addition to the general features of the C-SPY Debugger the simulator driver also
provides:

e Instruction-level simulation

e Memory configuration and validation

e Interrupt simulation

e Peripheral simulation, using the C-SPY macro system in conjunction with
immediate breakpoints.

For additional information about the IAR C-SPY Simulator, refer to Part 5. IAR C-SPY
Simulator in this guide.

IAR C-SPY FET DEBUGGER

The IAR C-SPY Flash Emulation Tool Debugger is a JTAG debugger that supports all
Texas Instruments’ boards. It provides automatic flash download and takes advantage of
on-chip debug facilities.

The IAR C-SPY FET Debugger provides real-time debugging at a low cost.

Features

In addition to the general features of the IAR C-SPY Debugger, the FET Debugger
driver also provides:

Execution in real time with full access to the microcontroller
High-speed communication through a JTAG interface

Zero memory footprint on target system

Hardware breakpoints for both code and data

Built-in flash downloader.

On devices with the Enhanced Emulation Module (EEM), you have access also to:

e State storage
o Sequencer
e Clock control

Note: Code coverage and live watch are not supported by the C-SPY FET Debugger.
Trace and data breakpoints are available if the device has support for it.

Part |. Product overview 9

IAR C/C++ Compiler

10

For additional information about the IAR C-SPY Emulator, refer to Part 6. IAR C-SPY®
FET debugger in this guide.

IAR C/C++ Compiler

The MSP430 IAR C/C++ Compiler is a state-of-the-art compiler that offers the standard
features of the C or C++ languages, plus many extensions designed to take advantage of
the MSP430-specific facilities.

The compiler is integrated with other AR Systems software in the IAR Embedded
Workbench IDE.

FEATURES
The MSP430 IAR C/C++ Compiler provides the following features:

Code generation

e Generic and MSP430-specific optimization techniques produce very efficient
machine code

e Comprehensive output options, including relocatable object code, assembler source
code, and list files with optional assembler mnemonics

o The object code can be linked together with assembler routines

o Generation of extensive debug information.

Language facilities

e Support for the C and C++ programming languages

o Support for IAR Extended EC++ with features such as full template support,
namespace support, the cast operators static_cast, const_cast, and
reinterpret_cast, as well as the Standard Template Library (STL)

e Placement of classes in different memory types

o Conformance to the ISO/ANSI C standard for a free-standing environment

e Target-specific language extensions, such as special function types, extended
keywords, pragma directives, predefined symbols, intrinsic functions, absolute
allocation, and inline assembler

e Standard library of functions applicable to embedded systems

o IEEE-compatible floating-point arithmetic

e Interrupt functions can be written in C or C++.

Type checking

e Extensive type checking at compile time
e External references are type checked at link time
e Link-time inter-module consistency checking of the application.

MSP430 IAR Embedded Workbench® IDE

User Guide

Product introduction °

RUNTIME ENVIRONMENT
The MSP430 IAR Embedded Workbench provides two sets of runtime libraries:

e The IAR DLIB Library, which supports ISO/ANSI C and C++. This library also
supports floating-point numbers in IEEE 754 format, multi-byte characters, and
locales.

o The IAR CLIB Library is a light-weight library, which is not fully compliant with
ISO/ANSI C. Neither does it fully support floating-point numbers in IEEE 754
format or C++.

There are several mechanisms available for customizing the runtime environment and
the runtime libraries. For both sets of runtime libraries, library source code is included.
DOCUMENTATION

The MSP430 IAR C/C++ Compiler is documented in the MSP430 IAR C/C++
Compiler Reference Guide.

IAR Assembler

The MSP430 IAR Assembler is integrated with other IAR Systems software for the
MSP430 microcontroller. It is a powerful relocating macro assembler (supporting the
Intel/Motorola style) with a versatile set of directives and expression operators. The
assembler features a built-in C language preprocessor and supports conditional
assembly.

The MSP430 IAR Assembler uses the same mnemonics and operand syntax as the Texas
Instruments MSP430 Assembler, which simplifies the migration of existing code. For
detailed information, see the MSP430 IAR Assembler Reference Guide.

FEATURES
The MSP430 IAR Assembler provides the following features:

C preprocessor

List file with extensive cross-reference output

Number of symbols and program size limited only by available memory
Support for complex expressions with external references

Up to 65536 relocatable segments per module

255 significant characters in symbol names.

DOCUMENTATION

The MSP430 IAR Assembler is documented in the MSP430 IAR Assembler Reference
Guide.

Part |. Product overview 1

IAR XLINK Linker

12

IAR XLINK Linker

The IAR XLINK Linker links one or more relocatable object files produced by the
MSP430 IAR Assembler or MSP430 IAR C/C++ Compiler to produce machine code
for the MSP430 microcontroller. It is equally well suited for linking small, single-file,
absolute assembler applications as for linking large, relocatable, multi-module, C/C++,
or mixed C/C++ and assembler applications.

It can generate one out of more than 30 industry-standard loader formats, in addition to
the IAR Systems proprietary debug format used by the IAR C-SPY Debugger—UBROF
(Universal Binary Relocatable Object Format). An application can be made up of any
number of UBROF relocatable files, in any combination of assembler and C or C++
applications.

The final output produced by the IAR XLINK Linker is an absolute, target-executable
object file that can be downloaded to the MSP430 microcontroller or to a hardware
emulator. Optionally, the output file might or might not contain debug information
depending on the output format you choose.

The IAR XLINK Linker supports user libraries, and will load only those modules that
are actually needed by the application you are linking. Before linking, the IAR XLINK
Linker performs a full C-level type checking across all modules as well as a full
dependency resolution of all symbols in all input files, independent of input order. It also
checks for consistent compiler settings for all modules and makes sure that the correct
version and variant of the C or C++ runtime library is used.

FEATURES

Full inter-module type checking

Simple override of library modules

Flexible segment commands allow detailed control of code and data placement
Link-time symbol definition enables flexible configuration control

Optional code checksum generation for runtime checking

Removes unused code and data.

DOCUMENTATION

The IAR XLINK Linker is documented in the IAR Linker and Library Tools Reference
Guide.

MSP430 IAR Embedded Workbench® IDE

User Guide

Product introduction °

IAR XAR Library Builder and IAR XLIB Librarian

A library is a single file that contains a number of relocatable object modules, each of
which can be loaded independently from other modules in the file as it is needed. The
IAR XAR Library Builder assists you to build libraries easily. In addition the IAR XLIB
Librarian enables you to manipulate the relocatable library object files produced by the
IAR Systems assembler and compiler.

A library file is no different from any other relocatable object file produced by the
assembler or compiler, except that it includes a number of modules of the LIBRARY
type. All C or C++ applications make use of libraries, and the MSP430 IAR C/C++
Compiler is supplied with a number of standard library files.

FEATURES

The IAR XAR Library Builder and IAR XLIB Librarian both provide the following
features:

o Modules can be combined into a library file
e Interactive or batch mode operation.

The IAR XLIB Librarian provides the following additional features:

o Modules can be listed, added, inserted, replaced, or removed
® Modules can be changed between program and library type
o Segments can be listed

e Symbols can be listed.

DOCUMENTATION

The IAR XLIB Librarian and the IAR XAR Library Builder are documented in the JAR
Linker and Library Tools Reference Guide, a PDF document available from the AR
Embedded Workbench IDE Help menu.

Part |. Product overview 13

IAR XAR Library Builder and IAR XLIB Librarian

MSP430 IAR Embedded Workbench® IDE
14 User Guide

Installed files

This chapter describes which directories are created during installation and
what file types are used. At the end of the chapter, there is a section that
describes what information you can find in the various guides and online
documentation.

Refer to the QuickStart Card and the Installation and Licensing Guide, which are
delivered with the product, for system requirements and information about
how to install and register the IAR Systems products.

Directory structure

The installation procedure creates several directories to contain the different types of
files used with the IAR Systems development tools. The following sections give a
description of the files contained by default in each directory.

ROOT DIRECTORY

The root directory created by the default installation procedure is the

x:\Program Files\IAR Systems\Embedded Workbench 4.n\ directory where x
is the drive where Microsoft Windows is installed and 4 . n is the version number of the
IAR Embedded Workbench IDE.

=1 18R Systems
=0 Embedded Warkbench 4.0
=0 430
=7 bin
B0 config
&0 dos
-0 drivers
B0 FET_examples
& inc
=0 i
B0 pluginz
B0 s
B butor
=0 common
D hin
-3 config
D doc
-0 pluginz
B s

Figure 1: Directory structure

Part |. Product overview

15

Directory structure

16

Note: The installation path can be different from the one shown above depending on
previously installed IAR products, and on your preferences.

THE 430 DIRECTORY

The 430 directory contains all product-specific subdirectories.

The 430\bin directory

The 430\bin subdirectory contains executable files for MSP430-specific components,
such as the MSP430 IAR C/C++ Compiler, the MSP430 IAR Assembler, and the
MSP430 IAR C-SPY® drivers.

The 430\config directory

The 430\config subdirectory contains files used for configuring the development
environment and projects, for example:

Linker command files (* .xc1)

Special function register description files (*.sfr)

The C-SPY device description files (* .ddf)

Syntax coloring configuration files (*.c£fg)

Project templates for both application and library projects (* . ewp), and for the
library projects, the corresponding library configuration files.

The 430\doc directory

The 430\doc subdirectory contains release notes with recent additional information
about the MSP430 tools. We recommend that you read all of these files. The directory
also contains online hypertext versions in hypertext PDF format of this user guide, and
of the MSP430 reference guides, as well as online help files (CHM format).

The 430\drivers directory

The 430\drivers directory contains hardware debugger drivers.

The 430\FET_examples directory

The 430\FET_examples directory contains FET debugger example files.

The 430\inc directory

The 430\ inc subdirectory holds include files, such as the header files for the standard
C or C++ library. There are also specific header files defining special function registers
(SFRs); these files are used by both the compiler and the assembler.

MSP430 IAR Embedded Workbench® IDE

User Guide

Installed files °

The 430\lib directory

The 430\ 11ib subdirectory holds prebuilt libraries and the corresponding library
configuration files, used by the compiler.

The 430\plugins directory

The 430\plugins subdirectory contains executable files and description files for
components that can be loaded as plugin modules.

The 430\src directory

The 430\ src subdirectory holds source files for some configurable library functions,
and application code examples. This directory also holds the library source code.

The 430\tutor directory

The 430\ tutor subdirectory contains the files used for the tutorials in this guide.

THE COMMON DIRECTORY

The common directory contains subdirectories for components shared by all IAR
Embedded Workbench products.

The common\bin directory

The common\bin subdirectory contains executable files for components common to all
IAR Embedded Workbench products, such as the IAR XLINK Linker, the IAR XLIB
Librarian, the IAR XAR Library Builder, the editor and the graphical user interface
components. The executable file for the IAR Embedded Workbench IDE is also located
here.

The common\config directory

The common\config subdirectory contains files used by IAR Embedded Workbench
for holding settings in the development environment.

The common\doc directory

The common\doc subdirectory contains readme files with recent additional information
about the components common to all AR Embedded Workbench products, such as the
linker and library tools. We recommend that you read these files. The directory also
contains an online version in PDF format of the AR Linker and Library Tools Reference
Guide.

Part |. Product overview 17

File types

The common\plugins directory

The common\plugins subdirectory contains executable files and description files for
components that can be loaded as plugin modules.

The common\src directory

The common\ src subdirectory contains source files for components common to all AR
Embedded Workbench products, such as a sample reader of the IAR XLINK Linker
output format SIMPLE.

File types

The MSP430 versions of the IAR Systems development tools use the following default
filename extensions to identify the IAR-specific file types:

Ext. Type of file Output from Input to
ad3 Target application XLINK EPROM, C-SPY, etc.
asm Assembler source code Text editor Assembler
c C source code Text editor Compiler
cfg Syntax coloring configuration Text editor IAR Embedded
Workbench
cpp Embedded C++ source code Text editor Compiler
d43 Target application with debug information XLINK C-SPY and other symbolic
debuggers
dbg Target application with debug information XLINK C-SPY and other symbolic
debuggers
dbgt Debugger desktop settings C-SPY C-SPY
ddf Device description file Text editor C-SPY
dep Dependency information IAR Embedded |AR Embedded
Workbench Workbench
dni Debugger initialization file C-SPY C-SPY
ewd Project settings for C-SPY IAR Embedded IAR Embedded
Workbench Workbench
ewp IAR Embedded Workbench project IAR Embedded IAR Embedded
(current version) Workbench Workbench
eww Workspace file IAR Embedded IAR Embedded
Workbench Workbench

Table 2: File types

MSP430 IAR Embedded Workbench® IDE
18 User Guide

Installed files °

Ext. Type of file Output from Input to
fmt Formatting information for the Locals and IAR Embedded IAR Embedded
Watch windows Workbench Workbench
h C/C++ or assembler header source Text editor Compiler or assembler
#include
i Preprocessed source Compiler Compiler
inc Assembler header source Text editor Assembler #include
1lst List output Compiler and -
assembler
mac C-SPY macro definition Text editor C-SPY
map List output XLINK -
pbd Source browse information IAR Embedded IAR Embedded
Workbench Workbench
pbi Source browse information IAR Embedded IAR Embedded
Workbench Workbench
pew IAR Embedded Workbench project (old IAR Embedded IAR Embedded
project format) Workbench Workbench
prj IAR Embedded Workbench project (old IAR Embedded IAR Embedded
project format) Workbench Workbench
r43 Object module Compiler and XLINK, XAR, and XLIB
assembler
s43 MSP430 assembler source code Text editor MSP430 IAR Assembler
sfr Special function register definitions Text editor C-SPY
wsdt Workspace desktop settings IAR Embedded IAR Embedded
Workbench Workbench
xcl Extended command line Text editor Assembler, compiler,
XLINK
x1b Extended librarian batch command Text editor XLIB

Table 2: File types (Continued)

You can override the default filename extension by including an explicit extension when
specifying a filename.

Files with the extensions ini and dni are created dynamically when you run the IAR
Embedded Workbench tools. These files, which contain information about your project
configuration and other settings, are located in a set t ings directory under your project
directory.

Part |. Product overview 19

Documentation

20

Note: If you run the tools from the command line, the XLINK listings (map files) will
by default have the extension 1st, which might overwrite the list file generated by the
compiler. Therefore, we recommend that you name XLINK map files explicitly, for
example projectl.map.

Documentation

This section briefly describes the information that is available in the MSP430 user and
reference guides, in the online help, and on the Internet.

You can access the MSP430 online documentation from the Help menu in the IAR
Embedded Workbench IDE. Help is also available via the F1 key in the AR Embedded
Workbench IDE.

‘We recommend that you read the file readme . htm for recent information that might not
be included in the user guides. It is located in the 430\ doc directory.
THE USER AND REFERENCE GUIDES

The user and reference guides provided with IAR Embedded Workbench are as follows:

MSP430 IAR Embedded Workbench® IDE User Guide
This guide.

MSP430 IAR C/C++ Compiler Reference Guide

This guide provides reference information about the MSP430 IAR C/C++ Compiler.
You should refer to this guide for information about:

e How to configure the compiler to suit your target processor and application
requirements

How to write efficient code for your target processor

The assembler language interface and the calling convention

The available data types

The runtime libraries

The IAR language extensions.

MSP430 IAR Assembler Reference Guide

This guide provides reference information about the MSP430 IAR Assembler, including
details of the assembler source format, and reference information about the assembler
operators, directives, mnemonics, and diagnostics.

MSP430 IAR Embedded Workbench® IDE

User Guide

Installed files °

IAR Linker and Library Tools Reference Guide

This online PDF guide provides reference information about the IAR linker and library
tools:

o The IAR XLINK Linker reference sections provide information about XLINK
options, output formats, environment variables, and diagnostics.

o The IAR XAR Library Builder reference sections provide information about XAR
options and output.

o The IAR XLIB Librarian reference sections provide information about XLIB
commands, environment variables, and diagnostics.

DLIB Library Reference information

This online documentation in HTML format provides reference information about the
IAR DLIB library functions. It is available from the MSP430 IAR Embedded
Workbench® IDE online help system.

CLIB Library Reference Guide

This online guide in hypertext PDF format contains reference information about the IAR
CLIB Library. It is available from the MSP430 IAR Embedded Workbench® IDE online
help system.

IAR Embedded Workbench® MISRA C Reference Guide

This online guide in hypertext PDF format describes how IAR Systems has interpreted
and implemented the rules given in Guidelines for the Use of the C Language in Vehicle
Based Software to enforce measures for stricter safety in the ISO standard for the C
programming language [ISO/IEC 9899:1990].

ONLINE HELP

The context-sensitive online help contains reference information about the menus and
dialog boxes in the IAR Embedded Workbench IDE. There is also keyword reference
information for the DLIB library functions. To obtain reference information for a
function, select the function name in the editor window and press F1.

Note: If you select a function name in the editor window and press F1 while using the
CLIB library, you will get reference information for the DLIB library.

IAR ON THE WEB

The latest news from IAR Systems can be found at the web site www.iar.com, available
from the Help menu in the Embedded Workbench IDE. Visit it for information about:

o Product announcements

Part |. Product overview 21

http://www.iar.com

Documentation

Updates and news about current versions

Special offerings

Evaluation copies of the IAR Systems products

Technical Support, including technical notes

Application notes

Links to chip manufacturers and other interesting sites

Distributors; the names and addresses of distributors in each country.

MSP430 IAR Embedded Workbench® IDE
22 User Guide

Part 2. Tutorials

This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

e Creating an application project

e Debugging using the IAR C-SPY® Debugger
e Mixing C and assembler modules

e Using C++

e Simulating an interrupt

e Working with library modules.

: .hmuiuhhhi

ARARAIed

24

Creating an application
project

This chapter introduces you to the IAR Embedded Workbench® integrated
development environment (IDE). The tutorial demonstrates a typical
development cycle and shows how you use the compiler and the linker to
create a small application for the MSP430 microcontroller. For instance,
creating a workspace, setting up a project with C source files, and compiling
and linking your application.

The development cycle continues in the next chapter, see Debugging using the
IAR C-SPY® Debugger, page 37.

Setting up a new project
Using the IAR Embedded Workbench IDE, you can design advanced project models.
You create a workspace to which you add one or several projects. There are ready-made
project templates for both application and library projects. Each project can contain a
hierarchy of groups in which you collect your source files. For each project you can
define one or several build configurations. For more details about designing project
models, see the chapter Managing projects in this guide.

Because the application in this tutorial is a simple application with very few files, the
tutorial does not need an advanced project model.

‘We recommend that you create a specific directory where you can store all your project
files. In this tutorial we call the directory projects. You can find all the files needed
for the tutorials in the 430\ tutor directory. Make a copy of the tutor directory in your
projects directory.

Before you can create your project you must first create a workspace.

CREATING A WORKSPACE WINDOW

The first step is to create a new workspace for the tutorial application. When you start
the IAR Embedded Workbench IDE for the first time, there is already a ready-made
workspace, which you can use for the tutorial projects. If you are using that workspace,
you can ignore the first step.

Part 2. Tutorials 25

Setting up a new project

Choose File>New>Workspace. Now you are ready to create a project and add it to the
workspace.

CREATING THE NEW PROJECT

I To create a new project, choose Project>Create New Project. The Create New
Project dialog box appears, which lets you base your new project on a project

template.
Create Hew Project [%]
Toel chain: |MSP430 4|

Project templates:

- asm
-G+
-C

-CLIB

-DLIB LI
Drescription:

Creates an empty project.

()8 I Cancel |

Figure 2: Create New Project dialog box
2 Make sure the Tool chain is set to MSP430, and click OK.

For this tutorial, select the project template Empty project, which simply creates an
empty project that uses default project settings.

4 In the standard Save As dialog box that appears, specify where you want to place your
project file, that is, in your newly created projects directory. Type projectl in the
File name box, and click Save to create the new project.

MSP430 IAR Embedded Workbench® IDE
26 User Guide

Creating an application project ___¢

The project will appear in the Workspace window.

IDebug 'l
Files IEES
Elproject! - Debug * v

project] I

Figure 3: Workspace window

By default two build configurations are created: Debug and Release. In this tutorial only
Debug will be used. You choose the build configuration from the drop-down menu at the
top of the window. The asterisk in the project name indicates that there are changes that
have not been saved.

A project file—with the filename extension ewp—will be created in the projects
directory, not immediately, but later on when you save the workspace. This file contains
information about your project-specific settings, such as build options.

Before you add any files to your project, you should save the workspace. Choose
File>Save Workspace and specify where you want to place your workspace file. In
this tutorial, you should place it in your newly created projects directory. Type
tutorials in the File name box, and click Save to create the new workspace.

Save Workspace As EHE
Save ir: Ia projects j - £ B
|1 Debug

D setkings

My Documents

File name: IM

Save as type: IW’orkspace Files [*.eww]

Save I
Cancel |

L e

Figure 4: New Workspace dialog box

Part 2. Tutorials 27

Setting up a new project

A workspace file—with the filename extension eww—has now been created in the
projects directory. This file lists all projects that you will add to the workspace.
Information related to the current session, such as the placement of windows and
breakpoints is located in the files created in the projects\settings directory.

ADDING FILES TO THE PROJECT
This tutorial uses the source files Tutor.c and Utilities.c.

o The Tutor.c application is a simple program using only standard features of the C
language. It initializes an array with the ten first Fibonacci numbers and prints the
result to stdout.

e Theutilities.c application contains utility routines for the Fibonacci
calculations.

Creating several groups is a possibility for you to organize your source files logically
according to your project needs. However, because there are only two files in this project
there is no need for creating a group. For more information about how to create complex
project structures, see the chapter Managing projects.

I In the Workspace window, select the destination to which you want to add a source file;
a group or, as in this case, directly to the project.

2 Choose Project>Add Files to open a standard browse dialog box. Locate the files
Tutor.c and Utilities.c, select them in the file selection list, and click Open to
add them to the projectl project.

Add Files - project1 HE

Look i Ia tutor j & £ B

1 Debug

[settings

""" CppTutor.cpp
Fibonacci.cpp
Inkerrupk.c

File name: I"Utilities.c" "Tutaor.c" j Open I
Files of type: IEI.-"EI++ Source Files [*.c.%.opp;®.cc) j Cancel |

Figure 5: Adding files to projectl

MSP430 IAR Embedded Workbench® IDE
28 User Guide

Creating an application project ___¢

SETTING PROJECT OPTIONS

Now you will set the project options. For application projects, options can be set on all
levels of nodes. First you will set the general options to suit the processor configuration
in this tutorial. Because these options must be the same for the whole build
configuration, they must be set on the project node.

Select the project folder icon projectl - Debug in the Workspace window and choose
Project>Options.

The Target options page in the General Options category is displayed.

Options for node “project1™ E

Category:

C/C++ compiler Target | Dutputl Library Configuration | Library Options Stack.-"HeapI 1 I L4
Azzembler
Cusztomn Build
Build Actions ~Device

Linker

Debagaet [MsP430F143 =0
FET Debugger
Simulator

—FI?atlng-polnt [~ Position-independent code
Size of type 'double’
% 32 bits ¥ Hardware multiplisr

B4 bits

[Assembler-only project

()3 I Cancel

Figure 6: Setting general options

Verify the following settings:

Page Setting
Target Device: msp430F 149
Output Output file: Executable

Library Configuration Library: CLIB

Table 3: General settings for projectl

Then set up the compiler options for the project.

Part 2. Tutorials 29

Setting up a new project

2 Select C/C++ Compiler in the Category list to display the compiler option pages.

Options for node “project1™ E

Category:

General Options

Agzembler

Factory Settings |

Language | Code I Dptimizationsl Dutputl List I Preprocessorl DA I L4

Cusztomn Build B L;nggage
Build Actions
Linker £ Embedded C++
Debugger ! Extended Embedded C++
FET Debugger | Automatic [extension based)
Simulator
™ Require pratotypes
r— Language conformance ———— Flain ‘char' iz
& Allow |AR extensions " Signed
" Relaxed 1S0/ANS] & Unsigned
7 Shrict 1504851

™ Enable multibyte support

[Enable [4F migration preprocessor extensions

oK Cancel
Figure 7: Setting compiler options
3 Verify the following settings:
Page Setting
Optimizations Optimizations, Size: None (Best debug support)
Output Generate debug information
List Output list file

Assembler mnemonics

Table 4: Compiler options for projectl

4 Click OK to set the options you have specified.

Note: It is possible to customize the amount of information to be displayed in the Build
messages window. In this tutorial, the default setting is not used. Thus, the contents of
the Build messages window on your screen might differ from the screen shots.

The project is now ready to be built.

MSP430 IAR Embedded Workbench® IDE

30 User Guide

Creating an application project ___¢

Compiling and linking the application
You can now compile and link the application. You should also create a compiler list file
and a linker map file and view both of them.
COMPILING THE SOURCE FILES
I To compile the file Utilities.c, select it in the Workspace window.
2 Choose Project>Compile.

BE; Alternatively, click the Compile button in the toolbar or choose the Compile command
from the context menu that appears when you right-click on the selected file in the
Workspace window.

The progress will be displayed in the Build messages window.

Messages |
Compiling

utilities.c

Generating Browse Info

Dane. 0 erroris). 0warning(s)

Figure 8: Compilation message

3 Compile the file Tutor. c in the same manner.

The IAR Embedded Workbench IDE has now created new directories in your project
directory. Because you are using the build configuration Debug, a Debug directory has
been created containing the directories List, Obj, and Exe:

o The List directory is the destination directory for the list files. The list files have
the extension 1st.

e The Obj directory is the destination directory for the object files from the compiler
and the assembler. These files have the extension r43 and will be used as input to
the IAR XLINK Linker.

o The Exe directory is the destination directory for the executable file. It has the
extension d43 and will be used as input to the IAR C-SPY® Debugger. Note that
this directory will be empty until you have linked the object files.

Part 2. Tutorials 31

Compiling and linking the application

Click on the plus signs in the Workspace window to expand the view. As you can see,
IAR Embedded Workbench has also created an output folder icon in the Workspace
window containing any generated output files. All included header files are displayed as
well, showing the dependencies between the files.

Workspace B
Iproiect‘l - Debug 'l

Filas IAES
B Etutarials *

=l project] - Debug E2

=1 B Tutar.c

| = @0utput

| — [Tutar st
I — [Tutor.phi
|

|

L— B Tutar.rme
— & Tutorh

L— [& Utilities.h
L@ @ Utilities.c
&1 Ca Output

— B Utilities.Ist
— [Utilities. phi
L— B Utilities.rex
— [stdarg.h

— [# stdich

— [sysmach
L— [& Utilities.h

project] I

Figure 9: Workspace window after compilation

VIEWING THE LIST FILE

Now examine the compiler list file and notice how it is automatically updated when you,
as in this case, will investigate how different optimization levels affect the generated
code size.

Open the list file utilities.1st by double-clicking it in the Workspace window.
Examine the list file, which contains the following information:

o The header shows the product version, information about when the file was created,
and the command line version of the compiler options that were used

o The body of the list file shows the assembler code and binary code generated for
each statement. It also shows how the variables are assigned to different segments

® The end of the list file shows the amount of stack, code, and data memory required,
and contains information about error and warning messages that might have been
generated.

Notice the amount of generated code at the end of the file and keep the file open.

MSP430 IAR Embedded Workbench® IDE

32 User Guide

Creating an application project ___¢

2 Choose Tools>Options to open the IDE Options dialog box and click the Editor tab.

Select the option Scan for Changed Files. This option turns on the automatic update
of any file open in an editor window, such as a list file. Click the OK button.

IDE Dptions [%]

Editor Setup Files I Editor Colors and Fonts I
Project I Source Code Contral I Debugger I Stack |
Common Fonts I Key Bindings I External Editar I Messages Editor
Tahb size: IS ¥ Syritas highlighting
¥ Autoindsrt

Indent size: |2 Configure. .. |

Tab Key Function: ——— [Shiow line numbers
" Inzert tab V¥ Scan for changed files
& |ndent with spaces V' Show bookmarks

[~ Enable virtual space
EOL characters: IPC 'l

™ Remove trailing blarks

V' Show right margin
" Printing edge

& Calurnres IW
QK I Cancel | Apply | Help |

Figure 10: Setting the option Scan for Changed Files

Select the file Utilities.c in the Workspace window. Open the C/C++ Compiler
options dialog box by right-clicking on the selected file in the Workspace window.
Click the Optimizations tab and select the Override inherited settings option.
Choose High from the Optimizations drop-down list. Click OK.

Notice that the options override on the file node is indicated in the Workspace window.

Compile the file utilities.c. Now you will notice two things. First, note the
automatic updating of the open list file due to the selected option Scan for Changed
Files. Second, look at the end of the list file and notice the effect on the code size due
to the increased optimization.

For this tutorial, the optimization level None should be used, so before linking the

application, restore the default optimization level. Open the C/C++ Compiler options
dialog box by right-clicking on the selected file in the Workspace window. Deselect the
Override inherited settings option and click OK. Recompile the file Utilities.c.

Part 2. Tutorials

33

Compiling and linking the application

LINKING THE APPLICATION
Now you should set up the options for the IAR XLINK Linker.

I Select the project folder icon projectl - Debug in the Workspace window and choose
Project>Options. Then select Linker in the Category list to display the XLINK
option pages.

Options for node “project1™ =]

Categony: Factary Settings |

General Options

C/C++ compiler Output | Extra Dutputl ﬂdefinel Diagnosticsl List I Eonfigl Proce 4 I L4
Azzembler
Cusztomn Build Dot fi
. - r— Output file
Build Actians ™ Overide default Secondary output file:
I Debugger Iproiect1.d43 [Mone faor the selected format)
FET [ebugger iy —
Simulator

&' Debug information for C-SPY
¥ w/ith untime control madules
¥ w/ith 140 emulation modules
I | Buffered|terminal autput
™ Allaw C-5P-specific extra output file
" Other

[tput farmat: Imsp430-txt

Farmat warniart: INone

Lef L L

Module-local spmbols: IIncIude all

()8 I Cancel |

Figure 11: XLINK options dialog box for projectl

For this tutorial, default factory settings are used. However, pay attention to the choice
of output format and linker command file.

Output format

It is important to choose the output format that suits your purpose. You might want to
load it to a debugger—which means that you need output with debug information. In this
tutorial you will use the default output options suitable for the C-SPY
debugger—Debug information for C-SPY, With runtime control modules, and With
I/0 emulation modules—which means that some low-level routines will be linked that
direct stdin and stdout to the Terminal I/O window in the C-SPY Debugger. You find
these options on the OQutput page.

MSP430 IAR Embedded Workbench® IDE
34 User Guide

Creating an application project ___¢

Alternatively, in your real application project, you might want to load the output to a
PROM programmer—in which case you need an output format without debug
information, such as Intel-hex or Motorola S-records.

Linker command file

In the linker command file, the XLLINK command line options for segment control are
used for placing segments. It is important to be familiar with the linker command file

and placement of segments. You can read more about this in the MSP430 IAR C/C++
Compiler Reference Guide.

The linker command file templates supplied with the product can be used as is in the
simulator, but when using them for your target system you might have to adapt them to
your actual hardware memory layout. You can find supplied linker command files in the
config directory.

In this tutorial you will use the default linker command file, which you can see on the
Config page.

If you want to examine the linker command file, use a suitable text editor, such as the
IAR Embedded Workbench editor, or print a copy of the file, and verify that the
definitions match your requirements.

Linker map file

By default no linker map file is generated. To generate a linker map file, click the List
tab and select the options Generate linker listing, Segment map, and Module map.

Click OK to save the XLINK options.
Now you should link the object file, to generate code that can be debugged.

Choose Project>Make. The progress will as usual be displayed in the Build messages
window. The result of the linking is a code file projectl.d43 with debug information
and a map file projectl.map.

VIEWING THE MAP FILE

Examine the file projectl.map to see how the segment definitions and code were
placed in memory. These are the main points of interest in a map file:

e The header includes the options used for linking.

o The CROSS REFERENCE section shows the address of the program entry.

e The RUNTIME MODEL section shows the runtime model attributes that are used.

o The MODULE MAP shows the files that are linked. For each file, information about the
modules that were loaded as part of your application, including segments and global
symbols declared within each segment, is displayed.

Part 2. Tutorials 35

Compiling and linking the application

o The SEGMENTS IN ADDRESS ORDER section lists all the segments that constitute
your application.

The projectl.d43 application is now ready to be run in the IAR C-SPY Debugger.

MSP430 IAR Embedded Workbench® IDE
36 User Guide

Debugging using the IAR
C-SPY® Debugger

This chapter continues the development cycle started in the previous chapter
and explores the basic features of the IAR C-SPY Debugger.

Note that, depending on what IAR product package you have installed, the IAR
C-SPY Debugger may or may not be included. The tutorials assume that you
are using the C-SPY Simulator.

Debugging the application

el 2

The projectl.d43 application, created in the previous chapter, is now ready to be run
in the IAR C-SPY Debugger where you can watch variables, set breakpoints, view code
in disassembly mode, monitor registers and memory, and print the program output in the
Terminal I/O window.

STARTING THE DEBUGGER
Before starting the IAR C-SPY Debugger you must set a few C-SPY options.

Choose Project>Options and then the Debugger category. On the Setup page, make
sure that you have chosen Simulator from the Driver drop-down list and that Run to
main is selected. Click OK.

Choose Project>Debug. Alternatively, click the Debugger button in the toolbar. The
IAR C-SPY Debugger starts with the projectl.d43 application loaded. In addition
to the windows already opened in the Embedded Workbench, a set of C-SPY-specific
windows are now available.

ORGANIZING THE WINDOWS

In the IAR Embedded Workbench IDE, you can dock windows at specific places, and
organize them in tab groups. You can also make a window floating, which means it is
always on top of other windows. If you change the size or position of a floating window,
other currently open windows are not affected.

The status bar, located at the bottom of the Embedded Workbench main window,
contains useful help about how to arrange windows. For further details, see Organizing
the windows on the screen, page 75.

Part 2. Tutorials

37

Debugging the application

Make sure the following windows and window contents are open and visible on the
screen: the Workspace window with the active build configuration tutorials — project1,
the editor window with the source files Tutor.cand Utilities.c, and the Debug Log

window.
% I1AR Embedded Workbench IDE [_ O[]
File Edt View Project Debug Simulator Toolk ‘window Help
[T R EN 2= » @60 0HE 2 (H
Slelza.cEry
Debug - ﬁ
Files e | Oy |~ 7+ |
P ST ECtIEDEE v [| Increase the 'call count' variable. O113E
projec e Get and print the associated Fibomacci mumber. ¢ init Fik(]; =
e @ Tutorc " 001142 BO125611
(3 Output . . . while(call cou
_?7 mj?u(m\s(void do_foregrownd process (void) sol146 B2500a0C
{ .
001140 0334
— B Tutarphi unsigned int fib:] do_foreground
L— & Tutorrd3 next_counter(): _ 00114E BO122411
— @ Tutarh £ib = get fibj call count): 001152 F83F
L— [Utilities.h put_£ib{ £ib) 1001154 oal
_[LES”S'E;S":‘ ' i init Fib(wvoi
utpul
— B Wtiliies.Ist
|— @ Utilities phi o . on12
L— [utilities.r43 Mzin prograa. 001158 OB1Z
I~ Bstdargh — Prints the Fibonacci mumbers. short i = d45;
.y 001153 32402DOC
[stdic.h ot main (void) . roob[o] = root[l
— B sysmach . . 0011SE 1Fd3
L— [Utiliies.h > pEEEEEE | 001160 834F0402
L& 21 Output 001164 824F0202
lam o for { i=3 ; i<MA
proje: =l init £ib(): 01168 2843
Few 047 L 4 han
_ID'”‘EDH Jfal (<] | 3 D
x .
‘ Messages | File | Lme‘

Building configuration: project - Debug
Linkirng

Total number of errors: 0
Total number of wamings: 0

TN

Figure 12: The C-SPY Debugger main window

INSPECTING SOURCE STATEMENTS

I To inspect the source statements, double-click the file Tutor . c in the Workspace
window.

2 With the file Tutor . c displayed in the editor window, first step over with the
Debug>Step Over command.

brrl Alternatively, click the Step Over button on the toolbar.

MSP430 IAR Embedded Workbench® IDE
38 User Guide

Debugging using the IAR C-SPY® Debugger __4

The current position should be the call to the init_£ib function.

tutor.c |

* ZI

Mzin program.
Prints the Fibonacci numbers.

*
woid nain(woid)
i

call_count=0;
5 init_fib():

while| call count < MiX FIE |
i

do_foreground processi);
'
'

of
[« | B

Figure 13: Stepping in C-SPY

Choose Debug>Step Into to step into the function init_£ib.
Alternatively, click the Step Into button on the toolbar.

At source level, the Step Over and Step Into commands allow you to execute your
application a statement or instruction at a time. Step Into continues stepping inside
function or subroutine calls, whereas Step Over executes each function call in a single
step. For further details, see Step, page 118.

When Step Into is executed you will notice that the active window changes to
Utilities.c asthe function init_£ib is located in this file.

Part 2. Tutorials 39

Debugging the application

4 Use the Step Into command until you reach the for loop.

unsigmed int root[MiX FIB]: i

e

Initialize MAX FIB Fibonacci numbers.

*
void init_fib{ woid)
i

short i 45

root[0] = root[l] = 1;
5 for | 128 7 i<ML¥ FIB ; i++)
root[i] = get_fib{i) + get fih(i-1):
i

e

.
[l 1

Return the Fibonacci mumber 'nr'. _ILI
| &

Figure 14: Using Step Into in C-SPY

5 Use Step Over until you are back in the header of the for loop. You will notice that
the step points are on a function call level, not on a statement level.

s You can also step on a statement level. Choose Debug>Next statement to execute one
= statement at a time. Alternatively, click the Next statement button on the toolbar.

Notice how this command differs from the Step Over and the Step Into commands.

INSPECTING VARIABLES

C-SPY allows you to watch variables or expressions in the source code, so that you can
keep track of their values as you execute your application. You can look at a variable in
a number of ways; for example by pointing at it in the source window with the mouse
pointer, or by opening one of the Locals, Watch, Live Watch, or Auto windows. For
more information about inspecting variables, see the chapter Working with variables and
expressions.

Note: When optimization level None is used, all non-static variables will live during
their entire scope and thus, the variables are fully debuggable. When higher levels of
optimizations are used, variables might not be fully debuggable.

Using the Auto window

I Choose View>Auto to open the Auto window.

MSP430 IAR Embedded Workbench® IDE
40 User Guide

Debugging using the IAR C-SPY® Debugger __4

The Auto window will show the current value of recently modified expressions.

Expression | Walue | Location | Type |
i 3 R10 short
rootfi] 0 Mermor:0<208 unsigned int
root <array> Mermor:0x202 unsigned int[10]
get_fib get_fib (0x1134) unsigned int (*)...

Figure 15: Inspecting variables in the Auto window

Keep stepping to see how the values change.

Setting a watchpoint
Next you will use the Watch window to inspect variables.

Choose View>Watch to open the Watch window. Notice that it is by default grouped
together with the currently open Auto window; the windows are located as a rab group.

Set a watchpoint on the variable i using the following procedure: Click the dotted
rectangle in the Watch window. In the entry field that appears, type i and press the
Enter key.

You can also drag a variable from the editor window to the Watch window.
Select the root array in the init_fib function, then drag it to the Watch window.

The Watch window will show the current value of i and root. You can expand the root
array to watch it in more detail.

Expression | Walue | Location | Type |
i 45 R10 short
= root <array> Mermor:0x202 unsigned int[10]
0 Mermory:0x202 unsigned int
Mermory:0x204 unsigned int
Mermory:0<206 unsigned int
Mermory:0x208 unsigned int
Mermory:0<20A unsigned int
Mermory:0<20C unsigned int
Mermory:0<20E unsigned int
Mermory:0<210 unsigned int
Mermor:0x212 unsigned int
Mermor:0x214 unsigned int

Figure 16: Watching variables in the Watch window

Part 2. Tutorials 41

Debugging the application

6 Execute some more steps to see how the values of i and root change.

To remove a variable from the Watch window, select it and press Delete.

SETTING AND MONITORING BREAKPOINTS

The IAR C-SPY Debugger contains a powerful breakpoint system with many features.
For detailed information about the different breakpoints, see The breakpoint system,
page 129.

The most convenient way is usually to set breakpoints interactively, simply by
positioning the insertion point in or near a statement and then choosing the Toggle
Breakpoint command.

I Set a breakpoint on the statement get_fib (i) using the following procedure: First,
click the utilities. c tab in the editor window and click in the statement to position
the insertion point. Then choose Edit>Toggle Breakpoint.

ot Alternatively, click the Toggle Breakpoint button on the toolbar.
E"l

A breakpoint will be set at this statement. The statement will be highlighted and there
will be an X in the margin to show that there is a breakpoint there.

B Utilities.c (Read Dnly) =] 3
/* P . . . o
Initialize MAX FIE Fibonacci numbers.
s
void init_fib{ woid)
([
short i = 45;
root[0] = root[l] = 1;
for [i=2 ; i<MAX_FIE ; i++)
¢ rooc[i] - NN + vev £ibii-1);

'

|fial |’|—/!

Figure 17: Setting breakpoints

To view all defined breakpoints, choose View>Breakpoints to open the Breakpoints
window. You can find information about the breakpoint execution in the Debug Log
window.

Executing up to a breakpoint
2 To execute your application until it reaches the breakpoint, choose Debug>Go.

+++| Alternatively, click the Go button on the toolbar.
L

MSP430 IAR Embedded Workbench® IDE
42 User Guide

Debugging using the IAR C-SPY® Debugger __4

The application will execute up to the breakpoint you set. The Watch window will
display the value of the root expression and the Debug Log window will contain
information about the breakpoint.

Select the breakpoint and choose Edit>Toggle Breakpoint to remove the breakpoint.

DEBUGGING IN DISASSEMBLY MODE

Debugging with C-SPY is usually quicker and more straightforward in C/C++ source
mode. However, if you want to have full control over low-level routines, you can debug
in disassembly mode where each step corresponds to one assembler instruction. C-SPY
lets you switch freely between the two modes.

First reset your application by clicking the Reset button on the toolbar.

Choose View>Disassembly to open the Disassembly window, if it is not already
open.You will see the assembler code corresponding to the current C statement.

Goto I j IMemory j IE

init_fik(); —
0011432 BO125611 call #init_fik

whilei <all count = MAX FIE)

001146 B2500A0O00002 cmp.w #$0ch, &call_courn

00114 0334 Jge 0x1154
do_feregreund processi)

OO114E BO122411 call #do_foreground

001152 Fo3F Jooge Oxllda

001154 3041 ret

oid init_fikbi wveid)

001158 Oalz push.w E10
001158 OBlZ2 push.w E11 hd

AP

Figure 18: Debugging in disassembly mode

Try the different step commands also in the Disassembly window.

Part 2. Tutorials 43

Debugging the application

MONITORING REGISTERS

The Register window lets you monitor and modify the contents of the processor
registers.

Choose View>Register to open the Register window.

I CPU Registers j
PC = Ox113E R11 = 0x0003
8P = OxOSFE R12 = 0x02le
[fISR = 0x0003 R13 = OxOEZE
R4 = OxOE&S R14 = 0x00le
RE = OxlABS R15 = 0x02le
R6 = OxTAZA CYCLECOUNTER = 202
RT = Ox0OAQQ CCTIMER1 = 202
RE = OxSDEO CCTIMER2 = 202
RO = Ox&ECe%
R10 = OxO004

Figure 19: Register window

Step Over to execute the next instructions, and watch how the values change in the
Register window.

Close the Register window.

MONITORING MEMORY

The Memory window lets you monitor selected areas of memory. In the following
example, the memory corresponding to the variable root will be monitored.

Choose View>Memory to open the Memory window.

Make the Utilities.c window active and select root. Then drag it from the C source
window to the Memory window.

The memory contents in the Memory window corresponding to root will be selected.

Gotol j IMemory j |ZI

Olef Q0 Q0 00 00 00 00
QLEG Q0 Q0 00 00 00 00 00 00 o000,
0l£8
Q200
0208
0210
0218 %e 38 Be 56 2c 4a

0220 28 %4 ac 11 54 15 e0 82 (oo Toos

0228 45 a7 e% ek 2a Ge 785 BT E...%nvw. LI

Lix |

Figure 20: Monitoring memory

MSP430 IAR Embedded Workbench® IDE

44 User Guide

Debugging using the IAR C-SPY® Debugger __4

3 To display the memory contents as 16-bit data units, choose the x2 Units command

from the drop-down arrow menu on the Memory window toolbar.

Gotol j IMemory j E
QlAd QOO0 Q000 QOO0 Q000 0000 0000 0000 Q000 ‘:J
Oled QOO0 QOO0 QOO0 QOO0 0000 0000 0000 Q000 =l

OLED Q000 Q000 0000 0000 0000 0000 0000 0000
Q200 0000 :
0210 {ele

foddd 38%e S6Be dalc
22e0 a745 ebeb Gela

1 1

0220
0230 Go7f 38la 0a%s 46%6 265k £807
0240 el8% %7%e 187c e7dd Ga32 0055

0250 aele f7e2 0446 4318 2158 dbld c3cd ‘:J

Figure 21: Displaying memory contents as 16-bit units

If not all of the memory units have been initialized by the init_£ib function of the C
application yet, continue to step over and you will notice how the memory contents will
be updated.

You can change the memory contents by editing the values in the Memory window. Just
place the insertion point at the memory content that you want to edit and type the desired
value.

Close the Memory window.

VIEWING TERMINAL I/O

Sometimes you might need to debug constructions in your application that make use of
stdin and stdout without the possibility of having hardware support. C-SPY lets you
simulate stdin and stdout by using the Terminal I/O window.

Note: The Terminal I/O window is only available in C-SPY if you have linked your
project using the output option With I/O emulation modules. This means that some
low-level routines will be linked that direct stdin and stdout to the Terminal I/O
window, see Linking the application, page 34.

Part 2. Tutorials

45

Debugging the application

I Choose View>Terminal I/O to display the output from the I/O operations.

Terminal I;0 B
Output: Loq file: OFff
1 =
1
2
3
5
8
13
21
34
55 -
K| 3
Input: LCtl codes | Input Mode... |
I— Buffer size: 1]

Figure 22: Output from the I/O operations

The contents of the window depends on how far you have executed the application.

REACHING PROGRAM EXIT
I To complete the execution of your application, choose Debug>Go.
gl Alternatively, click the Go button on the toolbar.

As no more breakpoints are encountered, C-SPY reaches the end of the application and
aprogram exit reached message is printed in the Debug Log window.

Log |

Thu Mar 16 17:37:26 2006 Download completed.

Thu Mar 16 17:37:26 2006: Loaded debugee: Chprojects\Debug\Exel\project] .d43
Thu kar 16 17:37:26 2006: Target reset

Thu kar 16 18:03:21 2006: Prograrm exit reached.

Debug Log I Build x

Figure 23: Reaching program exit in C-SPY

All output from the application has now been displayed in the Terminal I/O window.

4—| If you want to start again with the existing application, choose Debug>Reset, or click
= the Reset button on the toolbar.

2 To exit from C-SPY, choose Debug>Stop Debugging. Alternatively, click the Stop
@l Debugging button on the toolbar. The Embedded Workbench workspace is displayed.

MSP430 IAR Embedded Workbench® IDE
46 User Guide

Debugging using the IAR C-SPY® Debugger __4

C-SPY also provides many other debugging facilities. Some of these—for example
macros and interrupt simulation—are described in the following tutorial chapters.

For further details about how to use C-SPY, see Part 4. Debugging. For reference
information about the features of C-SPY, see Part 7. Reference information and the
online help system.

Part 2. Tutorials 47

Debugging the application

MSP430 IAR Embedded Workbench® IDE
48 User Guide

Mixing C and assembler
modules

In some projects it may be necessary to write certain pieces of source code
in assembler language. The chapter first demonstrates how the compiler can
be helpful in examining the calling convention, which you need to be familiar
with when calling assembler modules from C/C++ modules or vice versa.
Furthermore, this chapter demonstrates how you can easily combine source
modules written in C with assembler modules, but the procedure is applicable
to projects containing source modules written in C++, too.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Examining the calling convention

When writing an assembler routine that will be called from a C routine, it is necessary
to be aware of the calling convention used by the compiler. By creating skeleton code in
C and letting the compiler produce an assembler output file from it, you can study the

produced assembler output file and find the details of the calling convention.

In this example you will make the compiler create an assembler output file from the file
Utilities.c.

I Create a new project in the workspace tutorials used in previous tutorials, and name
the project project2.

2 Add the files Tutor.c and Utilities.c to the project.

To display an overview of the workspace, click the Overview tab available at the bottom
of the Workspace window. To view only the newly created project, click the project2
tab. For now, the project2 view should be visible.

3 To set options, choose Project>Options, and select the General Options category. On
the Target page, choose msp430F149 from the Device drop-down menu.

4 To set options on file level node, in the Workspace window, select the file
Utilities.c.

Choose Project>Options. You will notice that only the C/C++ Compiler and Custom
Build categories are available.

Part 2. Tutorials 49

Adding an assembler module to the project

5 In the C/C++ Compiler category, select Override inherited settings and verify the
following settings:

Page Option
Optimizations Size: None (Best debug support)
List Output assembler file

Include source
Include runtime information (deselected).

Table 5: Compiler options for project2

Note: In this example it is necessary to use a low optimization level when compiling
the code to show local and global variable accesses. If a higher level of optimization is
used, the required references to local variables can be removed. The actual function
declaration is not changed by the optimization level.

6 Click OK and return to the Workspace window.

Compile the file Utilities.c. You can find the output file Utilities.s43 in the
subdirectory projects\debug\list.

8 To examine the calling convention and to see how the C or C++ code is represented in
assembler language, open the file Utilities.s43.

You can now study where and how parameters are passed, how to return to the program
location from where a function was called, and how to return a resulting value. You can
also see which registers an assembler-level routine must preserve.

To obtain the correct interface for your own application functions, you should create
skeleton code for each function that you need.

For more information about the calling convention used in the compiler, see the MSP430
IAR C/C++ Compiler Reference Guide.

Adding an assembler module to the project

This tutorial demonstrates how you can easily create a project containing both assembler
modules and C modules. You will also compile the project and view the assembler
output list file.

SETTING UP THE PROJECT

I Modify project2 by removing the file Utilities.c and adding the file
Utilities.s43 instead..

Note: To view assembler files in the Add files dialog box, choose Project>Add Files
and choose Assembler Files from the Files of type drop-down list.

MSP430 IAR Embedded Workbench® IDE
50 User Guide

Mixing C and assembler modules ___¢

2 Select the project level node in the Workspace window, choose Project>Options. Use
the default settings in the General Options, C/C++ Compiler, and Linker categories.
Select the Assembler category, click the List tab, and select the option Output list file.

Options for node “project2™ E

Category: Factary Settings |

General Options

C/C++ compiler Languagel Output List |Preprocessor| Diagnosticsl Extra Dptionsl
Custom Build v Output list file

Build Actions ¥ Include headsr [Include cross reference

Linker - .

Diebugger ¥ Include listing I~ #defines

FET Debugger [~ #included text I~ Internial symbiols

Simulator ™ Macro definitions I~ Dual line spacing

5 .
¥ Macio ERpANSIONS r Lines/page: ISD—

™ Macro execution info

Tab ing: IB
™ Aszembled lines anly o S
[T Multine code

()3 I Cancel

Figure 24: Assembler settings for creating a list file

Click OK.

3 Select the file utilities.s43 in the Workspace window and choose
Project>Compile to assemble it.

Assuming that the source file was assembled successfully, the fileutilities.r43 will
be created, containing the linkable object code.
Viewing the assembler list file

4 Open the list file by double-clicking the file Utilities.1st available in the Output
folder icon in the Workspace window.

The end of the file contains a summary of errors and warnings that were generated.

For further details of the list file format, see the MSP430 IAR Assembler Reference
Guide.

5 Choose Project>Make to relink project2.

Part 2. Tutorials 51

Adding an assembler module to the project

6 Start C-SPY to run the project2.d43 application and see that it behaves like in the
previous tutorial.

7 Exit the debugger when you are done.

MSP430 IAR Embedded Workbench® IDE
52 User Guide

Using C++

In this chapter, C++ is used to create a C++ class. The class is then used for
creating two independent objects, and the application is built and debugged.
We also show an example of how to set a conditional breakpoint.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Note that, depending on what IAR product package you have installed,
support for C++ may or may not be included. This tutorial assumes that there
is support for C++.

Creating a C++ application
This tutorial will demonstrate how to use the MSP430 IAR Embedded Workbench C++
features. The tutorial consists of two files:

® Fibonacci.cpp creates a class fibonacci that can be used to extract a series of
Fibonacci numbers

® CPPtutor.cpp creates two objects, £ibl and £ib2, from the class fibonacci
and extracts two sequences of Fibonacci numbers using the £ibonacci class.

To demonstrate that the two objects are independent of each other, the numbers are
extracted at different speeds. A number is extracted from £ib1 each turn in the loop
while a number is extracted from £ib2 only every second turn.

The object £ib1 is created using the default constructor while the definition of £ib2
uses the constructor that takes an integer as its argument.
COMPILING AND LINKING THE C++ APPLICATION

I In the workspace tutorials used in the previous chapters, create a new project,
project3.

2 Add the files Fibonacci . cpp and CPPtutor . cpp to project3.

Part 2. Tutorials

Creating a C++ application

3 Choose Project>Options and make sure the following options are selected:

Category Page Option

General Options Target Device: msp430F149
Library Configuration Library: Normal DLIB
C/C++ Compiler Language Embedded C++

Table 6: Project options for Embedded C++ tutorial

All you need to do to switch to the C++ programming language is to select the options
Normal DLIB (C/EC++ Library) and Embedded C++.

4 Choose Project>Make to compile and link your application.

ooo Alternatively, click the Make button on the toolbar. The Make command compiles and
Z links those files that have been modified.

5 Choose Project>Debug to start the IAR C-SPY® Debugger.

SETTING A BREAKPOINT AND EXECUTING TO IT
I Open the CPPtutor.cpp window if it is not already open.

2 To see how the object is constructed, set a breakpoint on the C++ object £ib1 on the
following line:

fibonacci fibl;

#include <iostreams i

#include "Fibonacci.h™

A4 Create two fibonacci objects.
D tfibonacci -
fibonacci £ibZ(7): A4 FibZ starts at fibonacci mumber 7.

A Extract two series of fibonaccl numbers.
for (int i = 1:; i < 30; +Hi)
{

cout << fibl.next():

A I "It is even, we print out the next fibonacci number of
A4 the sequence represented by fibZ.
if (i % 2 == 0}
{
cout <« " " L fibZ.nexti):

) -
Jfal <] |_>|_I

Figure 25: Setting a breakpoint in CPPtutor.cpp

MSP430 IAR Embedded Workbench® IDE
54 User Guide

Using C++ ___4

Choose Debug>Go, or click the Go button on the toolbar.
The cursor should now be placed at the breakpoint.

To step into the constructor, choose Debug>Step Into or click the Step Into button in
the toolbar. Then click Step Out again.

Step Over until the line:
cout << fibl.next();
Step Into until you are in the function next in the file Fibonacci . cpp.

Use the Go to function button in the lower left corner of the editor window to find and
go to the function nth by double-clicking the function name. Set a breakpoint on the
function call nth (n-1) at the line

value = nth(n-1) + nth(n-2);

It can be interesting to backtrace the function calls a few levels down and to examine
the value of the parameter for each function call. By adding a condition to the
breakpoint, the break will not be triggered until the condition is true, and you will be
able to see each function call in the Call Stack window.

To open the Breakpoints window, choose View>Breakpoints. Select the breakpoint in
the Breakpoints window, right-click to open the context menu, and choose Edit to open
the Edit Breakpoints dialog box. Set the value in the SKip count text box to 4 and click
OK.

Close the dialog box.

Looking at the function calls

Choose Debug>Go to execute the application until the breakpoint condition is
fulfilled.

When C-SPY stops at the breakpoint, choose View>Call Stack to open the Call Stack
window.

3 fibonacci:nth(ing

Bnth (3]

[?estart_call_main + 0x4]

Figure 26: Inspecting the function calls

Part 2. Tutorials

55

Creating a C++ application

There are five instances of the function nth displayed on the call stack. Because the Call
Stack window displays the values of the function parameters, you can see the different
values of n in the different function instances.

You can also open the Register window to see how it is updated as you trace the function
calls by double-clicking on the function instances.

PRINTING THE FIBONACCI NUMBERS
I Open the Terminal I/O window from the View menu.
2 Remove the breakpoints and run the application to the end and verify the Fibonacci

sequences being printed.

Terminal I;0 B

Output: Log file: Off

A fibonacci ohjectwas created. o
A fibonacc ohjectthat starts at fibonacc number 7 was created.

1
113
2
32
5
g 34
13

21 55
34

o o

Input: LCtl codes | InputMode...l

I Buffer size: 1]

Figure 27: Printing Fibonacci sequences

MSP430 IAR Embedded Workbench® IDE
56 User Guide

Simulating an interrupt

In this tutorial an interrupt handler for a serial port is added to the project.
The Fibonacci numbers will be read from an on-chip communication
peripheral device (USARTO).

This tutorial will show how the MSP430 IAR C/C++ Compiler interrupt
keyword and the #pragma vector directive can be used. The tutorial will also
show how an interrupt can be simulated using the features that support
interrupts, breakpoints, and macros. Notice that this example does not
describe an exact simulation; the purpose is to illustrate a situation where
C-SPY® macros, breakpoints, and the interrupt system can be useful to
simulate hardware.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Note that interrupt simulation is possible only when you are using the IAR
C-SPY Simulator.

Adding an interrupt handler

This section will demonstrate how to write an interrupt in an easy way. It starts with a
brief description of the application used in this project, followed by a description of how
to set up the project.

THE APPLICATION—A BRIEF DESCRIPTION

The interrupt handler will read values from the serial communication port receive
register (USARTO), uorxBUF. It will then print the value. The main program enables
interrupts and starts printing periods (.) in the foreground process while waiting for
interrupts.

Part 2. Tutorials

57

Setting up the simulation environment

WRITING AN INTERRUPT HANDLER

The following lines define the interrupt handler used in this tutorial (the complete source
code can be found in the file Interrupt.c supplied in the 430\ tutor directory):

/* define the interrupt handler */
#pragma vector=USARTORX_VECTOR
__interrupt void uartRecieveHandler (void)

The #pragma vector directive is used for specifying the interrupt vector address—in
this case the interrupt vector for the USARTO receive interrupt—and the keyword
__interrupt is used for directing the compiler to use the calling convention needed
for an interrupt function.

For detailed information about the extended keywords and pragma directives used in
this tutorial, see the MSP430 IAR C/C++ Compiler Reference Guide.
SETTING UP THE PROJECT

I Add anew project—project4—to the workspace tutorials used in previous
tutorials.

2 Addthe filesutilities.c and Interrupt.c toit.

3 In the Workspace window, select the project level node, and choose
Project>Options. Select the General Options category, and click the Target tab.
Choose msp430F149 from the Core drop-down menu.

In addition, make sure the factory settings are used in the C/C++ Compiler and Linker
categories.

Next you will set up the simulation environment.

Setting up the simulation environment

The C-SPY interrupt system is based on the cycle counter. You can specify the amount
of cycles to pass before C-SPY generates an interrupt.

To simulate the input to USARTO, values will be read from the file InputData. txt,

which contains the Fibonacci series. You will set an immediate read breakpoint on the
USARTO receive register, UORXBUF, and connect a user-defined macro function to it (in
this example the Access macro function). The macro reads the Fibonacci values from
the text file.

Whenever an interrupt is generated, the interrupt routine will read UORXBUF and the
breakpoint will be triggered, the Access macro function will be executed and the
Fibonacci values will be fed into the USARTO receive register.

MSP430 IAR Embedded Workbench® IDE
58 User Guide

Simulating an interrupt ___¢

The immediate read breakpoint will trigger the break before the processor reads the
UORXBUF register, allowing the macro to store a new value in the register that is
immediately read by the instruction.

This section will demonstrate the steps involved in setting up the simulator for
simulating a serial port interrupt. The steps involved are:

e Defining a C-SPY setup file which will open the file InputData. txt and define
the Access macro function

Specitying C-SPY options

Building the project

Starting the simulator

Specifying the interrupt request

Setting the breakpoint and associating the Access macro function to it.

Note: For a simple example of a system timer interrupt simulation, see Simulating a
simple interrupt, page 186.

DEFINING A C-SPY SETUP MACRO FILE

In C-SPY, you can define setup macros that will be registered during the C-SPY startup
sequence. In this tutorial you will use the C-SPY macro file SetupSimple.mac,
available in the 430\ tutor directory. It is structured as follows:

First the setup macro function execUserSetup is defined, which is automatically
executed during C-SPY setup. Thus, it can be used to set up the simulation environment
automatically. A message is printed in the Log window to confirm that this macro has
been executed:

execUserSetup ()
{

__message "execUserSetup() called\n";

Then the file InputData. txt, which contains the Fibonacci series to be fed into
USARTO, will be opened:

_fileHandle = __openFile(
"$TOOLKIT_DIRS\\tutor\\InputData.txt", "r");

Part 2. Tutorials 59

Setting up the simulation environment

After that, the macro function Access is defined. It will read the Fibonacci values from
the file InputData. txt, and assign them to the receive register address:

Access ()
{
__message "Access () called\n";
__var _fibvalue;
if(0 == __readFile(_fileHandle, &_fibvalue))
{
UORXBUF = _fibvValue;

}

You will have to connect the Access macro to an immediate read breakpoint. However,
this will be done at a later stage in this tutorial.

Finally, the file contains two macro functions for managing correct file handling at reset
and exit.

For detailed information about macros, see the chapters Using the C-SPY® macro
system and C-SPY® macros reference.

Next you will specify the macro file and set the other C-SPY options needed.

SPECIFYING C-SPY OPTIONS

I To select C-SPY options, choose Project>Options. In the Debugger category, click
the Setup tab.

2 Use the Use macro file browse button to specify the macro file to be used:
SetupSimple.mac
Alternatively, use an argument variable to specify the path:

STOOLKIT_DIRS$\tutor\SetupSimple.mac

MSP430 IAR Embedded Workbench® IDE
60 User Guide

Simulating an interrupt ___¢

See Argument variables summary, page 279, for details.

Options for node “project4™ [%]

Category: Factary Settings |

General Options

C/C++ compiler Setup | Extra Dptionsl F'Iuginsl
Azzembler .
Custom Build - Driver ¥ Bunto
Build &ctions - -
Simulator =
Linker I J Imaln
i Debugger
FET Debugger — Setup macro
Simulator ¥ Use macra file
I$TDDLKIT_DIF|$\tut0r\SetupSimpIe.mac J

— Device description file
[T Overide default
I$TDDLKIT_DIF|$\config\MSP430F1 49.ddf J

()3 I Cancel |

Figure 28: Specifying setup macro file

Set the Device description file option to msp430F149 .dd£. This file provides
interrupt definitions which are needed by the interrupt system.

Select Run to main and click OK. This will ensure that the debug session will start by
running to the main function.

The project is now ready to be built.

BUILDING THE PROJECT
Compile and link the project by choosing Project>Make.

Alternatively, click the Make button on the toolbar. The Make command compiles and
links those files that have been modified.

STARTING THE SIMULATOR
Start the IAR C-SPY Debugger to run the project4 project.

The Interrupt.c window is displayed (among other windows). Click in it to make it the
active window.

Part 2. Tutorials

61

Setting up the simulation environment

2 Examine the Log window. Note that the macro file has been loaded and that the
execUserSetup function has been called.
SPECIFYING A SIMULATED INTERRUPT
Now you will specify your interrupt to make it simulate an interrupt every 2000 cycles.

I Choose Simulator>Interrupt Setup to display the Interrupt Setup dialog box. Click
New to display the Edit Interrupt dialog box and make the following settings for your

interrupt:

Setting Value Description

Interrupt USARTORX_VECTOR Specifies which interrupt to use; the name is defined
in the A4f file.

Description As is The interrupt definition that the simulator uses to be
able to simulate the interrupt correctly.

First activation 4000 Specifies the first activation moment for the
interrupt. The interrupt is activated when the cycle
counter has passed this value.

Repeat Interval 2000 Specifies the repeat interval for the interrupt,
measured in clock cycles.

Hold time Infinite Hold time, not used here.

Probability % 100 Specifies probability. 100% specifies that the
interrupt will occur at the given frequency. Another
percentage might be used for simulating a more
random interrupt behavior.

Variance % 0 Time variance, not used here.

Table 7: Interrupts dialog box

MSP430 IAR Embedded Workbench® IDE
62 User Guide

Simulating an interrupt ___¢

Interrupt:
IUSAHTDHX_VEETDH j
Drescription: Cancel |

IDx‘I2 2 [ET.URKIED IFG1.URXIFGO

First activatior:

2000 Hold tirne
& Infirite
Fiepeat interval:
r
[2000 r
Wariance [%]: Probability [%]:
Jo = [100 =]

Figure 29: Inspecting the interrupt settings

During execution, C-SPY will wait until the cycle counter has passed the activation
time. When the current assembler instruction is executed, C-SPY will generate an
interrupt which is repeated approximately every 2000 cycles.

When you have specified the settings, click OK to close the Edit Interrupt dialog box,
and then click OK to close the Interrupt Setup dialog box.

For information about how you can use the system macro __orderInterrupt ina
C-SPY setup file to automate the procedure of defining the interrupt, see Using macros
for interrupts and breakpoints, page 65.

SETTING AN IMMEDIATE BREAKPOINT

By defining a macro and connecting it to an immediate breakpoint, you can make the
macro simulate the behavior of a hardware device, for instance an I/O port, as in this
tutorial. The immediate breakpoint will not halt the execution, only temporarily suspend
it to check the conditions and execute any connected macro.

In this example, the input to the USARTO is simulated by setting an immediate read
breakpoint on the UORXBUF address and connecting the defined Access macro to it. The
macro will simulate the input to the USARTO. These are the steps involved:

Choose View>Breakpoints to open the Breakpoints window, right-click to open the
context menu, choose New Breakpoint>Immediate to open the Immediate tab.

Add the following parameters for your breakpoint.

Setting Value Description
Break at UORXBUF Receive buffer address.
Access Type Read The breakpoint type (Read or Write)

Table 8: Breakpoints dialog box

Part 2. Tutorials 63

Simulating the interrupt

Setting Value Description

Action Access () The macro connected to the breakpoint.

Table 8: Breakpoints dialog box (Continued)

During execution, when C-SPY detects a read access from the UORXBUF address, C-SPY
will temporarily suspend the simulation and execute the Access macro. The macro will
read a value from the file InputData. txt and write it to UORXBUF. C-SPY will then
resume the simulation by reading the receive buffer value in UORXBUF.

3 Click OK to close the breakpoints dialog box.

For information about how you can use the system macro __setSimBreak in a C-SPY
setup file to automate the breakpoint setting, see Using macros for interrupts and
breakpoints, page 65.

Simulating the interrupt

In this section you will execute your application and simulate the serial port interrupt.

EXECUTING THE APPLICATION

I Step through the application and stop when it reaches the while loop, where the
application waits for input.

In the Interrupt.c source window, locate the function uartReciveHandler.

Place the insertion point on the ++callCount; statement in this function and set a
breakpoint by choosing Edit>Toggle Breakpoint, or click the Toggle Breakpoint
button on the toolbar. Alternatively, use the context menu.

If you want to inspect the details of the breakpoint, choose Edit>Breakpoints.

4 Open the Terminal I/O window and run your application by choosing Debug>Go or
clicking the Go button on the toolbar.

The application should stop in the interrupt function.

5 Click Go again in order to see the next number being printed in the Terminal I/O
window.

Because the main program has an upper limit on the Fibonacci value counter, the tutorial
application will soon reach the exit label and stop.

MSP430 IAR Embedded Workbench® IDE
64 User Guide

Simulating an interrupt ___¢

The Terminal I/O window will display the Fibonacci series.

Log file: Off

=

< _>l_I
Input: LCtl codes | InputMode...l

I Buffer size: 1]

Figure 30: Printing the Fibonacci values in the Terminal I/O window

Using macros for interrupts and breakpoints

To automate the setting of breakpoints and the procedure of defining interrupts, the
system macros __setSimBreak and __orderInterrupt, respectively, can be
executed by the setup macro execUserSetup.

The file SetupAdvanced.mac is extended with system macro calls for setting the
breakpoint and specifying the interrupt:

SimulationSetup ()

{...
_interruptID = _ _orderInterrupt("USARTORX_VECTOR", 4000,
2000, 0, 1, 0, 100);

if(-1 == _interruptID)
{

__message "ERROR: failed to order interrupt";

_breakID = __setSimBreak("UORXBUF", "R", "Access ()");

}

By replacing the file SetupSimple.mac, used in the previous tutorial, with the file
SetupAdvanced.mac, setting the breakpoint and defining the interrupt will be
automatically performed at C-SPY startup. Thus, you do not need to start the simulation
by manually filling in the values in the Interrupts and Breakpoints dialog boxes.

Part 2. Tutorials 65

Using macros for interrupts and breakpoints

Note: Before you load the file SetupAdvanced.mac you should remove the
previously defined breakpoint and interrupt.

MSP430 IAR Embedded Workbench® IDE
66 User Guide

Working with library
modules

This tutorial demonstrates how to create library modules and how you can
combine an application project with a library project.

This tutorial assumes that you are familiar with the basics of the IAR
Embedded Workbench® IDE described in the previous tutorial chapters.

Using libraries

If you are working on a large project you will soon accumulate a collection of useful
routines that are used by several of your applications. To avoid having to assemble a
routine each time the routine is needed, you can store such routines as object files, that
is, assembled but not linked.

A collection of routines in a single object file is referred to as a library. It is
recommended that you use library files to create collections of related routines, such as
a device driver.

Use the IAR XAR Library Builder to build libraries. The IAR XLIB Librarian lets you
manipulate libraries. It allows you to:

e Change modules from PROGRAM to LIBRARY type, and vice versa
o Add or remove modules from a library file
e List module names, entry names, etc.

The Main.s43 program

The Main.s43 program uses a routine called r_shi £t to right-shift the contents of the
register R4 the number of times of the value stored in register R5. The result is returned
in R4. The EXTERN directive declares r_shift as an external symbol, to be resolved at
link time.

A copy of the program is provided in the 430\ tutor directory.

Part 2. Tutorials

67

Using libraries

The library routines

The two library routines will form a separately assembled library. It consists of the
r_shift routine called by main, and a corresponding 1_shi ft routine, both of which
operate on the contents of the registers A and B and return the result in A. The file
containing these library routines is called Shifts.s43, and a copy is provided with the
product.

The routines are defined as library modules by the MODULE directive, which instructs the
IAR XLINK Linker to include the modules only if they are referenced by another
module.

The puBLIC directive makes the r_shift and 1_shi ft entry addresses public to other
modules.

For detailed information about the MODULE and PUBLIC directives, see the MSP430 IAR
Assembler Reference Guide.
CREATING A NEW PROJECT

I In the workspace tutorials used in previous chapters, add a new project called
projects.

2 Add the file Main. s43 to the new project.

To set options, choose Project>Options. Select the General Options category and
click the Library Configuration tab. Choose None from the Library drop-down list,
which means that a standard C/C++ library will not be linked.

The default options are used for the other option categories.
4 To assemble the file Main.s43, choose Project>Compile.

BE You can also click the Compile button on the toolbar.

CREATING A LIBRARY PROJECT

Now you are ready to create a library project.
I In the same workspace tutorials, add a new project called tutor_library.
2 Add the file shift.s43 to the project.

To set options, choose Project>Options. In the General Options category, verify the
following settings:

Page Option

Output Output file: Library

Table 9: XLINK options for a library project

MSP430 IAR Embedded Workbench® IDE
68 User Guide

Working with library modules ___¢

Page Option

Library Configuration Library: None

Table 9: XLINK options for a library project (Continued)

Note that Library Builder appears in the list of categories, which means that the IAR
XAR Library Builder is added to the build tool chain. It is not necessary to set any
XAR-specific options for this tutorial.

Click OK.
Choose Project>Make.

The library output file tutor_library.r43 has now been created.

USING THE LIBRARY IN YOUR APPLICATION PROJECT
You can now add your library containing the shift routine to project5.

In the Workspace window, click the project5 tab. Choose Project>Add Files and add
the file tutor_library.r43 located in the projects\Debug\Exe directory. Click
Open.

Click Make to build your project.

You have now combined a library with an executable project, and the application is
ready to be executed. For information about how to manipulate the library, see the JAR
Linker and Library Tools Reference Guide.

Part 2. Tutorials

69

Using libraries

MSP430 IAR Embedded Workbench® IDE
70 User Guide

Part 3. Project
management and building

This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

e The development environment
e Managing projects
o Building

e Editing.

~

.hmuiuhhhi

ARARAIed

72

The development
environment

This chapter introduces you to the IAR Embedded Workbench® development
environment (IDE). The chapter also demonstrates how you can customize

the environment to suit your requirements.

The IAR Embedded Workbench IDE

The IAR Embedded Workbench IDE is the framework where all necessary tools are
seamlessly integrated: a C/C++ compiler, an assembler, the IAR XLINK Linker, the
IAR XAR Library Builder, the IAR XLIB Librarian, an editor, a project manager with
Make utility, and the IAR C-SPY® Debugger, a high-level language debugger.

The compiler, assembler, and linker can also be run from a command line environment,
if you want to use them as external tools in an already established project environment.

Part 3. Project management and building 73

The IAR Embedded Workbench IDE

This illustration shows the IAR Embedded Workbench IDE window with different

components.
7% 1AR Embedded Workbench IDE [_ O] %]
Menu bar — Fie Edt Wew Project Tools Window Help
Toolbar — | DEEHE@ &5 2@ o Ay vumEe ®E0H EEEESD
e [rutor.c
Debug Ll
=T T Increase the 'call count' variable.
i project -Debug [+ I WY Get and print the assiciated Fibonacei mumber.
Fa B Tutore void do_foreground_process (void)
| F= 0 ouput (— 1 Editor
| =B Tuarh unsigned int fib; window
| L— B uiilities h next_counter();
[Utilities.c fib - ger_fib[call_count) ;
L@ G utput put_fib{ fib);
i
Workspace
window — 7+
Main program.
Prints the Fibonacci mmbers.
4
void nain(void)
{
call_count = 0;
init_fib(};
while [call_count < MAX_FIB)
do_foreground_process()
i
Owerview piojsct] | projsct2 |Ft)| |‘| | »
* | Messages File ‘ Lmel
Building configuration: project! - Debug
Caonfiguration is up-to-date
Messages
windows
Buid [Debug Log: Too] Output
Status bar — ready Ln3s, Col31 UM 4

Figure 31: IAR Embedded Workbench IDE window

The window might look different depending on what additional tools you are using.

RUNNING THE IAR EMBEDDED WORKBENCH IDE

Click the Start button on the taskbar and choose All Programs>IAR Systems>IAR
Embedded Workbench for MSP430 V3>IAR Embedded Workbench.

The file TarIdePm. exe is located in the common\bin directory under your IAR
installation, in case you want to start the program from the command line or from within
Windows Explorer.

MSP430 IAR Embedded Workbench® IDE
74 User Guide

The development environment ___¢

Double-clicking the workspace filename

The workspace file has the filename extension eww. If you double-click a workspace
filename, the AR Embedded Workbench IDE starts. If you have several versions of [AR
Embedded Workbench installed, the workspace file will be opened by the most recently
used version of your IAR Embedded Workbench that uses that file type.

EXITING

To exit the IAR Embedded Workbench IDE, choose File>Exit. You will be asked
whether you want to save any changes to editor windows, the projects, and the
workspace before closing them.

Customizing the environment

The IAR Embedded Workbench IDE is a highly customizable environment. This section
demonstrates how you can work with and organize the windows on the screen, the
possibilities for customizing the IDE, and how you can set up the environment to
communicate with external tools.

ORGANIZING THE WINDOWS ON THE SCREEN

In the IAR Embedded Workbench IDE, you can position the windows and arrange a
layout according to your preferences. You can dock windows at specific places, and
organize them in tab groups. You can also make a window floating, which means it is
always on top of other windows. If you change the size or position of a floating window,
other currently open windows are not affected.

Each time you open a previously saved workspace, the same windows are open, and they
have the same sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved.
In addition to the information saved for the workspace, information about all open
debugger-specific windows is also saved.

Using docked versus floating windows

Each window that you open has a default location, which depends on other currently
open windows. To give you full and convenient control of window placement, each
window can either be docked or floating.

Part 3. Project management and building 75

Customizing the environment

A docked window is locked to a specific area in the Embedded Workbench main
window, which you can decide. To keep many windows open at the same time, you can
organize the windows in tab groups. This means one area of the screen is used for several
concurrently open windows. The system also makes it easy to rearrange the size of the
windows. If you rearrange the size of one docked window, the sizes of any other docked
windows are adjusted accordingly.

A floating window is always on top of other windows. Its location and size does not
affect other currently open windows. You can move a floating window to any place on
your screen, also outside of the IAR Embedded Workbench IDE main window.

Note: The editor window is always docked. When you open the editor window, its
placement is decided automatically depending on other currently open windows. For
more information about how to work with the editor window, see Using the IAR
Embedded Workbench editor, page 95.

Organizing windows
To place a window as a separate window, drag it next to another open window.

To place a window in the same tab group as another open window, drag the window you
want to locate to the middle of the area and drop the window.

To make a window floating, double-click on the window’s title bar.

9 The status bar, located at the bottom of the IAR Embedded Workbench IDE main
window, contains useful help about how to arrange windows.

CUSTOMIZING THE IDE

To customize the IDE, choose Tools>Options to get access to a vide variety of
commands for:

Configuring the editor

Configuring the editor colors and fonts

Configuring the project build command

Organizing the windows in C-SPY

Using an external editor

Changing common fonts

Changing key bindings

Configuring the amount of output to the Messages window.

In addition, you can increase the number of recognized filename extensions. By default,
each tool in the build tool chain accepts a set of standard filename extensions. If you
have source files with a different filename extension, you can modify the set of accepted
filename extensions. Choose Tools>Filename Extensions to get access to the necessary
commands.

MSP430 IAR Embedded Workbench® IDE
76 User Guide

The development environment ___¢

For reference information about the commands for customizing the IDE, see Tools
menu, page 286. You can also find further information related to customizing the editor
in the section Customizing the editor environment, page 101. For further information
about customizations related to C-SPY, see Part 4. Debugging.

COMMUNICATING WITH EXTERNAL TOOLS

The Tools menu is a configurable menu to which you can add external tools for
convenient access to these tools from within the IAR Embedded Workbench IDE. For
this reason, the menu might look different depending on which tools you have

preconfigured to appear as menu commands.

To add an external tool to the menu, choose Tools>Configure Tools to open the

Configure Tools dialog box.

Configure Tools

Menu Content:

Menu Text:
I&N otepad

Command:
IE:\W’INNT\Notepad.exe

Argument:

Initial Directary:

™ Redirect to Output \Window

™ Prampt for Cormand Line

Tool Available:

IAIways j

Cancel

Remove

=
g
=

Browse... |

Figure 32: Configure Tools dialog box

For reference information about this dialog box, see Configure Tools dialog box, page

303.

Part 3. Project management and building 77

Customizing the environment

After you have entered the appropriate information and clicked OK, the menu command
you have specified is displayed on the Tools menu.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 33: Customized Tools menu

Note: If you intend to add an external tool to the standard build tool chain, see
Extending the tool chain, page 93.
Adding command line commands

Command line commands and calls to batch files must be run from a command shell.
You can add command line commands to the Tools menu and execute them from there.

I To add commands to the Tools menu, you must specify an appropriate command shell.
Type one of the following command shells in the Command text box:

System Command shell

Windows 98/Me command . com

Windows NT/2000/XP cmd. exe (recommended) or command . com

Table 10: Command shells
2 Specify the command line command or batch file name in the Argument text box.
The Argument text should be specified as:
/C name
where name is the name of the command or batch file you want to run.
The /c option terminates the shell after execution, to allow the IAR Embedded
Workbench IDE to detect when the tool has finished.
Example

To add the command Backup to the Tools menu to make a copy of the entire project
directory to a network drive, you would specifty Command either as command . cmd or
as cmd . exe depending on your host environment, and Argument as:

/C copy c:\project*.* F:
Alternatively, to use a variable for the argument to allow relocatable paths:

/C copy S$PROJ_DIRS*.* F:

MSP430 IAR Embedded Workbench® IDE
78 User Guide

Managing projects

This chapter discusses the project model used by the IAR Embedded
Workbench IDE. It covers how projects are organized and how you can specify
workspaces with multiple projects, build configurations, groups, source files,
and options that help you handle different versions of your applications. The
chapter also describes the steps involved in interacting with an external
third-party source code control system.

The project model

In a large-scale development project, with hundreds of files, you must be able to
organize the files in a structure that is easily navigated and maintained by perhaps
several engineers involved.

The IAR Embedded Workbench IDE is a flexible environment for developing projects
also with a number of different target processors in the same project, and a selection of
tools for each target processor.

HOW PROJECTS ARE ORGANIZED

The IAR Embedded Workbench IDE has been designed to suit the way that software
development projects are typically organized. For example, perhaps you need to develop
related versions of an application for different versions of the target hardware, and you
might also want to include debugging routines into the early versions, but not in the final
application.

Versions of your applications for different target hardware will often have source files
in common, and you might want to be able to maintain only one unique copy of these
files, so that improvements are automatically carried through to each version of the
application. Perhaps you also have source files that differ between different versions of
the application, such as those dealing with hardware-dependent aspects of the
application.

The IAR Embedded Workbench IDE allows you to organize projects in a hierarchical
tree structure showing the logical structure at a glance. In the following sections the
different levels of the hierarchy are described.

Part 3. Project management and building

79

The project model

Projects and workspaces

Typically you create a project which contains the source files needed for your embedded
systems application. If you have several related projects, you can access and work with
them simultaneously. To achieve this, you can organize related projects in workspaces.

Each workspace you define can contain one or more projects, and each project must be
part of at least one workspace.

Consider this example: two related applications—for instance A and B—will be
developed, requiring one development team each (team A and B). Because the two
applications are related, parts of the source code can be shared between the applications.
The following project model can be applied:

o Three projects—one for each application, and one for the common source code
o Two workspaces—one for team A and one for team B.

It is both convenient and efficient to collect the common sources in a library project
(compiled but not linked object code), to avoid having to compile it unnecessarily.

Development team A Development team B

Appl.
B

Appl.
A

Project for application A Project for application B

Utility
library

Library project for
common sources

Workspace for team A Workspace for team B
m Project for application A m Project for application B
m Project for utility library m Project for utility library

Figure 34: Examples of workspaces and projects

MSP430 IAR Embedded Workbench® IDE
80 User Guide

Managing projects °

For an example where a library project has been combined with an application project,
see the chapter Working with library modules in Part 2. Tutorials.

Projects and build configurations

Often, you need to build several versions of your project. The Embedded Workbench
lets you define multiple build configurations for each project. In a simple case, you
might need just two, called Debug and Release, where the only differences are the
options used for optimization, debug information, and output format. In the Release
configuration, the preprocessor symbol NDEBUG is defined, which means the application
will not contain any asserts.

Additional build configurations can be useful, for instance, if you intend to use the
application on different target devices. The application is the same, but hardware-related
parts of the code differ. Thus, depending on which target device you intend to build for,
appropriate source files can be excluded from the build configuration. The following
build configurations might fulfil these requirements for Project A:

e Project A - Device 1:Release
e Project A - Device 1:Debug
e Project A - Device 2:Release
e Project A - Device 2:Debug

Groups

Normally, projects contain hundreds of files that are logically related. You can define
each project to contain one or more groups, in which you can collect related source files.
You can also define multiple levels of subgroups to achieve a logical hierarchy. By
default, each group is present in all build configurations of the project, but you can also
specity a group to be excluded from a particular build configuration.

Source files

Source files can be located directly under the project node or in a hierarchy of groups.
The latter is convenient if the amount of files makes the project difficult to survey. By
default, each file is present in all build configurations of the project, but you can also
specity a file to be excluded from a particular build configuration.

Only the files that are part of a build configuration will actually be built and linked into
the output code.

Once a project has been successfully built, all include files and output files are displayed
in the structure below the source file that included or generated them.

Part 3. Project management and building 81

The project model

82

Note: The settings for a build configuration can affect which include files that will be
used during compilation of a source file. This means that the set of include files
associated with the source file after compilation can differ between the build
configurations.

CREATING AND MANAGING WORKSPACES

This section describes the overall procedure for creating the workspace, projects,
groups, files, and build configurations. The File menu provides the commands for
creating workspaces. The Project menu provides commands for creating projects,
adding files to a project, creating groups, specifying project options, and running the
IAR Systems development tools on the current projects.

For reference information about these menus, menu commands, and dialog boxes, see
the chapter JAR Embedded Workbench® IDE reference.

The steps involved for creating and managing a workspace and its contents are:
e Creating a workspace.

An empty Workspace window appears, which is the place where you can view your
projects, groups, and files.

o Adding new or existing projects to the workspace.

When creating a new project, you can base it on a template project with
preconfigured project settings. There are template projects available for C
applications, C++ applications, assembler applications, and library projects.

o Creating groups.

A group can be added either to the project’s top node or to another group within the
project.

o Adding files to the project.
A file can be added either to the project’s top node or to a group within the project.
e Creating new build configurations.

By default, each project you add to a workspace will have two build configurations
called Debug and Release.

You can base a new configuration on an already existing configuration. Alternatively,
you can choose to create a default build configuration.

Note that you do not have to use the same tool chain for the new build configuration
as for other build configurations in the same project.

e Excluding groups and files from a build configuration.

MSP430 IAR Embedded Workbench® IDE

User Guide

Managing projects °

Note that the icon indicating the excluded group or file will change to white in the
Workspace window.

e Removing items from a project.
For a detailed example, see Creating an application project, page 25.

Note: It might not be necessary for you to perform all of these steps.

Drag and drop

You can easily drag individual source files and project files from the Windows file
explorer to the Workspace window. Source files dropped on a group will be added to that
group. Source files dropped outside the project tree—on the Workspace window
background—will be added to the active project.

Source file paths

The IAR Embedded Workbench IDE supports relative source file paths to a certain
degree.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IAR Embedded Workbench IDE will use a path relative to the project
file when accessing the source file.

Navigating project files

There are two main different ways to navigate your project files: using the Workspace
window or the Source Browser window. The Workspace window displays an
hierarchical view of the source files, dependency files, and output files and how they are
logically grouped. The Source Browser window, on the other hand, displays information
about the build configuration that is currently active in the Workspace window. For that
configuration, the Source Browser window displays a hierarchical view of all globally
defined symbols, such as variables, functions, and type definitions. For classes,
information about any base classes is also displayed.

Part 3. Project management and building 83

Navigating project files

VIEWING THE WORKSPACE

The Workspace window is where you access your projects and files during the
application development.

Choose which project you want to view by clicking its tab at the bottom of the
Workspace window.

Tabs for
choosing
workspace
display

IDebug 'l

Files EEHES

ST projecti -Dobug= v ||
=1 B Tutar.c «
| e Caoutput
| — [Tutar st
| — [Tutor.phi
| L & Tutar.r43
| — B Tutorh
| — B Utilities.h
[Utilities.c v
L@ Ca Output
&1 [# project! .d43
@ 2 Output
— [cl430fr43
— [l Ink430F1 49 xc]
— [multiplierxcl
— [Tutar.rd3
L— [Utilities.r43
L— [& praject!.map

Configuration
drop-down
menu

Indicator for
errors detected
during build

Indicator for
option overrides
on file node

Owverview project] Iproiect2| proiect3| projectd 4 | >|

Figure 35: Displaying a project in the Workspace window

For each file that has been built, an output folder icon appears, containing generated
files, such as object files and list files. The latter is generated only if the list file option
is enabled. There is also an output folder related to the project node that contains
generated files related to the whole project, such as the executable file and the linker
map file (if the list file option is enabled).

Also, any included header files will appear, showing dependencies at a glance.

To display the project with a different build configuration, choose that build
configuration from the drop-down list at the top of the Workspace window.

The project and build configuration you have selected are displayed highlighted in the
Workspace window. It is the project and build configuration that is selected from the
drop-down list that will be built when you build your application.

MSP430 IAR Embedded Workbench® IDE

84 User Guide

Managing projects °

3 To display an overview of all projects in the workspace, click the Overview tab at the
bottom of the Workspace window.

An overview of all project members is displayed.

IDebug 'l

Filas I““Im-l a |
B [Elproject! - Debug

- m--n
= [utilities.c

L@ 3 Output

Owverview project] Iproiect2|

Figure 36: Workspace window—an overview

The current selection in the Build Configuration drop-down list is also highlighted
when an overview of the workspace is displayed.

DISPLAYING BROWSE INFORMATION

To display browse information in the Source Browser window, choose
Tools>Options>Project and select the option Generate browse information.

To open the Source Browser window, choose View>Source Browser. The Source
Browser window is by default docked with the Workspace window. Source browse
information is displayed for the active build configuration. For reference information,
see Source Browser window, page 253.

Note that you can choose a file filter and a type filter from the context menu that appears
when you right-click in the top pane of the window.

To see the definition of a global symbol or a function, there are three alternative methods
that you can use:

e In the Source Browser window, right-click on a symbol, or function, and choose the
Go to definition command from the context menu that appears

o In the Source Browser window, double-click on a row

e In the editor window, right-click on a symbol, or function, and choose the Go to
definition command from the context menu that appears.

The definition of the symbol or function is displayed in the editor window.

Part 3. Project management and building 85

Source code control

86

The source browse information is continuously updated in the background. While you
are editing source files, or when you open a new project, there will be a short delay
before the information is up-to-date.

Source code control

IAR Embedded Workbench can identify and access any installed third-party source code
control (SCC) systems that conform to the SCC interface published by Microsoft
corporation. From within the IDE you can connect an IAR Embedded Workbench
project to an external SCC project, and perform some of the most commonly used
operations.

To connect your IAR Embedded Workbench project to a source code control system you
should be familiar with the source code control client application you are using. Note
that some of the windows and dialog boxes that appear when you work with source code
control in IAR Embedded Workbench originate from the SCC system and is not
described in the documentation from IAR Systems. For information about details in the
client application, refer to the documentation supplied with that application.

Note: Different SCC systems use very different terminology even for some of the most
basic concepts involved. It is important to keep this in mind when reading the
description below.

INTERACTING WITH SOURCE CODE CONTROL SYSTEMS

In any SCC system, you use a client application to maintain a central archive. In this
archive you keep the working copies of the files of your project. The SCC integration in
IAR Embedded Workbench allows you to conveniently perform a few of the most
common SCC operations directly from within the IDE. However, several tasks must still
be performed in the client application.

To connect an IAR Embedded Workbench project to a source code control system, you
should:

e In the SCC client application, set up an SCC project
e In IAR Embedded Workbench, connect your project to the SCC project.

Setting up an SCC project in the SCC client application

Use your SCC client tools to set up a working directory for the files in your AR
Embedded Workbench project that you want to control using your SCC system. The
files can be placed in one or more nested subdirectories, all located under a common
root. Specifically, all the source files must reside in the same directory as the ewp project
file, or nested in subdirectories of this directory.

MSP430 IAR Embedded Workbench® IDE

User Guide

Managing projects °

For information about the steps involved, refer to the documentation supplied with the
SCC client application.

Connecting projects in IAR Embedded Workbench
In IAR Embedded Workbench, connect your application project to the SCC project.

In the Workspace window, select the project for which you have created an SCC
project. From the Project menu, choose Source Code Control>Add Project To
Source Control. This command is also available from the context menu that appears
when you right-click in the Workspace window.

Note: The commands on the Source Code Control submenu are available when there
is at least one SCC client application available.

If you have source code control systems from different vendors installed, a dialog box
will appear to let you choose which system you want to connect to.

An SCC-specific dialog box will appear where you can navigate to the proper SCC
project that you have set up.

Viewing the SCC states

When your IAR Embedded Workbench project has been connected to the SCC project,
a column that contains status information for source code control will appear in the
‘Workspace window. Different icons will be displayed depending on whether:

a file is checked out to you

a file is checked out to someone else

a file is checked in

a file has been modified

there is a new version of a file in the archive.

There are also icons for some combinations of these states. Note that the interpretation
of these states depends on the SCC client application you are using. For reference
information about the icons and the different states they represent, see Source code
control states, page 244.

For reference information about the commands available for accessing the SCC system,
see Source Code Control menu, page 243.
Configuring the source code control system

To customize the source code control system, choose Tools>Options and click the
Source Code Control tab. For reference information about the available commands, see
Terminal 1/0 page, page 299.

Part 3. Project management and building 87

Source code control

MSP430 IAR Embedded Workbench® IDE
88 User Guide

Building

This chapter briefly discusses the process of building your application, and
describes how you can extend the chain of build tools with tools from
third-party suppliers.

Building your application

The building process consists of the following steps:

e Setting project options
e Building the project
o Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This
gives you the possibility to perform several builds in one operation.

In addition to use the IAR Embedded Workbench IDE for building projects, it is also
possible to use the command line utility iarbuild.exe for building projects.

For examples of building application and library projects, see Part 2. Tutorials in this
guide. For further information about building library projects, see the MSP430 IAR
C/C++ Compiler Reference Guide.

SETTING OPTIONS

To specify how your application should be built, you must define one or several build
configurations. Every build configuration has its own settings, which are independent of
the other configurations. All settings are indicated in a separate column in the
Workspace window.

For example, a configuration that is used for debugging would not be highly optimized,
and would produce output that suits the debugging. Conversely, a configuration for
building the final application would be highly optimized, and produce output that suits
a flash or PROM programmer.

For each build configuration, you can set options on the project level, group level, and
file level. Many options can only be set on the project level because they affect the entire
build configuration. Examples of such options are General Options (for example,
Device and Output file), linker settings, and debug settings. Other options, such as
compiler and assembler options, that you set on project level are default for the entire
build configuration.

Part 3. Project management and building 89

Building your application

Itis possible to override project level settings by selecting the required item, for instance
a specific group of files, and selecting the option Override inherited settings. The new
settings will affect all members of that group, that is, files and any groups of files. To
restore all settings to the default factory settings, click the Factory Settings button.

Note: There is one important restriction on setting options. If you set an option on file
level (file level override), no options on higher levels that operate on files will affect that
file.

Using the Options dialog box

The Options dialog box—available by choosing Project>Options—provides options
for the building tools. You set these options for the selected item in the Workspace
window. Options in the General Options, Linker, and Debugger categories can only
be set for the entire build configuration, and not for individual groups and files.
However, the options in the other categories can be set for the entire build configuration,
a group of files, or an individual file.

Category:
General Options
C/C++ compiler Target | Dutputl Library Configuration | Library Options Stack.-"HeapI 4 I L4
Azzembler
Cusztomn Build _
Build Actions rDevice——————————————
Linker
Debugger [MsP430F143 =0
FET Debugger
Simulator
—FI?atlng-polnt [~ Position-independent code
Size of type 'double’
(%' 32 hits ¥ Hardware multiplier
B4 bit
e [Assembler-only project

()3 I Cancel |

Figure 37: General options

The Category list allows you to select which building tool to set options for. The tools
available in the Category list depends on which tools are included in your product. If
you select Library as output file on the QOutput page, Linker will be replaced by
Library Builder in the category list. When you select a category, one or more pages
containing options for that component are displayed.

MSP430 IAR Embedded Workbench® IDE
90 User Guide

Building °

Click the tab corresponding to the type of options you want to view or change. To restore
all settings to the default factory settings, click the Factory Settings button, which is
available for all categories except General Options and Custom Build. Note that there
are two sets of factory settings available: Debug and Release. Which one that will be
used depends on your build configuration; see New Configuration dialog box, page 281.

For information about each option and how to set options, see the chapters General
options, Compiler options, Assembler options, Linker options, Library builder options,
Custom build options, and Debugger options in Part 7. Reference information in this
guide. For information about options specific to the debugger driver you are using, see
the part of this book that corresponds to your driver.

Note: If'you add to your project a source file with a non-recognized filename extension,
you cannot set options on that source file. However, you can add support for additional
filename extensions. For reference information, see Filename Extensions dialog box,
page 305.

BUILDING A PROJECT

You have access to the build commands both from the Project menu and from the
context menu that appears if you right-click an item in the Workspace window.

The three build commands Make, Compile, and Rebuild All run in the background, so
you can continue editing or working with the IAR Embedded Workbench IDE while
your project is being built.

For further reference information, see Project menu, page 277.

BUILDING MULTIPLE CONFIGURATIONS IN A BATCH

Use the batch build feature when you want to build more than one configuration at once.
A batch is an ordered list of build configurations. The Batch Build dialog
box—available from the Project menu—Iets you create, modify, and build batches of
configurations.

For workspaces that contain several configurations it is convenient to define one or
several different batches. Instead of building the entire workspace, you can build only
the appropriate build configurations, for instance Release or Debug configurations.

For detailed information about the Batch Build dialog box, see Batch Build dialog box,
page 284.

Part 3. Project management and building 91

Building your application

92

CORRECTING ERRORS FOUND DURING BUILD

The compiler, assembler, and debugger are fully integrated with the development
environment. So if there are errors in your source code, you can jump directly to the
correct position in the appropriate source file by double-clicking the error message in
the error listing in the Build message window, or selecting the error and pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the
project, you can directly start debugging the resulting code at the source level.

To specify the level of output to the Build message window, choose Tools>Options to
open the IDE Options dialog box. Click the Messages tab and select the level of output
in the Show build messages drop-down list.

For reference information about the Build messages window, see Build window, page
261.

BUILDING FROM THE COMMAND LINE

It is possible to build the project from the command line by using the IAR Command
Line Build Utility (iarbuild.exe) located in the common\bin directory. As input you
use the project file, and the invocation syntax is:

iarbuild project.ewp [-clean|-build|-make] <configuration>
[-log errors|warnings|info|all]

Parameter Description

project.ewp Your IAR Embedded Workbench IDE project file.

-clean Removes any intermediate files.

-build Rebuilds and relinks all files in the current build configuration.
-make Brings the current build configuration up to date by compiling,

assembling, and linking only the files that have changed since the last
build.

configuration The name of the configuration you want to build, which can either be
one of the predefined configurations Debug or Release, or a name that
you define yourself. For more information about build configurations, see
Projects and build configurations, page 81.

-log errors Displays build error messages.
-log warnings Displays build warning and error messages.
-log info Displays build warning messages and messages issued by the #pragma

message preprocessor directive.

-log all Displays all messages generated from the build, for example compiler
sign-on information and the full command line.

Table 11: iarbuild.exe command line options

MSP430 IAR Embedded Workbench® IDE

User Guide

Building °

If you run the application from a command shell without specifying a project file, you
will get a sign-on message describing available parameters and their syntax.

Extending the tool chain

IAR Embedded Workbench provides a feature—Custom Build—which lets you extend
the standard tool chain. This feature is used for executing external tools (not provided
by IAR). You can make these tools execute each time specific files in your project have
changed.

By specifying custom build options, on the Custom tool configuration page, the build
commands treat the external tool and its associated files in the same way as the standard
tools within the IAR Embedded Workbench IDE and their associated files. The relation
between the external tool and its input files and generated output files is similar to the
relation between the C/C++ Compiler, c files, h files, and r43 files. See Custom build
options, page 373, for details about available custom build options.

You specify filename extensions of the files used as input to the external tool. If the input
file has changed since you last built your project, the external tool is executed; just as
the compiler executes if a c file has changed. In the same way, any changes in additional
input files (for instance include files) are detected.

You must specify the name of the external tool. You can also specify any necessary
command line options needed by the external tool, as well as the name of the output files
generated by the external tool. Note that it is possible to use argument variables for
substituting file paths.

For some of the file information, you can use argument variables.

It is possible to specify custom build options to any level in the project tree. The options
you specify are inherited by any sublevel in the project tree.

TOOLS THAT CAN BE ADDED TO THE TOOL CHAIN

Some examples of external tools, or types of tools, that you can add to the IAR
Embedded Workbench tool chain are:

e Tools that generate files from a specification, such as Lex and YACC

e Tools that convert binary files—for example files that contain bitmap images or
audio data—to a table of data in an assembler or C source file. This data can then be
compiled and linked together with the rest of your application.

ADDING AN EXTERNAL TOOL

The following example demonstrates how to add the tool Flex to the tool chain. The
same procedure can be used also for other tools.

Part 3. Project management and building 93

Extending the tool chain

94

In the example, Flex takes the file foo.lex as input. The two files foo.c and foo.h
are generated as output.

Add the file you want to work with to your project, for example foo. lex.

Select this file in the Workspace window and choose Project>Options. Select Custom
Build from the list of categories.

In the Filename extensions field, type the filename extension . lex. Remember to
specify the leading period (.).

In the Command line field, type the command line for executing the external tool, for
example

flex SFILE_PATH$ -o$FILE_BPATHS.c
During the build process, this command line will be expanded to:
flex foo.lex -ofoo.c

Note the usage of argument variables. For further details of these variables, see
Argument variables summary, page 279.

Take special note of the use of $FILE_BNAMES which gives the base name of the input
file, in this example appended with the c extension to provide a C source file in the same
directory as the input file foo.lex.

In the Output files field, describe the output files that are relevant for the build. In this
example, the tool Flex would generate two files—one source file and one header file.
The text in the Qutput files text box for these two files would look like this:

SFILE_BPATHS.cC
SFILE_BPATHS.h

If there are any additional files used by the external tool during the build, these should
be added in the Additional input files field: for instance:

STOOLKIT_DIRS$\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer
be the same and the need for a rebuild is detected.

Click OK.

To build your application, choose Project>Make.

MSP430 IAR Embedded Workbench® IDE

User Guide

Editing

This chapter describes in detail how to use the IAR Embedded Workbench
editor. The final section describes how to customize the editor and how to

use an external editor of your choice.

Using the IAR Embedded Workbench editor

The integrated text editor allows editing of multiple files in parallel, and provides all
basic editing features expected from a modern editor. In addition, it provides features
specific to software development. It also recognizes C or C++ language elements.

EDITING A FILE

The editor window is where you write, view, and modify your source code. You can
open one or several text files, either from the File menu, or by double-clicking a file in
the Workspace window. If you open several files, they are organized in a tab group. You
can have several editor windows open at the same time.

Part 3. Project management and building 95

Using the IAR Embedded Workbench editor

96

Click the tab for the file that you want to display. All open files are also available from
the drop-down menu at the upper right corner of the editor window.

File drop-down
’_ menu

Title bar —— Utilities.c
with modification o —ip)lrlltttrirl
indicator Initialize MAX FIB Fibonacci numbers.

*

void init_fib({ woid)
i
short i
root[0]

= 45;
= root[l] = 1:
for [i=2 ; i<MA¥_FIE ; i++)

Bookmark — root[i] = get fih{i) + get_fib(i-1):

'

/*
Return the Fibonacci mumber 'nr'.
*
unsigned int get_fib({ int nr |
{

if | nrx0 &s& nr<=MiX FIE) -
[fal 1] | B

Splitter control Go to function

Figure 38: Editor window

The name of the open source file is displayed on the tab. If a file is read-only, a padlock
is visible at the bottom left corner of the editor window. If a file has been modified after
it was last saved, an asterisk appears on the tab after the filename, for example
Utilities.c *.

The commands on the Window menu allow you to split the editor window into panes.
On the Window menu you also find commands for opening multiple editor windows, as
well as commands for moving files between different editor windows. For reference
information about each command on the menu, see Window menu, page 308. For
reference information about the editor window, see Editor window, page 248.

Accessing reference information for DLIB library functions

‘When you need to know the syntax for any C or Embedded C++ library function, select
the function name in the editor window and press F1. The library documentation for the
selected function appears in a help window.

MSP430 IAR Embedded Workbench® IDE

User Guide

Editing °

Using and customizing editor commands and shortcut keys

The Edit menu provides commands for editing and searching in editor windows. For
instance, unlimited undo/redo by using the Edit>Undo and Edit>Redo commands,
respectively. You can also find some of these commands on the context menu that
appears when you right-click in the editor window. For reference information about each
command, see Edit menu, page 267.

There are also editor shortcut keys for:

e moving the insertion point
e scrolling text
e selecting text.

For detailed information about these shortcut keys, see Editor key summary, page 251.
To change the default shortcut key bindings, choose Tools>Options, and click the Key
Bindings tab. For further details, see Key Bindings page, page 289.

Splitting the editor window into panes

You can split the editor window horizontally or vertically into multiple panes, to allow
you to look at different parts of the same source file at once, or move text between two
different panes.

To split the window, double-click the appropriate splitter bar, or drag it to the middle of
the window. Alternatively, you can split a window into panes using the Window>Split
command.

To revert to a single pane, double-click the splitter control or drag it back to the end of
the scroll bar.

Dragging and dropping of text

You can easily move text within an editor window or between different editor windows.
Select the text and drag it to the new location.

Syntax coloring

The IAR Embedded Workbench editor automatically recognizes the syntax of:

e C and C++ keywords

e C and C++ comments

o Assembler directives, comments, and mnemonics
e Preprocessor directives

e Strings.

The different parts of source code are displayed in different text styles.

Part 3. Project management and building 97

Using the IAR Embedded Workbench editor

To change these styles, choose Tools>Options, and click the Editor Colors and Fonts
tab in the IDE Options dialog box. For additional information, see Editor Colors and
Fonts page, page 295.

In addition, you can define your own set of keywords that should be syntax-colored
automatically:

I In a text file, list all the keywords that you want to be automatically syntax-colored.
Separate each keyword with either a space or a new line.

2 Choose Tools>Options and click the Editor Setup Files tab.

Select the Use Custom Keyword File option and specify your newly created text file.
A browse button is available for your convenience.

4 Click the Edit Colors and Fonts tab and choose User Keyword from the Syntax
Coloring list. Specify the font, color, and type style of your choice. For additional
information, see Editor Colors and Fonts page, page 295.

5 In the editor window, type any of the keywords you listed in your keyword file; see
how the keyword is syntax-colored according to your specification.
Automatic text indentation

The text editor can perform different kinds of indentation. For assembler source files and
normal text files, the editor automatically indents a line to match the previous line. If
you want to indent a number of lines, select the lines and press the Tab key. Press
Shift-Tab to move a whole block of lines to the left.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++
source code. This is performed whenever you:

e Press the Return key
e Type any of the special characters {, }, :, and #
o Have selected one or several lines, and choose the Edit>Auto Indent command.

To enable or disable the indentation:
I Choose Tools>Options
Click the Editor tab
Select or deselect the Auto indent option.
To customize the C/C++ automatic indentation, click the Configure button.

For additional information, see Configure Auto Indent dialog box, page 292.

MSP430 IAR Embedded Workbench® IDE
98 User Guide

Editing °

Matching brackets and parentheses

When the insertion point is located next to a parenthesis, the matching parenthesis is
highlighted with a light gray color:

forf| int i = 0; i < 10; i++)]
{
i

Figure 39: Parentheses matching in editor window

The highlight remains in place as long as the insertion point is located next to the
parenthesis.

To select all text between the brackets surrounding the insertion point, choose
Edit>Match Brackets. Every time you choose Match Brackets after that, the selection
will increase to the next hierarchic pair of brackets.

Note: Both of these functions—automatic matching of corresponding parentheses and
selection of text between brackets—apply to (), [1, and {}.
Displaying status information

As you are editing, the status bar—available by choosing View>Status Bar— shows
the current line and column number containing the insertion point, and the Caps Lock,
Num Lock, and Overwrite status:

ILn 8. Cal 4 CAP [MUM | OWR 4

Figure 40: Editor window status bar

USING AND ADDING CODE TEMPLATES
Code templates is a method for conveniently inserting frequently used source code
sequences, for example for loops and i £ statements. The code templates are defined in
a normal text file. By default, there are a few example templates provided. In addition,
you can easily add your own code templates.
Enabling code templates
By default, code templates are enabled. To enable and disable the use of code templates:
I Choose Tools>Options.
2 Go to the Editor Setup Files page.

3 Select or deselect the Use Code Templates option.

Part 3. Project management and building 99

Using the IAR Embedded Workbench editor

100

4 In the text field, specify which template file you want to use; either the default file or

one of your own template files. A browse button is available for your convenience.

Inserting a code template in your source code

To insert a code template in your source code, place the insertion point at the location
where you want the template to be inserted and choose Edit>Insert Template. This
command displays a list in the editor window from which you can choose a code
template.

Figure 41: Editor window code template menu

If the code template you choose requires any type of field input, as in the for loop
example which needs an end value and a count variable, an input dialog box appears.

Adding your own code templates

The source code templates are defined in a normal text file. The original template file
CodeTemplates. txt islocated in the common\config installation directory. The first
time you use IAR Embedded Workbench, the original template file is copied to a
directory for local settings, and this is the file that will be used by default if code
templates are enabled. To use your own template file, follow the procedure described in
Enabling code templates, page 99.

To open the template file and define your own code templates, choose Edit>Code
Templates>Edit Templates.

The syntax for defining templates is described in the default template file.

MSP430 IAR Embedded Workbench® IDE

User Guide

Editing °

NAVIGATING IN AND BETWEEN FILES

The editor provides several functions for easy navigation within the files and between
different files:

e Switching between source and header files

If the insertion point is located on an #include line, you can choose the Open
""header.h' command from the context menu, which opens the header file in an
editor window. You can also choose the command Open Header/Source File, which
opens the header or source file that corresponds to the current file, or activates it if it
is already open. This command is available if the insertion point is located on any
line except an #include line.

e Function navigation

iy Click the Go to function button in the bottom left corner in an editor window to list
all functions defined in the source file displayed in the window. You can then choose
to go directly to one of the functions by double-clicking it in the list.

o Adding bookmarks

Use the Edit>Toggle Bookmark command to add and remove bookmarks. To
switch between the marked locations, choose Edit>Go to Bookmark.

SEARCHING
There are several standard search functions available in the editor:

Quick search text box

Find dialog box

Replace dialog box

Find in files dialog box
Incremental Search dialog box.

To use the Quick search text box on the toolbar, type the text you want to search for and
press Enter. Press Esc to cancel the search. This is a quick method for searching for text
in the active editor window.

To use the Find, Replace, Find in Files, and Incremental Search functions, choose the
corresponding command from the Edit menu. For reference information about each
search function, see Edit menu, page 267.

Customizing the editor environment

The IAR Embedded Workbench IDE editor can be configured on the IDE Options
pages Editor and Editor Colors and Fonts. Choose Tools>Options to access the

pages.

Part 3. Project management and building 101

Customizing the editor environment

102

For details about these pages, see Tools menu, page 286.

USING AN EXTERNAL EDITOR

The External Editor page—available by choosing Tools>Options—Ilets you specify
an external editor of your choice.

Select the option Use External Editor.

An external editor can be called in one of two ways, using the Type drop-down menu.
Command Line calls the external editor by passing command line parameters.

DDE calls the external editor by using DDE (Windows Dynamic Data Exchange).

If you use the command line, specify the command line to pass to the editor, that is, the
name of the editor and its path, for instance:

C:\WINNT\NOTEPAD.EXE.

You can send an argument to the external editor by typing the argument in the
Arguments field. For example, type $FILE_PATHS to start the editor with the active file
(in editor, project, or Messages window).

Editar Colors and Fonts I Froject I Debugager | Register Filter I Terminal /0 I
Common Fants I Key Bindings External Editor | Messages I Editor
™ Use External Editor
Type;: IEommand Line j
Editar: I J
Arguments:l
QK | Cancel | Apply | Help |

Figure 42: Specifying external command line editor

If you use DDE, specify the editor’s DDE service name in the Service field. In the
Command field, specify a sequence of command strings to send to the editor.

The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.

MSP430 IAR Embedded Workbench® IDE

User Guide

Editing °

The command strings should be entered as:

DDE-Topic CommandString
DDE-Topic CommandString

as in the following example, which applies to Codewright®:

Editor | Editor Colors and Fonts I Project I Debugger I
External E ditor | Common Fonts I K.ey Bindings I Messages
k]
Tupe: IDDE j
Edior [C\EW32CWI2EXE J

Service: IEodewright

Cormmand: |System BufEditFile $FILE_PATHS
$FILE_PATH$ MovToline $CUR_LINES

QK I Cancel | Apply | Help |

Figure 43: External editor DDE settings

The command strings used in this example will open the external editor with a dedicated
file activated. The cursor will be located on the current line as defined in the context
from where the file is open, for instance when searching for a string in a file, or when
double-clicking an error message in the Message window.

Click OK.

When you open a file by double-clicking it in the Workspace window, the file will be
opened by the external editor.

Variables can be used in the arguments. For more information about the argument
variables that are available, see Argument variables summary, page 279.

Part 3. Project management and building 103

Customizing the editor environment

MSP430 IAR Embedded Workbench® IDE
104 User Guide

Part 4. Debugging

This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

e The IAR C-SPY® Debugger

e Executing your application

e Working with variables and expressions
e Using breakpoints

e Monitoring memory and registers

e Using the C-SPY® macro system

e Analyzing your application.

.hmuiuhhhi

105

ARARAIed

106

The IAR C-SPY®
Debugger

This chapter introduces you to the IAR C-SPY Debugger. First some of the
concepts are introduced that are related to debugging in general and to the
IAR C-SPY Debugger in particular. Then the debugger environment is
presented, followed by a description of how to setup, start, and finally adapt
C-SPY to target hardware.

Debugger concepts

This section introduces some of the concepts that are related to debugging in general and
to the IAR C-SPY Debugger in particular. This section does not contain specific
conceptual information related to the functionality of the IAR C-SPY Debugger.
Instead, such information can be found in each chapter of this part of the guide. The IAR

Systems user documentation uses the following terms when referring to these concepts.

IAR C-SPY DEBUGGER AND TARGET SYSTEMS

The IAR C-SPY Debugger can be used for debugging either a software target system or
a hardware target system.

Part 4. Debugging

107

Debugger concepts

108

Figure 44, IAR C-SPY Debugger and target systems, shows an overview of C-SPY and
possible target systems.

IAR C-SPY DEBUGGER ! TARGET SYSTEM
|
T =
| Simutator 1 Simulator
| driver |

I

|

|

|

|

o |
Embedded 5
Workbench | C-SPY | (RO el :H/\/[ROM-

|

|

|

i

I

driver 5
| monitor

Target hardware
| Emulator
| driver
! |

T

|

|

|

I
Application Software

JTAG | | Target
emulator| |hardware

I:I = Provided by IAR |
[

Figure 44: IAR C-SPY Debugger and target systems

DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

USER APPLICATION

A user application is the software you have developed and which you want to debug
using the IAR C-SPY Debugger.

MSP430 IAR Embedded Workbench® IDE

User Guide

The IAR C-SPY® Debugger __4

IAR C-SPY DEBUGGER SYSTEMS

The IAR C-SPY Debugger consists of both a general part which provides a basic set of
C-SPY features, and a driver. The C-SPY driver is the part that provides communication
with and control of the target system. The driver also provides the user

interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints. There are three main types of C-SPY drivers:

o Simulator driver
o ROM-monitor driver
e Emulator driver

If you have more than one C-SPY driver installed on your computer you can switch
between them by choosing the appropriate driver from within the IAR Embedded
Workbench IDE.

For an overview of the general features of IAR C-SPY Debugger, see JAR C-SPY
Debugger, page 5. In that chapter you can also find an overview of the functionality
provided by each driver. Contact your software distributor or IAR representative for
information about available C-SPY drivers. You can also find information on the IAR
Systems website, www.iar.com.

ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

It is possible to use a third-party debugger together with the IAR Systems tool chain as
long as the third-party debugger can read any of the output formats provided by XLINK,
such as UBROF, ELF/DWAREF, COFF, Intel-extended, Motorola, or any other available
format. For information about which format to use with third-party debuggers, see the
user documentation supplied with that tool.

The C-SPY environment

AN INTEGRATED ENVIRONMENT

The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications. It is designed for use with the MSP430 IAR C/C++ Compiler and MSP430
IAR Assembler, and is completely integrated in the [AR Embedded Workbench IDE,
providing development and debugging within the same application.

Part 4. Debugging 109

Setting up the IAR C-SPY Debugger

All windows that are open in the Embedded Workbench workspace will stay open when
you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows will be
opened.

You can modify your source code in an editor window during the debug session, but
changes will not take effect until you exit from the debugger and rebuild your
application.

The integration also makes it possible to set breakpoints in the text editor at any point
during the development cycle. It is also possible to inspect and modify breakpoint
definitions also when the debugger is not running. Breakpoints are highlighted in the
editor windows and breakpoint definitions flow with the text as you edit. Your debug
settings, such as watch properties, window layouts, and register groups will remain
between your debug sessions.

In addition to the features available in the IAR Embedded Workbench IDE, the debugger
environment consists of a set of C-SPY-specific items, such as a debugging toolbar,
menus, windows, and dialog boxes.

Reference information about each item specific to C-SPY can be found in the chapter
C-SPY® Debugger reference, page 313.

For specific information about a C-SPY driver, see the part of the book corresponding
to the driver.

Setting up the IAR C-SPY Debugger

Before you start the IAR C-SPY Debugger you should set options to set up the debugger
system. These options are available on the Setup page of the Debugger category,
available with the Project>Options command. On the Plugins page you can find
options for loading plug-in modules.

In addition to the options for setting up the debugger system, you can also set
debugger-specific IDE options. These options are available with the Tools>Options
command. For further information about these options, see Debugger page, page 297.

For information about how to configure the debugger to reflect the target hardware, see
Adapting C-SPY to target hardware, page 113.

CHOOSING A DEBUG DRIVER

Before starting C-SPY, you must choose a driver for the debugger system from the
Driver drop-down list on the Setup page. If you choose a driver for a hardware
debugger system, you also need to set hardware-specific options. For information about
these options, see the chapter C-SPY® FET-specific debugging and Part 7. Reference
information.

MSP430 IAR Embedded Workbench® IDE
110 User Guide

The IAR C-SPY® Debugger __4

Note: You can only choose a driver you have installed on your computer.

EXECUTING FROM RESET

Using the Run to option, you can specify a location you want C-SPY to run to when you
start the debugger as well as after each reset. C-SPY will place a breakpoint at this
location and all code up to this point will be executed prior to stopping at the location.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will then contain the regular
hardware reset address at each reset.

If there are no breakpoints available when C-SPY starts, a warning message appears
notifying you that single stepping will be required and that this is time consuming. You
can then continue execution in single step mode or stop at the first instruction. If you
choose to stop at the first instruction, the debugger starts executing with the pc (program
counter) at the default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where
breakpoints are not limited.

USING A SETUP MACRO FILE

A setup macro file is a standard macro file that you choose to load automatically when
C-SPY starts. You can define the setup macro file to perform actions according to your
needs, by using setup macro functions and system macros. Thus, by loading a setup
macro file you can initialize C-SPY to perform actions automatically.

To register a setup macro file, select Use macro file and type the path and name of your
setup macro file, for example Setup .mac. If you do not type a filename extension, the
extension mac is assumed. A browse button is available for your convenience.

For detailed information about setup macro files and functions, see The macro file, page
144. For an example about how to use a setup macro file, see the chapter Simulating an
interrupt in Part 2. Tutorials.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY handles several of the target-specific adaptations by using device description
files. They contain device-specific information about for example, definitions of
peripheral units and CPU registers, and groups of these.

Part 4. Debugging 111

Starting the IAR C-SPY Debugger

If you want to use the device-specific information provided in the device description file
during your debug session, you must select the appropriate device description file.
Device description files are provided in the 430\config directory and they have the
filename extension ddf.

By default, a suitable device description file is always selected. To load a different
device description file, you must, before you start the C-SPY debugger, choose
Project>Options and select the Debugger category. On the Setup page, enable the use
of a description file and select a file using the Device description file browse button.

For more information about device description files, see Adapting C-SPY to target
hardware, page 113. For an example about how to use a setup macro file, see Simulating
an interrupt in Part 2. Tutorials.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules that are to be loaded and
made available during debug sessions. Plugin modules can be provided by IAR, as well
as by third-party suppliers. Contact your software distributor or IAR representative, or
visit the IAR Systems web site, for information about available modules.

For information about how to load plugin modules, see Plugins, page 396.

The IAR C-SPY RTOS awareness plugin modules

Provided that there is one or more real-time operating systems plugin modules
supported for the AR Embedded Workbench version you are using, you can load one
for use with the IAR C-SPY Debugger. C-SPY RTOS awareness plugin modules give
you a high level of control and visibility over an application built on top of a real-time
operating system. It displays RTOS-specific items like task lists, queues, semaphores,
mailboxes and various RTOS system variables. Task-specific breakpoints and
task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own set of windows and buttons when a debug session is
started (provided that the RTOS is linked with the application). For information about
other RTOS awareness plugin modules, refer to the manufacturer of the plugin module.

Starting the IAR C-SPY Debugger

When you have setup the debugger, you can start it.

To start the IAR C-SPY Debugger and load the current project, click the Debug button.
@ | Alternatively, choose the Project>Debug command.

For information about how to execute your application and how to use the C-SPY
features, see the remaining chapters in Part 4. Debugging.

MSP430 IAR Embedded Workbench® IDE
112 User Guide

The IAR C-SPY® Debugger __4

Executable files built outside of the Embedded Workbench

It is also possible to load C-SPY with a project that was built outside the Embedded
‘Workbench, for example projects built on the command line. To be able to set C-SPY
options for the externally built project, you must create a project within the Embedded
Workbench.

To load an externally built executable file, you must first create a project for it in your
workspace. Choose Project>Create New Project, and specify a project name. To add
the executable file to the project, choose Project>Add Files and make sure to choose
All Files in the Files of type drop-down list. Locate the executable file (filename
extension d43). To start the executable file, select the project in the Workspace window
and click the Debug button. The project can be reused whenever you rebuild your
executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

REDIRECTING DEBUGGER OUTPUT TO A FILE

The Debug Log window—available from the View menu—displays debugger output,
such as diagnostic messages and trace information. It can sometimes be convenient to
log the information to a file where it can be easily inspected. The Log Files dialog
box—available from the Debug menu—allows you to log output from C-SPY to a file.
The two main advantages are:

o The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

e The file provides history about how you have controlled the execution, for instance,
what breakpoints have been triggered etc.

The information printed in the file is by default the same as the information listed in the
Log window. However, you can choose what you want to log in the file: errors,
warnings, system information, user messages, or all of these. For reference information
about the Log File options, see Log File dialog box, page 340.

Adapting C-SPY to target hardware

This section describes how to configure the debugger to reflect the target hardware. The
C-SPY device description file and its contents is described.

DEVICE DESCRIPTION FILE

C-SPY handles several of the target-specific adaptations by using device description
files provided with the product. They contain device-specific information such as:

Part 4. Debugging 113

Adapting C-SPY to target hardware

o Memory information for device-specific memory zones

e Definitions of memory-mapped peripheral units, device-specific CPU registers, and
groups of these

e Definitions for interrupt simulation in the simulator.

You can find device description files for each MSP430 device in the 430\config
directory.

For information about how to load a device description file, see Selecting a device
description file, page 111.

Memory zones

Memory information for device-specific memory zones are defined in the device
description files. By default there is only one address zone in the debugger, Memory. If
you load a device description file, additional zones that adhere better to the specific
device memory layout are defined.

If your hardware does not have the same memory layout as any of the predefined device
description files, you can define customized zones by adding them to the file. For further
details about customizing the file, see Modifying a device description file, page 115.

For information about memory zones, see Memory addressing, page 135.

Registers

For each device there is a hardwired group of CPU registers. Their contents can be
displayed and edited in the Register window. Additional registers are defined in a
specific register definition file—with the filename extension sfr—which is included
from the register section of the device description file. These registers are the
device-specific memory-mapped control and status registers for the peripheral units on
the MSP430 microcontrollers.

Due to the large amount of registers it is inconvenient to list all registers concurrently in
the Register window. Instead the registers are divided into logical register groups. By
default there is one register group in the MSP430 debugger, namely CPU Registers.

For details about how to work with the Register window, view different register groups,
and how to configure your own register groups to better suit the use of registers in your
application, see the section Working with registers, page 138.

Interrupts

Device description files also contain a section that defines all device-specific interrupts,
which makes it possible to simulate these interrupts in the C-SPY Simulator. You can
read more about how to do this in Simulating interrupts, page 177.

MSP430 IAR Embedded Workbench® IDE
114 User Guide

The IAR C-SPY® Debugger __4

Modifying a device description file

There is normally no need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. The syntax of the
device descriptions is described in the files. Note, however, that the format of these
descriptions might be updated in future upgrade versions of the product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file.

Part 4. Debugging

115

Adapting C-SPY to target hardware

MSP430 IAR Embedded Workbench® IDE
116 User Guide

Executing your application

The IAR C-SPY® Debugger provides a flexible range of facilities for executing
your application during debugging. This chapter contains information about:

e The conceptual differences between source mode and disassembly mode
debugging

e Executing your application
e The call stack

e Handling terminal input and output.

Source and disassembly mode debugging

The IAR C-SPY Debugger allows you to switch seamlessly between source mode and
disassembly mode debugging as required.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control over the hardware. You can open a disassembly
window which displays a mnemonic assembler listing of your application based on
actual memory contents rather than source code, and lets you execute the application
exactly one instruction at a time. In Mixed-Mode display, the debugger also displays the
corresponding C/C++ source code interleaved with the disassembly listing.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

For an example of a debug session both in C source mode and disassembly mode, see
Debugging the application, page 37.

Part 4. Debugging 117

Executing

Executing

The IAR C-SPY Debugger provides a flexible range of features for executing your
application. You can find commands for executing on the Debug menu as well as on the
toolbar.

STEP

C-SPY allows more stepping precision than most other debuggers in that it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, as well as at each function call.
That is, source code locations where you might consider whether to execute a step into
or a step over command. Because the step points are located not only at each statement
but also at each function call, the step functionality allows a finer granularity than just
stepping on statements. There are four different step commands:

e Step Into

e Step Over

o Next Statement

e Step Out

Consider this example and assume that the previous step has taken you to the £ (1)
function call (highlighted):

int f(int n)

{

value = f(n-1) + £(n-2) + £(n-3);
return value;

}

£(1);

value ++;

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine, £ (n-1):

int f(int n)

{

value = £(n-1) + £(n-2) + £(n-3);
return value;

}
£(i);
value ++;

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

MSP430 IAR Embedded Workbench® IDE

User Guide

Executing your application __¢

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the £ (n-2) function
call, which is not a statement on its own but part of the same statement as £ (n-1) . Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

int f(int n)

{

value = f(n-1) + £(n-2) + £(n-3);
return value;

}

£(1i);
value ++;

The Next Statement command executes directly to the next statement return value,
allowing faster stepping:

int f(int n)

{

value = f(n-1) + f£f(n-2) + f£(n-3);
return value;

}

£(1);
value ++;
When inside the function, you have the choice of stepping out of it before reaching the

function exit, by using the Step Out command. This will take you directly to the
statement immediately after the function call:

int f(int n)

{

value = f(n-1) + f(n-2) f(n-3);
return value;

£(1);

value ++;

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for Embedded C++, which tends to have many implicit
function calls, such as constructors, destructors, assignment operators, and other
user-defined operators.

Part 4. Debugging 119

Executing

120

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, it is also possible to step only on statements, which means faster

stepping.

GO

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

RUN TO CURSOR

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING
At each stop, C-SPY highlights the corresponding C or C++ source with a green color.

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

USING BREAKPOINTS TO STOP

You can set breakpoints in the application to stop at locations of particular interest.
These locations can be either at code sections where you want to investigate whether
your program logic is correct, or at data accesses to investigate when and how the data
is changed. Depending on which debugger system you are using you might also have
access to additional types of breakpoints. For instance, if you are using C-SPY
Simulator there is a special kind of breakpoint to facilitate simulation of simple
hardware devices. See the chapter Simulator-specific debugging for further details.

For a more advanced simulation, you can stop under certain conditions, which you
specity. It is also possible to connect a C-SPY macro to the breakpoint. The macro can
be defined to perform actions, which for instance can simulate specific hardware
behavior.

MSP430 IAR Embedded Workbench® IDE

User Guide

Executing your application __¢

All these possibilities provide you with a flexible tool for investigating the status of, for
example, variables and registers at different stages during the application execution.

For detailed information about the breakpoint system and how to use the different
breakpoint types, see the chapter Using breakpoints.

USING THE BREAK BUTTON TO STOP

While your application is executing, the Break button on the debug toolbar is
highlighted in red. You can stop the application execution by clicking the Break button,
alternatively by choosing the Debug>Break command.

STOP AT PROGRAM EXIT

Typically, the execution of an embedded application is not intended to end, which means
that the application will not make use of a traditional exit. However, there are situations
where a controlled exit is necessary, such as during debug sessions. You can link your
application with a special library that contains an exit label. A breakpoint will be
automatically set on that label to stop execution when it gets there. Before you start
C-SPY, choose Project>Options, and select the Linker category. On the Output page,
select the option With runtime control modules (-r).

Call stack information

The MSP430 IAR C/C++ Compiler generates extensive backtrace information. This
allows C-SPY to show, without any runtime penalty, the complete call chain at any time.
Typically, this is useful for two purposes:

e Determining in what context the current function has been called
e Tracing the origin of incorrect values in variables and incorrect values in
parameters, thus locating the function in the call chain where the problem occurred.

The Call Stack window—available from the View menu—shows a list of function calls,
with the current function at the top. When you inspect a function in the call chain, by
double-clicking on any function call frame, the contents of all affected windows will be
updated to display the state of that particular call frame. This includes the editor, Locals,
Register, Watch and Disassembly windows. A function would normally not make use of
all registers, so these registers might have undefined states and be displayed as dashes
(---). For reference information about the Call Stack window, see Call Stack window,
page 326.

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

Part 4. Debugging 121

Terminal input and output

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command—available on the Debug menu, or alternatively on the
context menu—to execute to that function.

Assembler source code does not automatically contain any backtrace information. To be
able to see the call chain also for your assembler modules, you can add the appropriate
CFI assembler directives to the source code. For further information, see the MSP430
IAR Assembler Reference Guide.

Terminal input and output

Sometimes you might need to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window—available on the View menu—Ilets you enter input to your application, and
display output from it.

This facility can be useful in two different contexts:

e If your application uses stdin and stdout
e For producing debug trace printouts.

To use this window, you need to link your application with the option With I/O
emulation modules. C-SPY will then direct stdin, stdout, and stderr to this
window.

For reference information, see Terminal I/0 window, page 328.

Directing stdin and stdout to a file

You can also direct stdin and stdout directly to a file. You can then open the file in
another tool, for instance an editor, to navigate and search within the file for particularly
interesting parts. The Terminal I/O Log Files dialog box—available by choosing
Debug>Logging—allows you to select a destination log file, and to log terminal I/O
input and output from C-SPY to this file.

For reference information, see Terminal I/O Log File dialog box, page 341.

MSP430 IAR Embedded Workbench® IDE
122 User Guide

Working with variables
and expressions

This chapter defines the variables and expressions used in C-SPY®. It also
demonstrates the different methods for examining variables and expressions.

C-SPY expressions

C-SPY lets you examine the C variables, C expressions, and assembler symbols that you
have defined in your application code. In addition, C-SPY allows you to define C-SPY
macro variables and macro functions and use them when evaluating expressions.
Expressions that are built with these components are called C-SPY expressions and
there are several methods for monitoring these in C-SPY.

C-SPY expressions can include any type of C expression, except function calls. The
following types of symbols can be used in expressions:

o C/C++ symbols

o Assembler symbols (register names and assembler labels)
o C-SPY macro functions

o C-SPY macro variables

Examples of valid C-SPY expressions are:
i+ 3

i =42

#asm_label

#R2

#PC

my_macro_func (19)

C SYMBOLS

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions. C symbols can be referenced by their
names.

Using sizeof

According to the ISO/ANSI C standard, there are two syntactical forms of sizeof:

sizeof (type)
sizeof expr

Part 4. Debugging 123

C-SPY expressions

124

The former is for types and the latter for expressions.

In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).
ASSEMBLER SYMBOLS

Assembler symbols can be assembler labels or register names. That is, general purpose
registers, such as R4—R15, and special purpose registers, such as the program counter
and the status register. If a device description file is used, all memory-mapped peripheral
units, such as I/O ports, can also be used as assembler symbols in the same way as the
CPU registers. See Device description file, page 113.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

Example What it does

#pc++ Increments the value of the program counter.

myptr = #label7 Setsmyptr to the integral address of 1abel7 within its zone.

Table 12: C-SPY assembler symbols expressions

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes * (ASCII character 0x60). For example:

Example What it does
#pc Refers to the program counter.
pc’ Refers to the assembler label pc.

Table 13: Handling name conflicts between hardware registers and assembler labels

Which processor-specific symbols are available by default can be seen in the Register
window, using the CPU Registers register group. See Register groups, page 138.

MACRO FUNCTIONS

Macro functions consist of C-SPY variable definitions and macro statements which are
executed when the macro is called.

For details of C-SPY macro functions and how to use them, see The macro language,
page 144.

MACRO VARIABLES

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assigns both its value and type.

MSP430 IAR Embedded Workbench® IDE

User Guide

Working with variables and expressions ___¢

For details of C-SPY macro variables and how to use them, see The macro language,
page 397.

Limitations on variable information

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

EFFECTS OF OPTIMIZATIONS

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. Depending on your project settings, a high level of
optimization results in smaller or faster code, but also in increased compile time.
Debugging might be more difficult because it will be less clear how the generated
code relates to the source code. Typically, using a high optimization level can affect
the code in a way that will not allow you to view a value of a variable as expected.

Consider this example:

foo ()
{
int i = 42;

x = bar(i); //Not until here the value of i is known to C-SPY

}

From the point where the variable 1 is declared until it is actually used there is no need
for the compiler to waste stack or register space on it. The compiler can optimize the
code, which means C-SPY will not be able to display the value until it is actually used.
If you try to view a value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Part 4. Debugging 125

Viewing variables and expressions

126

Viewing variables and expressions

There are several methods for looking at variables and calculating their values:

e Tooltip watch provides the simplest way of viewing the value of a variable or more
complex expressions. Just point at the variable with the pointer. The value will be
displayed next to the variable.

o The Auto window—available from the View menu—automatically displays a
useful selection of variables and expressions in, or near, the current statement.

o The Locals window—available from the View menu—automatically displays the
local variables, that is, auto variables and function parameters for the active
function.

o The Watch window—available from the View menu—allows you to monitor the
values of C-SPY expressions and variables.

e The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in
the expressions must be statically located, such as global variables.

o The Quick Watch window, see Using the Quick Watch window, page 126.

o The Trace system, see Using the trace system, page 127.

For reference information about the different windows, see C-SPY windows, page 313.

WORKING WITH THE WINDOWS

All the windows are easy to use. You can add, modify, and remove expressions, and
change the display format.

A context menu containing useful commands is available in all windows if you
right-click in each window. Convenient drag-and-drop between windows is supported,
except for in the Locals window and the Quick Watch window where it is not applicable.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click in the Value field and
modify its content. To remove an expression, select it and press the Delete key.

Using the Quick Watch window

The Quick Watch window—available from the View menu—Iets you watch the value
of a variable or expression and evaluate expressions.

The Quick Watch window is different from the Watch window in the following ways:

o The Quick Watch window offers a fast method for inspecting and evaluating
expressions. Right-click on the expression you want to examine and choose Quick
Watch from the context menu that appears. The expression will automatically
appear in the Quick Watch window.

MSP430 IAR Embedded Workbench® IDE

User Guide

Working with variables and expressions ___¢

e In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be
necessary, but for expressions with side effects, such as assignments and C-SPY
macro functions, it allows you to perform evaluations under controlled conditions.

USING THE TRACE SYSTEM

A trace is arecorded sequence of events in the target system, typically executed machine
instructions. Depending on what C-SPY driver you are using, additional types of trace
data can be recorded. For example, read and write accesses to memory, as well as the
values of C-SPY expressions.

By using the trace system, you can trace the program flow up to a specific state, for
instance an application crash, and use the trace information to locate the origin of the
problem. Trace information can be useful for locating programming errors that have
irregular symptoms and occur sporadically. Trace information can also be useful as test
documentation. You can save the trace information to a file to be analyzed later.

The trace system is only supported by the simulator driver and not by the FET debugger
driver. For detailed information about the trace system and the components provided by
the simulator, see Simulator-specific debugging, page 159.

The Trace window and its browse mode

The type of information that is displayed in the Trace window depends on the C-SPY
driver you are using. The different trace data is displayed in separate columns, but the
Trace column is always available regardless of what driver you are using. The
corresponding source code can also be shown.

You can follow the execution history by simply looking and scrolling in the Trace
window. Alternatively, you can enter browse mode. To enter browse mode, double-click
an item in the Trace window, or click the Browse toolbar button. The selected item turns
yellow and the source and disassembly windows will highlight the corresponding
location. You can now move around in the Trace window by using the up and down
arrow keys, or by scrolling and clicking; the source and Disassembly windows will be
updated to show the corresponding location. Double-click again to leave browse mode.

Searching in the trace data

You can perform advanced searches in the recorded trace data. You specify the search
criteria in the Find in Trace dialog box and view the result in the Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

Part 4. Debugging 127

Viewing variables and expressions

asmmain. asm
HAME
PUBLIC
COMMOH
CODE32
E
RSEG
asmvarl: DC32
asmvarz: DC32
asmvar3: DCE
asmvard: DCE
CODE32
Srmain NOEP
E main
EHD

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY treats, by default, all data located at assembler labels as
variables of type int. However, in the Watch, Quick Watch, and Live Watch windows,
you can select a different interpretation to better suit the declaration of the variables.

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

nain — | Expression Yalue Location Type
= asrrvan 42 0x5000 int
main asrar? 456 0x8004 int
asrvard 55 0=8008 <G-hit unsigned>

INTVEC: CODE

Add
Remove

main
v Default Farmak

Binary Formak
COckal Format

ICODE: CODE
Drecimal Format
4z Hezxadecimal Format
456 Char Formak
55
1n

8-bit Signed

16-bit Signed
16-bit Unsigned
32-bit Signed

main 32-bit Unsigned

Figure 45: Viewing assembler variables in the Watch window

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

MSP430 IAR Embedded Workbench® IDE

128 User Guide

Using breakpoints

This chapter describes the breakpoint system and different ways to create and
monitor breakpoints.

The breakpoint system

The C-SPY® breakpoint system lets you set various kinds of breakpoints in the
application you are debugging, allowing you to stop at locations of particular interest.
You can set a breakpoint at a code location to investigate whether your program logic is
correct, or to get trace printouts. In addition to code breakpoints, and depending on what
C-SPY driver you are using, additional breakpoint types might be available. For
example, you might be able to set a data breakpoint, to investigate how and when the
data changes. If you are using the simulator driver you can also set immediate
breakpoints.

All your breakpoints are listed in the Breakpoints window where you can conveniently
monitor, enable, and disable them.

For a more advanced simulation, you can stop under certain conditions, which you
specify. It is also possible to let the breakpoint trigger a side effect, for instance
executing a C-SPY macro function, without stopping the execution. The macro function
can be defined to perform a wide variety of actions, for instance, simulating hardware
behavior.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions. C-SPY provides different ways of defining
breakpoints.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

Defining breakpoints

The breakpoints you define will appear in the Breakpoints window. From this window
you can conveniently view all breakpoints, enable and disable breakpoints, and open a
dialog box for defining new breakpoints. For more details, see Breakpoints window,
page 255.

Breakpoints are set with a higher precision than single lines, in analogy with the step
mechanism; for more details about the step precision, see Step, page 118.

Part 4. Debugging

129

Defining breakpoints

130

You can set a breakpoint in several different ways: using the Toggle Breakpoint
command, from the Memory window, from a dialog box, or using predefined system
macros. The different methods allow different levels of complexity and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available, either in the editor window, the Disassembly window, or both:

o Double-click in the gray left-side margin of the editor window

e Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

e Choose Edit>Toggle Breakpoint

e Right-click and choose Toggle Breakpoint from the context menu.

The breakpoint is marked with a red X in the left margin of the editor window:

Bi Utilities.c M= E3

void init fib({ void)

i

short i = 45;

root[i] = get_fihii) + get_fib(i-1):

for { i=2 ; i<MAX_FIE ; i++) J

Figure 46: Breakpoint on a function call

If the red X does not appear, make sure the option Show bookmarks is selected, see
Editor page, page 291.

SETTING A BREAKPOINT IN THE MEMORY WINDOW

For information about how to set breakpoints using the Memory window, see Setting a
breakpoint in the Memory window, page 137.

DEFINING BREAKPOINTS USING THE DIALOG BOX

The advantage of using the dialog box is that it provides you with a graphical interface
where you can interactively fine tune the characteristics of the breakpoints. You can set
the options and quickly test whether the breakpoint works according to your intentions.

To define a new breakpoint:
Choose View>Breakpoints to open the Breakpoints window.
In the Breakpoints window, right-click to open the context menu.

On the context menu, choose New Breakpoint.

MSP430 IAR Embedded Workbench® IDE

User Guide

Using breakpoints °

On the submenu, choose the breakpoint type you want to set. Depending on the C-SPY
driver you are using, different breakpoint types might be available.

To modify an existing breakpoint:
Choose View>Breakpoints to open the Breakpoints window.

In the Breakpoints window, select the breakpoint you want to modify and right-click to
open the context menu.

On the context menu, choose Edit.

A breakpoint dialog box appears. Specify the breakpoint settings and click OK. The
breakpoint will be displayed in the Breakpoints window.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

For reference information about code and log breakpoints, see Code breakpoints dialog
box, page 256 and Log breakpoints dialog box, page 258, respectively. For details about
any additional breakpoint types, see the driver-specific documentation.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, it is useful to put a breakpoint on the first line of the function with a condition
that is true only when the parameter is 0. The breakpoint will then not be triggered until
the problematic situation actually occurs.

Performing a task with or without stopping execution

You can perform a task when a breakpoint is triggered with or without stopping the
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed.

If you instead want to perform a task without stopping the execution, you can set a
condition which returns 0 (false). When the breakpoint is triggered, the condition will
be evaluated and since it is not true execution will continue.

Consider the following example where the C-SPY macro function performs a simple
task:

__var my_counter;
count ()

{

my_counter += 1;

Part 4. Debugging 131

Viewing all breakpoints

132

return 0;

}

To use this function as a condition for the breakpoint, type count () in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

DEFINING BREAKPOINTS USING SYSTEM MACROS

You can define breakpoints not only by using the Breakpoints dialog box but also by
using built-in C-SPY system macros. When you use macros for defining breakpoints,
the breakpoint characteristics are specified as function parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file by using
built-in system macros and execute the file at C-SPY startup. The breakpoints will then
be set automatically each time you start C-SPY. Another advantage is that the debug
session will be documented, and that several engineers involved in the development
project can share the macro files.

If you use system macros for setting breakpoints it is still possible to view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros will be removed when
you exit the debug session.

The following breakpoint macros are available:

__setCodeBreak
__setDataBreak
__setSimBreak
__clearBreak

For details of each breakpoint macro, see the chapter C-SPY® macros reference.

Defining breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Registering and executing using setup macros and setup files,
page 147.

Viewing all breakpoints

To view breakpoints, you can use the Breakpoints window and the Breakpoints Usage
dialog box.

For information about the Breakpoints window, see Breakpoints window, page 255.

MSP430 IAR Embedded Workbench® IDE

User Guide

Using breakpoints ___¢

USING THE BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from C-SPY driver-specific menus, for
example the Simulator menu—Ilists all active breakpoints.

Breakpoint Usage [%]

[Fetch
-SSP Terminal 140 & libsupport module

Figure 47: Breakpoint Usage dialog box

The Breakpoint Usage dialog box lists all breakpoints currently set in the target system,
both the ones you have defined and the ones used internally by C-SPY. For each
breakpoint in the list, the address and access type are shown. Each breakpoint can also
be expanded to show its originator. The format of the items in this dialog box depends
on which C-SPY driver you are using.

The dialog box gives a low-level view of all breakpoints, related but not identical to the
list of breakpoints shown in the Breakpoints dialog box.

Exceeding the number of available low-level breakpoints will cause the debugger to
single step. This will significantly reduce the execution speed. Therefore, in a debugger
system with a limited amount of breakpoints, the Breakpoint Usage dialog box can be
useful for:

o Identifying all consumers of breakpoints

o Checking that the number of active breakpoints is supported by the target system

o Configuring the debugger to utilize the available breakpoints in a better way, if
possible.

For information about the available number of breakpoints in the debugger system you
are using and how to use the available breakpoints in a better way, see the section about
breakpoints in the part of this book that corresponds to the debugger system you are
using.

Part 4. Debugging 133

Viewing all breakpoints

Breakpoint consumers
There are several consumers of breakpoints in a debugger system.

User breakpoints—the breakpoints you define by using the Breakpoints dialog box or
by toggling breakpoints in the editor window—often consume one low-level breakpoint
each, but this can vary greatly. Some user breakpoints consume several low-level
breakpoints and conversely, several user breakpoints can share one low-level
breakpoint. User breakpoints are displayed in the same way both in the Breakpoint
Usage dialog box and in the Breakpoints dialog box, for example Data @[R]
callCount.

C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

o the C-SPY option Run to has been selected, and any step command is used. These
are temporary breakpoints which are only set when the debugger system is running.
This means that they are not visible in the Breakpoint Usage window.

o the linker options With I/O emulation modules has been selected.

These types of breakpoint consumers are displayed in the Breakpoint Usage dialog
box, for example, C-SPY Terminal I/0 & libsupport module.

In addition, C-SPY plugin modules, for example modules for real-time operating
systems, can consume additional breakpoints.

MSP430 IAR Embedded Workbench® IDE
134 User Guide

Monitoring memory and
registers

This chapter describes how to use the features available in the IAR C-SPY®

Debugger for examining memory and registers:

e The Memory window

e The Register window

o Predefined and user-defined register groups

e The Stack window.

Memory addressing

In C-SPY, the term zone is used for a named memory area. A memory address, or

location, is a combination of a zone and a numerical offset into that zone. The MSP430

architecture has only one zone, Memory, which covers the whole MSP430 memory
range. If you load a device description file, additional zones that adhere better to the
specific device memory layout are defined.

Default zone Memory

Figure 48: Zones in C-SPY

0x0000

O0xFFFF

SFR

RAM

Flash

0x0000
0x0200

0x0A00

0x1100

O0xFFFF

Additional zones for MSP430F149

Part 4. Debugging

135

Using the Memory window

Memory zones are used in several contexts, perhaps most importantly in the Memory
and Disassembly windows. The Zone box in these windows allows you to choose which
memory zone to display.

Memory zones are defined in the device description files. For further information, see
Device description file, page 113.

Using the Memory window

Go to memory —
address

The Memory window—available from the View menu—gives an up-to-date display of
a specified area of memory and allows you to edit it. You can open several instances of
this window, which is very convenient if you want to monitor different memory or
register areas.

Zone display

e —————

Gotol j IMemory j |ZI

Olef Q0 Q0 00 00 00 00 00 00
QLEG Q0 Q0 00 00 00 00 00 00
QLEs Q0 00 00 00 00 00 00 00
Q200 00

Q208 |
0210
0218 %e 38 Be 5% 2c 4a %2 Ba
0220 28 %4 ac 11 54 15 e0 82
0228 45 a7 e% ek 2a Ge 785 BT E...%nvw. LI

Lix |

Figure 49: Memory window

The window consists of three columns. The left-most part displays the addresses
currently being viewed. The middle part of the window displays the memory contents
in the format you have chosen. Finally, the right-most part displays the memory contents
in ASCII format. You can edit the contents of the Memory window, both in the
hexadecimal part and the ASCII part of the window.

You can easily view the memory contents for a specific variable by dragging the variable
to the Memory window. The memory area where the variable is located will appear.

Memory window operations

At the top of the window there are commands for navigation and configuration. These
commands are also available on the context menu that appears when you right-click in
the Memory window. In addition, commands for editing, opening the Fill dialog box,
and setting breakpoints are available.

MSP430 IAR Embedded Workbench® IDE

136 User Guide

Monitoring memory and registers ___¢

For reference information about each command, see Memory window, page 318.

Memory Fill

The Fill dialog box allows you to fill a specified area of memory with a value.

Start Address Length Zone

[p-1000 [t |Memay =]
Vel Operation

O=FF

& Copy AND
 ®OR 0OR

()3 I Cancel |

Figure 50: Memory Fill dialog box

For reference information about the dialog box, see Fill dialog box, page 320.

Setting a breakpoint in the Memory window

It is possible to set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted; you can see, edit, and remove it by using the
Breakpoints window, which is available from the View menu. The breakpoints you set
in this window will be triggered for both read and write access. All breakpoints defined
in the Memory window are preserved between debug sessions.

Note: Setting different types of breakpoints in the Memory window is only supported
if the driver you use supports these types of breakpoints.

Part 4. Debugging 137

Working with registers

Working with registers

The Register window—available from the View menu—gives an up-to-date display of
the contents of the processor registers, and allows you to edit them.

I CPU Registers j

PC = Ox113E R11 = 0x0003
8P = OxOSFE R12 = 0x02le

[fISR = 0x0003 R13 = OxOEZE
R4 = OxOE&S R14 = 0x00le
RE = OxlABS R15 = 0x02le
R6 = OxTAZA CYCLECOUNTER = 202
RT = Ox0OAQQ CCTIMER1 = 202
RE = OxSDEO CCTIMER2 = 202
RO = Ox&ECe%
R10 = OxO004

Figure 51: Register window

Every time C-SPY stops, a value that has changed since the last stop is highlighted. To
edit the contents of a register, click it, and modify the value. Some registers are
expandable, which means that the register contains interesting bits or subgroups of bits.

You can change the display format by changing the Base setting on the Register Filter
page—available by choosing Tools>Options.

REGISTER GROUPS

Due to the large amount of registers—memory-mapped peripheral unit registers and
CPU registers—it is inconvenient to list all registers concurrently in the Register
window. Instead you can divide registers into register groups. By default there is only
one register group in the debugger: CPU Registers.

In addition to the CPU Registers there are additional register groups predefined in the
device description files—available in the 430\ config directory—that make all SFR
registers available in the register window. The device description file contains a section
that defines the special function registers and their groups.

You can select which register group to display in the Register window using the
drop-down list. You can conveniently keep track of different register groups
simultaneously, as you can open several instances of the Register window.

Enabling predefined register groups

To use any of the predefined register groups, select a device description file that suits
your device, see Selecting a device description file, page 111.

MSP430 IAR Embedded Workbench® IDE
138 User Guide

Monitoring memory and registers ___¢

The available register groups will be listed on the Register Filter page available if you
choose the Tools>Options command when C-SPY is running.
Defining application-specific groups

In addition to the predefined register groups, you can design your own register groups
that better suit the use of registers in your application.

To define new register groups, choose Tools>Options and click the Register Filter tab.
This page is only available when the IAR C-SPY Debugger is running.

IDE Dptions [%]
Common Fonts I Key Bindings I External Editar | Meszages I Editor I

Editor Colors and Fonts I Project I Debugger Register Filter | Terminal |40

¥ Use register filter Groups:

IMyFiIter.fIt Filer Files...l I VI
=- EI_F'U Registers MI

Group members:

Cancel | Apply | Help |

Figure 52: Register Filter page

For reference information about this dialog box, see Register Filter page, page 298.

Part 4. Debugging 139

Using the Stack window

Using the Stack window

The Stack window is a memory window that displays the contents of the stack. In

addition, some integrity checks of the stack can be performed to detect and warn about
problems with stack overflow. For example, the Stack window is useful for determining
the optimal size of the stack.

Before you can open the Stack window you must make sure it is enabled; Choose
Project>Options>Debugger>Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open
several Stack windows, each showing a different stack—if several stacks are
available—or the same stack with different display settings.

. Current stack
Stack view pointer Used stack memory, Unused stack memory,

in dark gray

in light gray

Current stack Location

Data Yariable Yalue | Frame

T OxEFF8
+1
+2
+4
+5
+6
+7

pointer

0x08
0x08
0x0000 p.mStatus 0 [1] _exit
Ox4d
0xE7
0xEQ
0x04

The graphical stack bar

Figure 53: Stack window

For detailed reference information about the Stack window, and the method used for
computing the stack usage and its limitations, see Stack window, page 332. For reference
information about the options specific to the window, see Stack page, page 301.

GRAPHICAL STACK DISPLAY

At the top of the window, a stack bar displays the state of the stack graphically. To view
the stack bar you must make sure it is enabled: choose Tools>Options>Stack and select
the option Enable stack checks.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. A green line represents the current value of
the stack pointer. The part of the stack memory that has been used during execution is
displayed in a dark-gray color, and the unused part in a light-gray color. The graphical
stack bar turns red when the stack usage exceeds a threshold that you can specify.

MSP430 IAR Embedded Workbench® IDE
140 User Guide

Monitoring memory and registers ___¢

Place the mouse pointer over the stack bar to get tool tip information about stack usage.

DETECTING STACK OVERFLOWS

If you have selected the option Enable stack checks, available by choosing
Tools>Options>Stack, you have also enabled the functionality needed to detect stack
overflows. This means that C-SPY can issue warnings for stack overflow when the
application stops executing. Warnings are issued either when the stack usage exceeds a
threshold that you can specify, or when the stack pointer is outside the stack memory
range.

VIEWING THE STACK CONTENTS

The main part of the Stack window displays the contents of the stack, which can be
useful in many contexts. Some examples are:

e Investigating the stack usage when assembler modules are called from C modules
and vice versa

e Investigating whether the correct elements are located on the stack

e Investigating whether the stack is restored properly.

Part 4. Debugging 141

Using the Stack window

MSP430 IAR Embedded Workbench® IDE
142 User Guide

Using the C-SPY® macro
system

The IAR C-SPY Debugger includes a comprehensive macro system which

allows you to automate the debugging process and to simulate peripheral

devices. Macros can be used in conjunction with complex breakpoints and
interrupt simulation to perform a wide variety of tasks.

This chapter describes the macro system, its features, for what purpose these
features can be used, and how to use them.

The macro system

C-SPY macros can be used solely or in conjunction with complex breakpoints and
interrupt simulation to perform a wide variety of tasks. Some examples where macros
can be useful:

e Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

e Hardware configuring, such as initializing hardware registers.

Developing small debug utility functions, for instance calculating the stack depth.

e Simulating peripheral devices, see the chapter Simulating interrupts. This only
applies if you are using the simulator driver.

The macro system has several features:

o The similarity between the macro language and the C language, which lets you
write your own macro functions.

e Predefined system macros which perform useful tasks such as opening and closing
files, setting breakpoints and defining simulated interrupts.

o Reserved setup macro functions which can be used for defining at which stage the
macro function should be executed. You define the function yourself, in a setup
macro file.

e The option of collecting your macro functions in one or several macro files.

e A dialog box where you can view, register, and edit your macro functions and files.

Alternatively, you can register and execute your macro files and functions using
either the setup functionality or system macros.

Part 4. Debugging

143

The macro system

144

Many C-SPY tasks can be performed either by using a dialog box or by using macro
functions. The advantage of using a dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the task you want
to perform, for instance setting a breakpoint. You can add parameters and quickly test
whether the breakpoint works according to your intentions.

Macros, on the other hand, are useful when you already have specified your breakpoints
so that they fully meet your requirements. You can set up your simulator environment
automatically by writing a macro file and executing it, for instance when you start
C-SPY. Another advantage is that the debug session will be documented, and if there are
several engineers involved in the development project you can share the macro files
within the group.

THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return values. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. For a
detailed description of the macro language components, see The macro language, page
397.

Example

Consider this example of a macro function which illustrates the different components of
the macro language:

CheckLatest (value)

{
oldvalue;
if (oldvalue != value)
{
__message "Message: Changed from ", oldvalue, " to ", value;
oldvalue = value;
}
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

THE MACRO FILE

You collect your macro variables and functions in one or several macro files. To define
a macro variable or macro function, first create a text file containing the definition. You
can use any suitable text editor, such as the editor supplied with IAR Embedded
Workbench. Save the file with a suitable name using the filename extension mac.

MSP430 IAR Embedded Workbench® IDE

User Guide

Using the C-SPY® macro system __4

Setup macro file

It is possible to load a macro file at C-SPY startup; such a file is called a setup macro
file. This is especially convenient if you want to make C-SPY perform actions before
you load your application software, for instance to initialize some CPU registers or
memory-mapped peripheral units. Other reasons might be if you want to automate the
initialization of C-SPY, or if you want to register multiple setup macro files. An example
of a C-SPY setup macro file SetupSimple.mac can be found in the 430\tutor
directory.

For information about how to load a setup macro file, see Registering and executing
using setup macros and setup files, page 147. For an example of how to use setup macro
files, see the chapter Simulating an interrupt in Part 2. Tutorials.

SETUP MACRO FUNCTIONS

The setup macro functions are reserved macro function names that will be called by
C-SPY at specific stages during execution. The stages to choose between are:

e After communication with the target system has been established but before
downloading the application software

o Once after your application software has been downloaded

e Each time the reset command is issued

o Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register
a macro function with the name of a setup macro function. For instance, if you want to
clear a specific memory area before you load your application software, the macro setup
function execUserPreload is suitable. This function is also suitable if you want to
initialize some CPU registers or memory mapped peripheral units before you load your
application software. For detailed information about each setup macro function, see
Setup macro functions summary, page 402.

As with any macro function, you collect your setup macro functions in a macro file.
Because many of the setup macro functions execute before main is reached, you should
define these functions in a setup macro file.

Using C-SPY macros
If you decide to use C-SPY macros, you first need to create a macro file in which you
define your macro functions. C-SPY needs to know that you intend to use your defined
macro functions, and thus you must register (load) your macro file. During the debug
session you might need to list all available macro functions as well as execute them.

Part 4. Debugging 145

Using C-SPY macros

146

To list the registered macro functions, you can use the Macro Configuration dialog
box. There are various ways to both register and execute macro functions:

e You can register a macro interactively by using the Macro Configuration dialog
box.

e You can register and execute macro functions at the C-SPY startup sequence by
defining setup macro functions in a setup macro file.

e A file containing macro function definitions can be registered using the system
macro __ registerMacroFile. This means that you can dynamically select
which macro files to register, depending on the runtime conditions. Using the
system macro also lets you register multiple files at the same moment. For details
about the system macro, see __registerMacroFile, page 412.

o The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions.

e A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro will be executed.

USING THE MACRO CONFIGURATION DIALOG BOX

The Macro Configuration dialog box—available by choosing Debug>Macros—Ilets
you list, register, and edit your macro files and functions. The dialog box offers you an
interactive interface for registering your macro functions which is convenient when you
develop macro functions and continuously want to load and test them.

MSP430 IAR Embedded Workbench® IDE

User Guide

Using the C-SPY® macro system __4

Macro functions that have been registered using the dialog box will be deactivated when
you exit the debug session, and will not automatically be registered at the next debug
session.

Macro Configuration BE
Look in: Ia tutaor j - I‘j‘ v
_1Debug
1 settings

Setupadvanced. mac
SetupSimple. mac

File name: ISetupSimpIe.mac j
Files of type: IMacro Filez [*.mac] j
Selected Macro Files: Add |

C:hprojectshtutorS etupSimple. mac Add Al |
Remove |
Remave Al |

— Registered Macro .
Regist
(o] User € System ﬂl

Parameters | File

_canceldlinterrupts] - Spstem Macro -
__cancellnterupt int] - Spstem Macro -
_clearBreak [id) - Spstem Macro -
__clozeFile [file] - Spstem Macro - — ol
- ose |
__dizablelnterrupts Il - Spstem Macro -
__driverType [ztring] - Spstem Macro - LI Help |

Figure 54: Macro Configuration dialog box

For reference information about this dialog box, see Macro Configuration dialog box,
page 338.

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence,
especially if you have several ready-made macro functions. C-SPY can then execute the
macros before main is reached. You achieve this by specifying a macro file which you
load before starting the debugger. Your macro functions will be automatically registered
each time you start the C-SPY Debugger.

If you define the macro functions by using the setup macro function names you can
define exactly at which stage you want the macro function to be executed.

Part 4. Debugging 147

Using C-SPY macros

148

Follow these steps:
Create a new text file where you can define your macro function.
For example:

execUserSetup ()

{

__registerMacroFile (MyMacroUtils.mac) ;
_ _registerMacroFile (MyDeviceSimulation.mac) ;

}

This macro function registers the macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the
execUserSetup function name, it will be executed directly after your application has
been downloaded.

Save the file using the filename extension mac.

Before you start C-SPY, choose Project>Options and click the Setup tab in the
Debugger category. Select the check box Use Setup file and choose the macro file you
just created.

The interrupt macro will now be loaded during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window—available from the View menu—Iets you watch the value

of any variables or expressions and evaluate them. For macros, the Quick Watch window
is especially useful because it is a method which lets you dynamically choose when to
execute a macro function.

Consider the following simple macro function which checks the status of a watchdog
timer interrupt enable bit:

WDTstatus ()
{
if (#IE1 & 0x01 != 0) /* Checks the status of WDTIE */
return "Timer enabled"; /* C-SPY macro string used */
else

return "Timer disabled"; /* C-SPY macro string used */

}
Save the macro function using the filename extension mac. Keep the file open.

To register the macro file, choose Debug>Macros. The Macro Configuration dialog
box appears. Locate the file, click Add and then Register. The macro function appears
in the list of registered macros.

MSP430 IAR Embedded Workbench® IDE

User Guide

Using the C-SPY® macro system __4

3 In the macro file editor window, select the macro function name WDTstatus.
Right-click, and choose Quick Watch from the context menu that appears.

Quick Watch B

G e =]

| Expression | Yalue | Location | Type |
WD Tstatus() "Timer disabled" macro string

Figure 55: Quick Watch window
The macro will automatically be displayed in the Quick Watch window.

Click Close to close the window.

EXECUTING A MACRO BY CONNECTING ITTO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed at the time
when the breakpoint is triggered. The advantage is that you can stop the execution at
locations of particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers changes. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

For an example of how to create a log macro and connect it to a breakpoint, follow these
steps:

I Assume this skeleton of a C function in your application source code:

int fact(int x)

{

}
2 Create a simple log macro function like this example:

logfact ()
{
__message "fact(" ,x, ")";

}
The __message statement will log messages to the Log window.

Save the macro function in a macro file, with the filename extension mac.

Part 4. Debugging 149

Using C-SPY macros

150

Before you can execute the macro it must be registered. Open the Macro
Configuration dialog box—available by choosing Debug>Macros—and add your
macro file to the list Selected Macro Files. Click Register and your macro function
will appear in the list Registered Macros. Close the dialog box.

Next, you should toggle a code breakpoint—using the Toggle Breakpoint button—on
the first statement within the function fact in your application source code. Open the
Breakpoint dialog box—available by choosing Edit>Breakpoints—your breakpoint
will appear in the list of breakpoints at the bottom of the dialog box. Select the
breakpoint.

Connect the log macro function to the breakpoint by typing the name of the macro
function, logfact (), in the Action field and clicking Apply. Close the dialog box.

Now you can execute your application source code. When the breakpoint has been
triggered, the macro function will be executed. You can see the result in the Log
window.

You can easily enhance the log macro function by, for instance, using the __ fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 400.

For a complete example where a serial port input buffer is simulated using the method
of connecting a macro to a breakpoint, see the chapter Simulating an interrupt in Part 2.
Tutorials.

MSP430 IAR Embedded Workbench® IDE

User Guide

Analyzing your application

Itis important to locate an application’s bottle-necks and to verify that all parts
of an application have been tested. This chapter presents facilities available in
the IAR C-SPY® Debugger for analyzing your application so that you can
efficiently spend time and effort on optimizations.

Code coverage is only supported by the IAR C-SPY Simulator.

Function-level profiling

The profiler will help you find the functions where most time is spent during execution,
for a given stimulus. Those functions are the parts you should focus on when spending
time and effort on optimizing your code. A simple method of optimizing a function is to
compile it using speed optimization. Alternatively, you can move the function into
memory which uses the most efficient addressing mode. For detailed information about
efficient memory usage, see the MSP430 IAR C/C++ Compiler Reference Guide.

The Profiling window displays profiling information, that is, timing information for the
functions in an application. Profiling must be turned on explicitly using a button on the
window’s toolbar, and will stay active until it is turned off.

The profiler measures the time between the entry and return of a function. This means
that time consumed in a function is not added until the function returns or another
function is called. You will only notice this if you are stepping into a function.

For reference information about the Profiling window, see Profiling window, page 330.

USING THE PROFILER

Before you can use the Profiling window, you must build your application using the
following options:

Category Setting

C/C++ Compiler Output>Generate debug information
Linker Format>Debug information for C-SPY
Debugger Plugins>Profiling

Table 14: Project options for enabling profiling

After you have built your application and started C-SPY, choose View>Profiling to
open the window, and click the Activate button to turn on the profiler.

Part 4. Debugging

151

Function-level profiling

+—] 2 Click the Clear button, alternatively use the context menu available by right-clicking in
||—hI the window, when you want to start a new sampling.
y pling

cl 3 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button.

[© =|=| 5 clo|

Function I Calls I Flat Time (cycles) I Flat Time (*) I Accumulated Tim. I Accumulated Tim I
Outside main 1] 2n? 428 2n? 428
_ datalf_memze. 1 0 ono 0 ono
__putchar 24 72 143 72 143
_exit 1] 0 0.00 0 0.00
do_foreground_p... 10 280 573 3980 82.23
enxit 1 3 0.08 3 0.08
get_fib 26 390 5.06 390 8086
init_fiby 1 248 512 488 10.08
main 1 163 328 4627 95.60
next_counter 10 7n 145 7n 145
put_fib 10 3336 £8.93 3480 71.90
putchar 24 7z 1.43 144 248

Figure 56: Profiling window
Profiling information is displayed in the window.

Viewing the figures
Clicking on a column header sorts the complete list according to that column.

A dimmed item in the list indicates that the function has been called by a function which
does not contain source code (compiled without debug information). When a function
is called by functions that do not have their source code available, such as library
functions, no measurement in time is made.

There is always an item in the list called Outside main. This is time that cannot be placed
in any of the functions in the list. That is, code compiled without debug information, for
instance, all startup and exit code, and C/C++ library code.

MSP430 IAR Embedded Workbench® IDE
152 User Guide

Analyzing your application ___¢

Clicking the Graph button toggles the percentage columns to be displayed either as
numbers or as bar charts.

Profiling]
[5F =(c|o|

Function | Calls | Flat Tirme (cycles) | Flat Time (32 | Accurmulsted T\m...| Accumulated Tim...|
Qutsicle main] 5 5

__datalb_memze.. 0 0 i}

__putchar 24 72 | 72 |

_ et i} 0 i}

do_foreground_p... 10 280 | 3980 | |
exit 1 3 3

get fil 26 380 [| 3490 u

init_fila 1 248 1 4i8 u

main i} 159 1 4B27 |
hext_counter 10 70 | 70 |

put_fib 10 3336 | 3480 |
putchar 24 72 | 144 1

Figure 57: Graphs in Profiling window

Clicking the Show details button displays more detailed information about the function
selected in the list. A window is opened showing information about callers and callees
for the selected function:

Function: putchar -

Flat time 6571 cycles., Accumulated time 9329 cycles.
Callers:
Total: 538

Count Function

E14 do foreground_process
24 put_fib
Callees:

Count Function

5£3a __putchar

Figure 58: Function details window

Producing reports

To produce a report, right-click in the window and choose the Save As command on the
context menu. The contents of the Profiling window will be saved to a file.

Part 4. Debugging 153

Code coverage

154

Code coverage

The code coverage functionality helps you verify whether all parts of your code have
been executed. This is useful when you design your test procedure to make sure that all
parts of the code have been executed. It also helps you identify parts of your code that
are not reachable.

USING CODE COVERAGE

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code have been executed at least
once since the start of the analysis. The compiler generates detailed stepping
information in the form of step points at each statement, as well as at each function call.
The report includes information about all modules and functions. It reports the amount
of all step points, in percentage, that have been executed and lists all step points that have
not been executed up to the point where the application has been stopped. The coverage
will continue until turned off.

For reference information about the Code Coverage window, see Code Coverage
window, page 329.

Before using the Code Coverage window you must build your application using the
following options:

Category Setting

C/C++ Compiler Output>Generate debug information
Linker Format>Debug information for C-SPY
Debugger Plugins>Code Coverage

Table 15: Project options for enabling code coverage

MSP430 IAR Embedded Workbench® IDE

User Guide

Analyzing your application ___¢

After you have built your application and started C-SPY, choose View>Code Coverage
to open the Code Coverage window and click Activate to switch on the code coverage
analyzer. The following window will be displayed:

Code Coverage

[5]clo
=% project] 91.18%
=% Tutor 100.00%
: 4 do_foreground_pracess 100.00%
% main 100.00%
@ next_counter 100.00%
Elc Ltilities 86.96%%
&9 get_fib 65.57%

@ init_fib 100.00%

& @ put_fib §462%

Figure 59: Code Coverage window

Viewing the figures

The code coverage information is displayed in a tree structure, showing the program,
module, function and step point levels. The plus sign and minus sign icons allow you to
expand and collapse the structure.

The following icons are used to give you an overview of the current status on all levels:

o A red diamond signifies that 0% of the code has been executed

e A green diamond signifies that 100% of the code has been executed

e A red and green diamond signifies that some of the code has been executed
o A yellow diamond signifies a step point that has not been executed.

The percentage displayed at the end of every program, module and function line shows
the amount of code that has been covered so far, that is, the number of executed step
points divided with the total number of step points.

For step point lines, the information displayed is the column number range and the row

number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:row.

A step point is considered to be executed when one of its instructions has been executed.
When a step point has been executed, it is removed from the window.

Part 4. Debugging

155

Code coverage

156

Double-clicking a step point or a function in the Code Coverage window displays that
step point or function as the current position in the source window, which becomes the
active window. Double-clicking a module on the program level expands or collapses the
tree structure.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window needs to be refreshed because the displayed information is
no longer up to date. To update the information, use the Refresh command.

What parts of the code are displayed?

The window displays only statements that have been compiled with debug information.
Thus, startup code, exit code and library code will not be displayed in the window.
Furthermore, coverage information for statements in inlined functions will not be
displayed. Only the statement containing the inlined function call will be marked as
executed.

Producing reports

To produce a report, right-click in the window and choose the Save As command on the
context menu. The contents of the Code Coverage window will be saved to a file.

MSP430 IAR Embedded Workbench® IDE

User Guide

Part 5. IAR C-SPY
Simulator

This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

o Simulator-specific debugging

e Simulating interrupts.

.hmuiuhhhi

157

ARARAIed

158

Simulator-specific
debugging

In addition to the general C-SPY® features, the C-SPY Simulator provides
some simulator-specific features, which are described in this chapter.

You will get reference information, as well as information about driver-specific
characteristics, such as memory access checking and breakpoints.

The IAR C-SPY Simulator introduction

The IAR C-SPY Simulator simulates the functions of the target processor entirely in
software, which means the program logic can be debugged long before any hardware is
available. As no hardware is required, it is also the most cost-effective solution for many
applications.

FEATURES

In addition to the general features listed in the chapter Product introduction, the IAR
C-SPY Simulator also provides:

Instruction-accurate simulated execution

Memory configuration and validation

Interrupt simulation

Immediate breakpoints with resume functionality
Peripheral simulation (using the C-SPY macro system).

SELECTING THE SIMULATOR DRIVER

Before starting the IAR C-SPY Debugger you must choose the simulator driver. In the
IAR Embedded Workbench IDE, choose Project>Options and click the Setup tab in
the Debugger category. Choose Simulator from the Driver drop-down list.

To set simulator-specific options, choose Simulator from the Category list.

Note: You can only choose a driver you have installed on your computer.

Part 5. IAR C-SPY Simulator 159

Simulator-specific menus

SIMULATOR SETUP

The simulator Setup options specify the simulator-specific options.
Setup |

¥ Check for word aceess on odd address

CHECK FOR WORD ACCESS ON ODD ADDRESS

Use this option to make the simulator issue a warning if there is a word access to an odd
address.

Simulator-specific menus
When you use the simulator driver, the Simulator menu is added in the menu bar.

SIMULATOR MENU

Forced Interrupts
v Interrupt Setup. ..
Inkerrupk Log

Memoary Access Setup..,

Trace
Function Trace

Breakpoint Usage. ..

Figure 60: Simulator menu

MSP430 IAR Embedded Workbench® IDE
160 User Guide

Simulator-specific debugging ___¢

The Simulator menu contains the following commands:

Menu command Description

Interrupt Setup Displays a dialog box to allow you to configure C-SPY interrupt
simulation; see Interrupt Setup dialog box, page 180.

Forced Interrupts Displays a window from which you can trigger an interrupt; see Forced
interrupt window, page 183.

Interrupt Log Displays a window which shows the status of all defined interrupts; see
Interrupt Log window, page 185.

Memory Access Setup Displays a dialog box to simulate memory access checking by specifying
memory areas with different access types; see Memory Access setup dialog
box, page 168.

Trace Opens the Trace window with the recorded trace data; see Trace window,
page 162.

Function Trace Opens the Function Trace window with the trace data for which
functions were called or returned from; see Function Trace window, page
164.

Breakpoint Usage Displays the Breakpoint Usage dialog box which lists all active
breakpoints; see Breakpoint Usage dialog box, page 175.

Table 16: Description of Simulator menu commands

Using the trace system in the simulator

In the C-SPY simulator, a trace is a recorded sequence of executed machine instructions.
In addition, you can record the values of C-SPY expressions by selecting the expressions
in the Trace Expressions window. The Function Trace window only shows trace data
corresponding to calls to and returns from functions, whereas the Trace window displays
all instructions.

For more detailed information about using the common features in the trace system, see
Using the trace system, page 127.

Part 5. IAR C-SPY Simulator 161

Using the trace system in the simulator

TRACE WINDOW

The Trace window—available from the Simulator menu—displays a recorded
sequence of executed machine instructions. In addition, the window can display trace
data for expressions.

Trace =]
OXBYYHE A
| Trace | call_count |:|
Z61 00000234 MOV 0x0002, R2
Z62 0000023C ER §+0x1E

=]
Z63 000o0o0z5a CHMP Ox0004, R2
Z64 00000zZ5C BLT §-0x1E
Z65 00000Z3E MOV Rz, Rl -
Z66 00000z40 JARL get £ih, LP soo T LI
Function Trace Trace ITrace Expressions =

Figure 61: Trace window

C-SPY generates trace information based on the location of the program counter.

The Trace window contains the following columns:

Trace window column Description

A serial number for each row in the trace buffer. Simplifies the
navigation within the buffer.

Trace The recorded sequence of executed machine instructions.
Optionally, the corresponding source code can also be displayed.

Expression Each expression you have defined to be displayed appears in a
separate column. Each entry in the expression column displays the
value after executing the instruction on the same row. You specify
the expressions for which you want to record trace information in
the Trace Expressions window; see Trace Expressions window, page
164.

Table 17: Trace window columns

For more information about using the trace system, see Using the trace system, page
127.

MSP430 IAR Embedded Workbench® IDE
162 User Guide

0 <« »~F2 W X G

H

Simulator-specific debugging ___¢

TRACE TOOLBAR

The Trace toolbar is available in the Trace window and in the Function trace window:

Enable/Disable Find
Toggle source

|
@XEQ,%?W F|E|

Clear trace data Browse Save Function trace

Edit expression

Figure 62: Trace toolbar

The following function buttons are available on the toolbar:

Toolbar button Description

Enable/Disable Enables and disables tracing. This button is not available in the
Function trace window.

Clear trace data Clears the trace buffer. Both the Trace window and the Function
trace window are cleared.

Toggle Source Toggles the Trace column between showing only disassembly or
disassembly together with corresponding source code.

Browse Toggles browse mode on and off for a selected item in the Trace
column. For more information about browse mode, see The Trace
window and its browse mode, page 127.

Find Opens the Find In Trace dialog box where you can perform a
search; see Find in Trace dialog box, page 166.

Save Opens a standard Save dialog box where you can save the
recorded trace information to a text file, with tab-separated

columns.
Edit settings This button is not enabled in the C-SPY simulator.
Edit Expressions Opens the Trace Expressions window; see Trace Expressions

window, page |64.

Table 18: Trace toolbar commands

Part 5. IAR C-SPY Simulator

163

Using the trace system in the simulator

FUNCTION TRACE WINDOW

The Function Trace window—available from the Simulator menu—displays a subset
of the trace data displayed in the Trace window. Instead of displaying all rows, the
Function Trace window only shows trace data corresponding to calls to and returns from

functions.

Function Trace =]
XAyYHE A

| Trace | call_count |;|
2699 Memory: 0x002D4: put f£ib + 50 2

2711 Memory:0x00114: ?C PUTCHAR 2

2713 Memory:0x00313: put f£ib + 107 2

2717 Memory:0x00214: do foreground process... 2

27158 Memory:0x0023E: main + 41 2

2721 Memory:0x00145: 251 CHMP LOZ 2

2735 Memory:0x00247: main + 50 2

2737 Memory:0x00205: do foreground process 2

2738 Memory: 0x00200: next counter 2 j
Function Trace ITrace | Trace Expressions =

Figure 63: Function Trace window

For information about the toolbar, see Trace toolbar, page 163.

For more information about using the trace system, see Using the trace system, page
127.

TRACE EXPRESSIONS WINDOW

In the Trace Expressions window—available from the Trace window toolbar—you can
specity specific expressions for which you want to record trace information.

Trace Expressions B
+ 3

Expression | Format
Default

Trace Expressions

Figure 64: Trace Expressions window

In the Expression column, you specify any expression you want to be recorded. You can
specify any expression that can be evaluated, such as variables and registers.

The Format column shows which display format is used for each expression.

MSP430 IAR Embedded Workbench® IDE
164 User Guide

Simulator-specific debugging ___¢

Each row in this window will appear as an extra column in the Trace window.

For more information about using the trace system, see Using the trace system, page
127.

Use the toolbar buttons to change the order between the expressions:

Toolbar button Description
Arrow up Moves the selected row up
Arrow down Moves the selected row down

Table 19: Toolbar buttons in the Trace Expressions window

FIND IN TRACE WINDOW

The Find In Trace window—available from the View>Messages menu—displays the
result of searches in the trace data.

Find In Trace B

Trace

Find In Trace

Figure 65: Find In Trace window

The Find in Trace window looks like the Trace window, showing the same columns and
data, but only those rows that match the specified search criteria. Double-clicking an
item in the Find in Trace window brings up the same item in the Trace window.

You specify the search criteria in the Find In Trace dialog box. For information about
how to open this dialog box, see Find in Trace dialog box, page 166.

For more information about using the trace system, see Using the trace system, page
127.

Part 5. IAR C-SPY Simulator 165

Using the trace system in the simulator

166

FIND IN TRACE DIALOG BOX

Use the Find in Trace dialog box—available by choosing Edit>Find and
Replace>Find or from the Trace window toolbar—to specify the search criteria for
advanced searches in the trace data. Note that the Edit>Find and Replace>Find
command is context-dependent. It displays the Find in Trace dialog box if the Trace
window is the current window or the Find dialog box if the editor window is the current
window.

Find in Trace E
IV Text Search Find I
| = |
Cancel

™ Makch Case
™ Makch whale word

™ Only search in one column

ITrace j

™ address Range

[e gk

Figure 66: Find in Trace dialog box

The search results are displayed in the Find In Trace window—available by choosing
the View>Messages command, see Find In Trace window, page 165.

In the Find in Trace dialog box, you specify the search criteria with the following
settings:
Text search

A text field where you type the string you want to search for. Use the following options
to fine-tune the search:

Match Case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

Only search in one Searches only in the column you selected from the drop-down menu.
column

MSP430 IAR Embedded Workbench® IDE

User Guide

Simulator-specific debugging ___¢

Address Range

Use the text fields to specify an address range. The trace data within the address range
is displayed. If you also have specied a text string in the Text search field, the text string
will be searched for within the address range.

For more information about using the trace system, see Using the trace system, page
127.

Memory access checking

C-SPY can simulate different memory access types of the target hardware and detect
illegal accesses, for example a read access to write-only memory. If a memory access
occurs that does not agree with the access type specified for the specific memory area,
C-SPY will regard this as an illegal access. The purpose of memory access checking is
to help you to identify any memory access violations.

The memory areas can either be the zones predefined in the device description file, or
memory areas based on the segment information available in the debug file. In addition
to these, you can define your own memory areas. The access type can be read and write,
read only, or write only. It is not possible to map two different access types to the same
memory area. You can choose between checking access type violation or checking
accesses to unspecified ranges. Any violations are logged in the Debug Log window.
You can also choose to have the execution halted.

Choose Simulator>Memory Access Setup to open the Memory Access Setup dialog
box.

Part 5. IAR C-SPY Simulator 167

Memory access checking

MEMORY ACCESS SETUP DIALOG BOX

The Memory Access Setup dialog box—available from the Simulator menu—Ilists all
defined memory areas, where each column in the list specifies the properties of the area.
In other words, the dialog box displays the memory access setup that will be used during
the simulation.

Memory Access Setup

™ Use ranges based on

% Deyvice description file

| Debug file segment information [anly shovwn while debugging) Cancel
Zone | Start Addr | End Addr | Accesz Type |
Memory 0x0 0x1FF R

Memory 0200 0x9FF R
Memory 01000 0«10FF R
Memory 0x1100 0«FFFF R

™ Use manual ranges
Zone | Start Addr| End Addr| Accesz Type | e

Exdit....

Delete

[elete &l

i

Memony aczess checking
Check far: Schor:
¥ Access bype violation € Log violations
¥ Access tounspeciied ranges % [Log and stop execution

Figure 67: Memory Access Setup dialog box

Note: If you enable both the Use ranges based on and the Use manual ranges option,
memory accesses will be checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 170.

Use ranges based on

Use the Use ranges based on option to choose any of the predefined alternatives for the
memory access setup. You can choose between:

o Device description file, which means the properties will be loaded from the device
description file

o Debug file segment information, which means the properties will be based on the
segment information available in the debug file. This information is only available
while debugging. The advantage of using this option, is that the simulator can catch
memory accesses outside the linked application.

MSP430 IAR Embedded Workbench® IDE
168 User Guide

Simulator-specific debugging ___¢

Use manual ranges

Use the Use manual ranges option to specify your own ranges manually via the Edit
Memory Access dialog box. To open this dialog box, choose New to specify a new
memory range, or select a memory zone and choose Edit to modify it. For more details,
see Edit Memory Access dialog box, page 170.

The ranges you define manually are saved between debug sessions.

Memory access checking
Use the Check for options to specify what to check for. Choose between:

® Access type violation
e Access to unspecified ranges.

Use the Action options to specify the action to be performed if there is an access
violation. Choose between:

o Log violations
e Log and stop execution.

Any violations are logged in the Debug Log window.

Buttons

The Memory Access Setup dialog box contains the following buttons:

Button Description

OK Standard OK.

Cancel Standard Cancel.

New Opens the Edit Memory Access dialog box, where you can specify a

new memory range and attach an access type to it; see Edit Memory
Access dialog box, page 170.

Edit Opens the Edit Memory Access dialog box, where you can edit the
selected memory area. See Edit Memory Access dialog box, page 170.

Delete Deletes the selected memory area definition.

Delete All Deletes all defined memory area definitions.

Table 20: Function buttons in the Memory Access Setup dialog box

Note: Except for the OK and Cancel buttons, buttons are only available when the
option Use manual ranges is selected.

Part 5. IAR C-SPY Simulator 169

Using breakpoints

EDIT MEMORY ACCESS DIALOG BOX

In the Edit Memory Access dialog box—available from the Memory Access Setup
dialog box—you can specify the memory ranges, and assign an access type to each
memory range, for which you want to detect illegal accesses during the simulation.

Zone:
I Memory - l Cancel |
Start address: End address:
Jo [1FFF
—Access lype

 Fead and write
' Fead only
© Wfrite anly

Figure 68: Edit Memory Access dialog box

For each memory range you can define the following properties:

Memory range

Use these settings to define the memory area for which you want to check the memory
accesses:

Zone The memory zone; see Memory addressing, page 135.
Start address The start address for the address range, in hexadecimal notation.
End address The end address for the address range, in hexadecimal notation.

Access type

Use one of these options to assign an access type to the memory range; the access type
can be one of Read and write, Read only, or Write only. It is not possible to assign two
different access types to the same memory area.

Using breakpoints

Using the C-SPY Simulator, you can set an unlimited amount of breakpoints. For code
and data breakpoints you can define a size attribute, that is, you can set the breakpoint
on a range. You can also set immediate breakpoints.

MSP430 IAR Embedded Workbench® IDE

170 User Guide

Simulator-specific debugging ___¢

For information about the breakpoint system, see the chapter Using breakpoints in this
guide. For detailed information about code breakpoints, see Code breakpoints dialog
box, page 256.

DATA BREAKPOINTS

Data breakpoints are triggered when data is accessed at the specified location. Data
breakpoints are primarily useful for variables that have a fixed address in memory. If you
set a breakpoint on an accessible local variable, the breakpoint will be set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. The execution will usually stop directly after the instruction that
accessed the data has been executed.

You can set a data breakpoint in three different ways; by using:

o A dialog box, see Data breakpoints dialog box, page 171
e A system macro, see __setDataBreak, page 416
o The Memory window, see Setting a breakpoint in the Memory window, page 137.

Data breakpoints dialog box

The options for setting data breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Data to set a new breakpoint. Alternatively, to modify an existing
breakpoint, select a breakpoint in the Breakpoint window and choose Edit on the
context menu.

The Data breakpoints dialog box appears.

; [rata |

Break &f:

5

—Access Type e
& Feadfwiite & buto |1—
£ Read £ Manual
7 wirite - Action
Expression: I
r— Condition:
Expression:

& Condition true Skip count; I 0

" Condition changed

Figure 69: Data breakpoints dialog box

Part 5. IAR C-SPY Simulator 171

Using breakpoints

172

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 260.

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Memory Access type Description

Read/Write Read or write from location (not available for immediate breakpoints).
Read Read from location.
Write Write to location.

Table 21: Memory Access types

Note: Data breakpoints never stop execution within a single instruction. They are
recorded and reported after the instruction is executed. (Immediate breakpoints do not
stop execution at all, they only suspend it temporarily. See Immediate breakpoints, page
173.)

Size

Optionally, you can specify a size—in practice, a range of locations. Each read and write
access to the specified memory range will trigger the breakpoint. For data breakpoints,
this can be useful if you want the breakpoint to be triggered on accesses to data
structures, such as arrays, structs, and unions.

There are two different ways the size can be specified:

e Auto, the size will automatically be based on the type of expression the breakpoint
is set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes

e Manual, you specify the size of the breakpoint manually in the Size text box.

Action

You can optionally connect an action to a breakpoint. You specify an expression, for
instance a C-SPY macro function, which is evaluated when the breakpoint is triggered
and the condition is true.

MSP430 IAR Embedded Workbench® IDE

User Guide

Simulator-specific debugging ___¢

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 22: Breakpoint conditions

IMMEDIATE BREAKPOINTS

In addition to generic breakpoints, the C-SPY Simulator lets you set immediate
breakpoints, which will halt instruction execution only temporarily. This allows a
C-SPY macro function to be called when the processor is about to read data from a
location or immediately after it has written data. Instruction execution will resume after
the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

The two different methods of setting an immediate breakpoint are by using:
o A dialog box, see Immediate breakpoints dialog box, page 173

® A system macro, see __setSimBreak, page 419.

Immediate breakpoints dialog box

The options for setting immediate breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Immediate to set a new breakpoint. Alternatively, to modify an
existing breakpoint, select a breakpoint in the Breakpoint window and choose Edit on
the context menu.

Part 5. IAR C-SPY Simulator 173

Using breakpoints

The Immediate breakpoints dialog box appears.

Break &f:

; Immediate |

Accesz Type
' Read
© Wiite

Action
’7 Expression:

Figure 70: Immediate breakpoints page

Break At

Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 260.

Access Type

Use the options in the Access Type area to specify the type of memory access that
triggers data or immediate breakpoints.

Memory Access type Description

Read Read from location.

Write Write to location.

Table 23: Memory Access types

Note: Immediate breakpoints do not stop execution at all; they only suspend it
temporarily. See Using breakpoints, page 170.

Action

You should connect an action to the breakpoint. Specify an expression, for instance a
C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.

MSP430 IAR Embedded Workbench® IDE

174 User Guide

Simulator-specific debugging ___¢

BREAKPOINT USAGE DIALOG BOX

The Breakpoint Usage dialog box—available from the Simulator menu—Ilists all
active breakpoints.

Breakpoint Usage [%]

[Fetch
-SSP Terminal 140 & libsupport module

Figure 71: Breakpoint Usage dialog box

In addition to listing all breakpoints that you have defined, this dialog box also lists the
internal breakpoints that the debugger is using.

For each breakpoint in the list the address and access type are shown. Each breakpoint
in the list can also be expanded to show its originator.

For more information, see Viewing all breakpoints, page 132.

Part 5. IAR C-SPY Simulator

175

Using breakpoints

MSP430 IAR Embedded Workbench® IDE
176 User Guide

Simulating interrupts

By being able to simulate interrupts, you can debug the program logic long
before any hardware is available. This chapter contains detailed information
about the C-SPY® interrupt simulation system and how to configure the
simulated interrupts to make them reflect the interrupts of your target
hardware. Finally, reference information about each interrupt system macro is
provided.

For information about the interrupt-specific facilities useful when writing
interrupt service routines, see the MSP430 IAR C/C++ Compiler Reference
Guide.

The C-SPY interrupt simulation system

The IAR C-SPY Simulator includes an interrupt simulation system that allows you to
simulate the execution of interrupts during debugging. It is possible to configure the
interrupt simulation system so that it resembles your hardware interrupt system. By
using simulated interrupts in conjunction with C-SPY macros and breakpoints, you can
compose a complex simulation of, for instance, interrupt-driven peripheral devices.
Having simulated interrupts also lets you test the logic of your interrupt service routines.

The interrupt system has the following features:

Simulated interrupt support for the MSP430 microcontroller

Single-occasion or periodical interrupts based on the cycle counter

Predefined interrupts for different devices

Configuration of hold time, probability, and timing variation

State information for locating timing problems

Two interfaces for configuring the simulated interrupts—a dialog box and a C-SPY
system macro—that is, one interactive and one automating interface

e Activation of interrupts either instantly or based on parameters you define

o A log window which continuously displays the status for each defined interrupt.

The interrupt system is activated by default, but if it is not required it can be turned off
to speed up the simulation. You can turn the interrupt system on or off as required either
in the Interrupt Setup dialog box, or by using a system macro. Defined interrupts will
be preserved until you remove them. All interrupts you define using the Interrupt
Setup dialog box are preserved between debug sessions.

Part 5. IAR C-SPY Simulator 177

The C-SPY interrupt simulation system

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, and a variance.

H H H
Act - First activation time
R - Repeat interval
! . . H - Hold time
! ' ! V - Variance
I
o ActeV | RsV

Figure 72: Simulated interrupt configuration

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options
probability—the probability, in percent, that the interrupt will actually appear in a
period—and variance—a time variation range as a percentage of the repeat interval.
These options make it possible to randomize the interrupt simulation. You can also
specify a hold time which describes how long the interrupt remains pending until
removed if it has not been processed. If the hold time is set to infinite, the corresponding
pending bit will be set until the interrupt is acknowledged or removed.

MSP430 IAR Embedded Workbench® IDE
178 User Guide

Simulating interrupts ___¢

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that can be used for locating
timing problems in your application. The Interrupt Setup dialog box displays the
available status information. The interrupt activation signal can exist in one of the states
Idle or Pending. For an interrupt, the following states can be displayed: Executing,
Removed, or Expired.

For a repeatable interrupt that has a specified repeat time which is longer than the
execution time, the status information at different times can look like this:

Hold time Time Status
Interrupt A B C D E A Idle _
activation B Pending
signal Execution time for C Idle (1 executing)
interrupt handler D Idle (1 executing)
E Idle

Figure 73: Simulation states - example 1

If the interrupt repeat interval is shorter than the execution time, and the interrupt is
re-entrant (or non-maskable), the status information at different times can look like this:

Hold time Time Status
A Idle
Int t .
anct?\:;i‘:m A B C D B Executing
signal Execution time for Cc Idle (1 executing)
D

interrupt handler (1) Execution time for

interrupt handler (2) Executing (1 executing

Figure 74: Simulation states - example 2

In this case, the execution time of the interrupt handler is too long compared to the repeat
time, which might indicate that you should rewrite your interrupt handler and make it
shorter, or that you should specify a longer repeat time for the interrupt simulation
system.

Using the interrupt simulation system

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using, and know how to use:

o The Forced Interrupt window
o The Interrupts and Interrupt Setup dialog boxes

Part 5. IAR C-SPY Simulator 179

Using the interrupt simulation system

o The C-SPY system macros for interrupts
o The Interrupt Log window.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To be able to perform these actions for various derivatives, the interrupt system must
have detailed information about each available interrupt. Except for default settings, this
information is provided in the device description files.You can find preconfigured daf
files in the 430\ config directory. The default settings will be used if no device
description file has been specified.

I To load a device description file before you start C-SPY, choose Project>Options and
click the Setup tab of the Debugger category.

2 Choose a device description file that suits your target.

Note: In case you do not find a preconfigured device description file that resembles
your device, you can define one according to your needs. For details of device
description files, see Device description file, page 113.

INTERRUPT SETUP DIALOG BOX

The Interrupt Setup dialog box—available by choosing Simulator>Interrupt
Setup—lists all defined interrupts.

Interrupt Setup E

Interupt | Type | Statuz | Mext Activation |
[FlUARTR_VECTOR Fepeat 4000

Cancel

£

Ef:..

[Velete

Delete &l

AL

Figure 75: Interrupt Setup dialog box

MSP430 IAR Embedded Workbench® IDE
180 User Guide

Simulating interrupts ___¢

The option Enable interrupt simulation enables or disables interrupt simulation. If the
interrupt simulation is disabled, the definitions remain but no interrupts will be
generated. You can also enable and disable installed interrupts individually by using the
check box to the left of the interrupt name in the list of installed interrupts.

The columns contain the following information:

Interrupt Lists all interrupts.

Type Shows the type of the interrupt. The type can be Forced, Single,
or Repeat.

Status Shows the status of the interrupt. The status can be Idle, Removed,

Pending, Executing, or Expired.

Next Activation Shows the next activation time in cycles.

Note: For repeatable interrupts there might be additional information in the Type
column about how many interrupts of the same type that is simultaneously executing
(n executing). If nis larger than one, there is a reentrant interrupt in your interrupt

simulation system that never finishes executing, which might indicate that there is a
problem in your application.

Only non-forced interrtupts may be edited or removed.

Click New or Edit to open the Edit Interrupt dialog box.

Part 5. IAR C-SPY Simulator 181

Using the interrupt simulation system

EDIT INTERRUPT DIALOG BOX

Use the Edit Interrupt dialog box—available from the Interrupt Setup dialog box—to
add and modify interrupts. This dialog box provides you with a graphical interface

where you can interactively fine-tune the interrupt simulation parameters. You can add
the parameters and quickly test that the interrupt is generated according to your needs.

Interrupt:
IUSAHTDHX_VEETDH j
Drescription: Cancel |

IDx‘I2 2 [ET.URKIED IFG1.URXIFGO

First activatior:

4000 Hold tirne

& Infirite
Fiepeat interval:

r
[2000 r
Wariance [%]: Probability [%]:

[= N =

Figure 76: Edit Interrupt dialog box

For each interrupt you can set the following options:

Interrupt A drop-down list containing all available interrupts. Your selection
will automatically update the Description box. The list is populated
with entries from the device description file that you have selected.

Description Contains the description of the selected interrupt, if available. The
description is retrieved from the selected device description file and
consists of a string describing the vector address, priority, enable bit,
and pending bit, separated by space characters. For interrupts
specified using the system macro __orderInterrupt, the
Description box will be empty.

First activation The value of the cycle counter after which the specified type of
interrupt will be generated.

Repeat interval The periodicity of the interrupt in cycles.

Variance % A timing variation range, as a percentage of the repeat interval, in
which the interrupt may occur for a period. For example, if the
repeat interval is 100 and the variance 5%, the interrupt might occur
anywhere between T=95 and T=105, to simulate a variation in the
timing.

MSP430 IAR Embedded Workbench® IDE
182 User Guide

Simulating interrupts ___¢

Hold time Describes how long, in cycles, the interrupt remains pending until
removed if it has not been processed. If you select Infinite, the
corresponding pending bit will be set until the interrupt is
acknowledged or removed.

Probability % The probability, in percent, that the interrupt will actually occur
within the specified period.

FORCED INTERRUPT WINDOW

From the Forced Interrupt window—available from the Simulator menu—you can
force an interrupt instantly. This is useful when you want to check your interrupt
logistics and interrupt routines.

PORT1_VECTOR 0x08 2 P1IEF2 P1IFG.PZ
PORT1_VECTOR 0x08 2 P1IEF3 P1IFGF3 -

4] | By

Forced Interrupt Window =]
Trigger |

Interrupt | Description -l
FORT2_VECTOR 0x02 2 P2IE.P4 PZIFG.F4
FORT2_VECTOR 0x02 2 P2IE.PS PZIFG.FS
FORT2_VECTOR 0x02 2 P2IE.PE PZIFG.FE
FORT2_VECTOR 0x02 2 PRIEF? PEIFG.F?
USARTITX_VECTOR 0x04 2 IE2UTKIET IFGZ2UTHIFGT
USARTIRA WVECTOR 0x06 2 IE2URKET IFGZURKIFGI
FORT1_VECTOR 0x08 2 P1IE.FO P1IFG.FO
FORT1_VECTOR 0x08 2 P1ER1 P1IFGF1

2

2

Figure 77: Forced Interrupt window

To force an interrupt, the interrupt simulation system must be enabled. To enable the
interrupt simulation system, see Interrupt Setup dialog box, page 180.

The Forced Interrupt window lists all available interrupts and their definitions. The
description field is editable and the information is retrieved from the selected device
description file and consists of a string describing the vector address, priority, enable bit,
and pending bit, separated by space characters.

By selecting an interrupt and clicking the Trigger button, an interrupt of the selected
type is generated.

A triggered interrupt will have the following characteristics:

Characteristics Settings
First Activation As soon as possible (0)
Repeat interval 0

Table 24: Characteristics of a forced interrupt

Part 5. IAR C-SPY Simulator 183

Using the interrupt simulation system

Characteristics Settings
Hold time Infinite
Variance 0%
Probability 100%

Table 24: Characteristics of a forced interrupt

C-SPY SYSTEM MACROS FOR INTERRUPTS

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. By writing a macro function containing
definitions for the simulated interrupts you can automatically execute the functions
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides a set of predefined system macros for the interrupt
simulation system. The advantage of using the system macros for specifying the
simulated interrupts is that it lets you automate the procedure.

These are the available system macros related to interrupts:
__enablelInterrupts

__disablelInterrupts

__orderInterrupt

__cancellInterrupt

__cancelAllInterrupts
__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupts dialog box. To read more about how to use the
__popSimulatorInterruptExecutingStack macro, see Interrupt simulation in a
multi-task system, page 185.

For detailed reference information about each macro, see Description of C-SPY system
macros, page 404.
Defining simulated interrupts at C-SPY startup using a setup file

If you want to use a setup file to define simulated interrupts at C-SPY startup, follow the
procedure described in Registering and executing using setup macros and setup files,
page 147.

MSP430 IAR Embedded Workbench® IDE
184 User Guide

Simulating interrupts ___¢

Interrupt simulation in a multi-task system

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If there are
too many interrupts executing simultaneously, a warning might be issued.

To avoid these problems, you can use the
__popSimulatorInterruptExecutingStack macro to inform the interrupt
simulation system that the interrupt handler has finished executing, as if the normal
instruction used for returning from an interrupt handler was executed. You can use the
following procedure:

Set a code breakpoint on the instruction that returns from the interrupt function.

Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

INTERRUPT LOG WINDOW

The Interrupt Log window—available from the Simulator menu—displays runtime
information about the interrupts that you have activated in the Interrupts dialog box or
forced via the Forced Interrupt window. The information is useful for debugging the
interrupt handling in the target system.

Interrupt Log Window B
Cycles | FC | Interrupt | MNumber | Status -
254 0x1182 PORTZ_WVECTOR 2 Forced
4004 0x1158 USARTIRX_WECTOR 1 Trigged
4004 0x1158 USARTIRX_WECTOR 1 Executed
Gooa 0x1158 USARTIRX_WECTOR 1 Trigged
Gooa 0x1158 USARTIRX_WECTOR 1 Executed
gooa 0x1266 USARTIRX_WECTOR 1 Trigged
gooa 0x1266 USARTIRX_WECTOR 1 Executed |

Figure 78: Interrupt Log window

The columns contain the following information:

Column Description
Cycles The point in time, measured in cycles, when the event occurred.
PC The value of the program counter when the event occurred.

Table 25: Description of the Interrupt Log window

Part 5. IAR C-SPY Simulator 185

Simulating a simple interrupt

Column

Description

Interrupt

Number

Status

The interrupt as defined in the device description file.

A unique number assigned to the interrupt. The number is used for
distinguishing between different interrupts of the same type.

Shows the status of the interrupt, which can be Triggered, Forced,
Executing, Finished, or Expired.

* Triggered: The interrupt has passed its activation time.

* Forced: The same as Triggered, but the interrupt has been forced from
the Forced Interrupt window.

* Executing: The interrupt is currently executing.

* Finished: The interrupt has been executed.

* Expired: The interrupt hold time has expired without the interrupt
being executed.

Table 25: Description of the Interrupt Log window (Continued)

‘When the Interrupt Log window is open it will be updated continuously during runtime.

Note: If the window becomes full of entries, the first entries will be erased.

Simulating a simple interrupt

In this example you will simulate a timer interrupt. However, the procedure can also be
used for other types of interrupts.

This simple application contains an interrupt service routine for the BasicTimer, which
increments a tick variable. The main function sets the necessary status registers. The
application exits when 100 interrupts have been generated.

#include

"io0430x41x.h"

#include <intrinsics.h>

volatile int ticks = 0;

void main (void)

{

/* Timer setup code */

WDTCTL
IE2 |= BTIE;

BTCTL

while

(ticks < 100);

WDTPW + WDTHOLD; /* Stop WDT */

/* Enable BT interrupt */

BTSSEL+BTIP2+BTIP1+BTIPO;
__enable_interrupt () ;

/* Enable interrupts */

/* Endless loop */

printf ("Done\n") ;

MSP430 IAR Embedded Workbench® IDE
186 User Guide

Simulating interrupts ___¢

/* Timer interrupt service routine */
#pragma vector = BASICTIMER_VECTOR
__interrupt void basic_timer (void)

{
ticks += 1;

}
To simulate and debug an interrupt, perform the following steps:

Add your interrupt service routine to your application source code and add the file to
your project.

C-SPY needs information about the interrupt to be able to simulate it. This information
is provided in the device description files. To select a device description file, choose
Project>Options, and click the Setup tab in the Debugger category. Use the Use
device description file browse button to locate the file ddf file.

Build your project and start the simulator.

Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. For the BasicTimer example, verify the following
settings:

Option Settings
Interrupt BASICTIMER_VECTOR
First Activation 4000

Repeat interval 2000

Hold time Infinite

Probability % 100

Variance % 0

Table 26: Timer interrupt settings

Click OK.

Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

o Generate an interrupt when the cycle counter has passed 4000
e Continuously repeat the interrupt after approximately 2000 cycles.

Part 5. IAR C-SPY Simulator 187

Simulating a simple interrupt

MSP430 IAR Embedded Workbench® IDE
188 User Guide

Part 6. IAR C-SPY® FET
debugger

This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

e Introduction to the IAR C-SPY® FET Debugger
o C-SPY® FET-specific debugging

o Design considerations for in-circuit programming.

.hmuiuhhhi

189

ARARAIed

190

Introduction to the IAR
C-SPY® FET Debugger

This chapter introduces you to the IAR C-SPY Flash Emulation Tool Debugger
(C-SPY FET Debugger), as well as to how it differs from the C-SPY Simulator.
This chapter describes how you install the hardware and then run the demo
applications. The chapter also briefly describes the communication between

the C-SPY FET driver and the target system, and gives some troubleshooting
hints.

The chapters specific to the C-SPY FET Debugger assumes that you already

have some working knowledge of the FET Debugger, as well as some working
knowledge of the IAR C-SPY Debugger. For a quick introduction, see Part 2.

Tutorials.

Note that additional features may have been added to the software after the
MSP430 IAR Embedded Workbench® IDE User Guide was printed. The release
notes contain the latest information.

The FET C-SPY Debugger

The MSP430 microcontroller has built-in, on-chip debug support. To make the C-SPY
FET Debugger work, a communication driver must be installed on the host PC. This
driver is automatically installed during the installation of the IAR Embedded
Workbench IDE. Because the hardware debugger kernel is built into the microcontroller,
no ordinary ROM-monitor program or extra specific hardware is needed to make the
debugging work. It is also possible to use the debugger on your own hardware design.

The C-SPY FET Debugger provides general C-SPY Debugger features, and features
specific to the C-SPY FET driver. For detailed information about the general debugger
features, see Part 4. Debugging in this guide.

Part 6. IAR C-SPY® FET Debugger 191

The FET C-SPY Debugger

The C-SPY FET driver uses the parallel port to communicate with the FET Interface
module. The FET Interface module communicates which the JTAG interface on the
hardware.

Host computer

C-SPY
Debugger

C-SPY driver

Parallel
cable/USB

Interface
module

JTAG

On-chip
emulation CPU

FLASH RAM

Target board

Figure 79: Communication overview

For more details about the communication, see C-SPY FET communication, page 225.

DIFFERENCES BETWEEN THE C-SPY DRIVERS

The following table summarizes the key differences between the FET and simulator

drivers:

Feature Simulator FET
OP-fetch X X
Data breakpointsI x x
Execution in real time X
Simulated interrupts X

Real interrupts x
Cycle counter? X X
Code coverage X

Table 27: Simulator and FET differences

MSP430 IAR Embedded Workbench® IDE
192 User Guide

Introduction to the IAR C-SPY® FET Debugger __4

Feature Simulator FET
Profiling X x3
Enhanced Emulation Module support X
Trace X

Table 27: Simulator and FET differences (Continued)

|. Data breakpoints are supported for the devices with the Enhanced Emulation module. For fur-
ther details, see Emulator menu, page 202.

2. Cycle counter is supported during single step, you can then view the value of the cycle counter
in the Register window.

3. The FET Debugger must single step during profiling.

Hardware installation
MSP-FET430X110

I Connect the 25-conductor cable originating from the FET to the parallel port of your
PC.

2 Ensure that the MSP430 device is securely seated in the socket, and that its pin 1
(indicated with a circular indentation on the top surface) aligns with the 1 mark on the
PCB.

3 Ensure that jumpers J1 (near the non-socketed IC on the FET) and J5 (near the LED)
are in place.
MSP-FET430PXX0
(P120, P140, P410, P430, P440)

I Use the 25-conductor cable to connect the FET Interface module to the parallel port or
USB port of your PC.

2 Use the 14-conductor cable to connect the FET Interface module to the Target Socket
module.

3 Ensure that the MSP430 device is securely seated in the socket, and that its pin 1
(indicated with a circular indentation on the top surface) aligns with the 1 mark on the
PCB.

4 Ensure that the two jumpers (LED and Vcc) near the 2x7 pin male connector are in
place.

IAR J-LINK OR TI1 USB FET INTERFACE MODULE

I Use the USB cable to connect the IAR J-Link or TI USB FET interface module to the
USB port of your PC.

Part 6. IAR C-SPY® FET Debugger 193

Firmware upgrade

194

Windows will search for a USB driver. Since this is the first time you are using the
USB interface module, Windows will open a dialog box and ask you to browse to the
USB drivers. The USB drivers can be found in the product installation in the following
directories:

IAR J-Link: 430\drivers\JLink
TI USB FET interface module: 430\drivers\TIUSBFET\WinXP

Once the initial setup is completed, you will not have to repeat this step. Note that the
USB interface module will blink each time it is connected until Windows makes the
connection.

Use the 14-conductor cable to connect the USB Interface module to the Target Socket
module.

Ensure that the MSP430 device is securely seated in the socket, and that its pin 1
(indicated with a circular indentation on the top surface) aligns with the 1 mark on the
PCB.

Make sure that the two jumpers (LED and Vcc) near the 2x7 pin male connector are in
place.

Firmware upgrade

H W N

When the C-SPY FET Debugger driver starts up, it will check that the firmware version
is compatible. If an old firmware version is detected, you can choose whether it should
be automatically upgrade or not. If any problems occur, follow this procedure:

Close the IAR Embedded Workbench IDE.

Unplug and replug the USB FET cable.

Start the IAR Embedded Workbench IDE and the C-SPY FET Debugger.
The debugger should ask again for firmware upgrade.

Getting started

This section demonstrates two demo applications—one in assembler language and one
in C—that flash the LED. The applications are built and downloaded to the FET
Debugger, and then executed.

There is one demo workspace file supplied with the C-SPY FET Debugger
fet_projects.eww. This workspace contains two projects per FET variant—one in C
and one in assembler. The files are provided in the directory 430\FET_examples.

MSP430 IAR Embedded Workbench® IDE

User Guide

Introduction to the IAR C-SPY® FET Debugger __4

The majority of the examples use the various resources of the MSP430 to time the
flashing of the LED.

Note: The examples often assume the presence of a 32kHz crystal, and not all FET
Debuggers are supplied with a 32kHz crystal.
RUNNING A DEMO APPLICATION

The following examples assume that you are using an MSP430F149 device. See the
HTML document which FET project suits my device.htm.

C Example

In the IAR Embedded Workbench IDE, choose File>Open Workspace to open the
workspace file fet_projects.eww.

To display the C project, click the appropriate project tab at the bottom of the
workspace window, for instance fet140_1_C.

If you want to run the application for a different FET Debugger, click the appropriate
project tab.

Select the Debug build configuration from the drop-down list at the top of the
workspace window.

Choose Project>Options. In addition to the factory settings, verify the following
settings:

Category Page Option/Setting

General Options Target Device: msp430F149

C/C++ Compiler Output Generate debug info
Debugger Setup Driver: FET Debugger

FET Debugger Setup Deselect Suppress download

Connection: Select the connection type you are using

Table 28: Project options for FET C example

For more information about the C-SPY FET Debugger options and how to configure
C-SPY to interact with the target board, see Options for debugging using the C-SPY FET
debugger, page 197.

Click OK to close the Options dialog box.
Choose Project>Make to compile and link the source code.

Start C-SPY by clicking the Debug button or by choosing Project>Debug. C-SPY
will erase the flash memory of the device, and then download the application to the
target system.

Part 6. IAR C-SPY® FET Debugger 195

Getting started

196

In C-SPY, choose Debug>Go or click the Go button to start the application. The LED
should flash.

Click the Stop button to stop the execution.

Assembler example

In the AR Embedded Workbench IDE, choose File>Open Workspace to open the
workspace file fet_projects.eww.

To display the assembler project, click the appropriate project tab at the bottom of the
workspace window, for instance fet140_1_asm.

If you want to run the application for a different FET Debugger, click the appropriate
project tab.

Select the Debug build configuration from the drop-down list at the top of the
workspace window.

Choose Project>Options. In addition to the factory settings, verify the following
settings:

Category Page Option/Setting

General Options Target Device: msp430F149
C/C++ Compiler ~ Output Generate debug info
Debugger Setup Driver: FET Debugger

FET Debugger Setup Deselect Suppress download
Connection: Select the connection type you are using

Table 29: Project options for FET assembler example

For more information about the C-SPY FET Debugger options and how to configure
C-SPY to interact with the target board, see Options for debugging using the C-SPY FET
debugger, page 197.

Click OK to close the Options dialog box.
Choose Project>Make to assemble and link the source code.

Start C-SPY by clicking the Debug button or by choosing Project>Debug. C-SPY will
erase the flash memory of the device, and then download the application object file to
the target system.

In C-SPY, choose Debug>Go or click the Go button to start the application. The LED
should flash.

Click the Stop button to stop the execution.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® FET-specific
debugging

This chaptersection describes the additional options, menus, and features
provided by the C-SPY® FET debugger driver. The chaptersection contains
the following sections:

e Options for debugging using the C-SPY FET debugger
e The Emulator menu

e Using breakpoints

e Using state storage

e Using the sequencer

e Stepping

e C-SPY FET communication.

Options for debugging using the C-SPY FET debugger

Before you start any C-SPY hardware debugger you must set some options for the
debugger system—both C-SPY generic options and options required for the hardware
system (C-SPY driver-specific options). Follow this procedure:

I To open the Options dialog box, choose Project>Options.
2 To set C-SPY generic options and select a C-SPY driver:

o Select Debugger from the Category list
o On the Setup page, select the FET Debugger driver from the Driver list.

For information about the settings Setup macros, Run to, and Device descriptions, as
well as for information about the pages Extra Options and Plugins, see the chapter
Debugger optionsthe MSP430 IAR Embedded Workbench® IDE User Guide.

Note that a default device description file and linker command file is automatically
selected depending on your selection of a device on the General Options>Target page.

Part 6. IAR C-SPY® FET Debugger 197

Options for debugging using the C-SPY FET debugger

3 To set the driver-specific options, select FET Debugger from the Category list. For
details about the options specific to the FET debugger, see:

® Setup, page 198
® Breakpoints, page 200.

4 When you have set all the required options, click OK in the Options dialog box.

SETUP

The Setup page in the FET debugger category contains setup options specific to the
C-SPY FET debugger.

Setup |
— Download contral Connection
I~ Werify download * Lpt lm
™ Suppress download = J-Link
= fsk when dowriloading TIUSB FET

" Erase main memory

[rebug protocal

' Erase main and Information memary ™ Overide default
" Retain unchanged memary ¢ SpyBitwie
Allows erazewiite access to locked .
(It et & 44/ire JTAG
™ Attach to running target Target YT [in Yol |3.D

™ Disable memory cache

Figure 80: FET debugger setup options

MSP430 IAR Embedded Workbench® IDE
198 User Guide

C-SPY® FET-specific debugging ___o

Download control

Use the following options to control the download:

Verify download Use this option to verify that the downloaded code image can be
read back from target memory with the correct contents.

Suppress download Disables the downloading of code, while preserving the present
content of the flash. This command is useful if you need to exit
C-SPY for a while and then continue the debug session without
downloading code. The implicit RESET performed by C-SPY at
startup is not disabled, though.
If this option is combined with Verify all, the debugger will read
your application back from the flash memory and verify that it is
identical with the application currently being debugged.

Erase main memory Erases only the main flash memory before download. The
information memory is not erased.

Erase main and Erases both the flash memories—main and Information
Information memory memory—before download.

Retain unchanged Reads the main and Information memories into a buffer. Only the
memory flash segments needed are erased. If data that is to be written into

a segment matches the data on the target, the data on the target is
left as is, and no download is performed. The new data effectively
replaces the old data, and unaffected old data is retained.

Allow erase/write access Controls if it should be possible to erase Info Segment A. This
to locked flash memory option can only be used with an MSP430F2xx device.

Attach to running target

Use this option to make the debugger attach to a running application at its current
location, without resetting the target system. To avoid unexpected behavior when using
this option, deselect the options Debugger>Setup>Run to and
Debugger>Plugins>Stack.

This option must be disabled when you download the application for the first time.

Part 6. IAR C-SPY® FET Debugger 199

Options for debugging using the C-SPY FET debugger

Disable memory cache

Use this option to disable the memory cache in the FET debugger.

Connection

The C-SPY FET debugger can communicate with the target device via the parallel port
or the USB port. Select Lpt, J-Link (USB), or TI USB FET to specify the connection
type. If you select Lpt you must also specify which parallel port to use; LPT1, LPT2, or
LPT3.

Debug protocol

The C-SPY FET debugger supports both the ordinary 4-wire JTAG interface and the
2-wire JTAG debug interface, also referred to as the Spy-Bi-Wire interface.
Spy-By-Wire works for the parallel port FET module and the TI USB FET module.

Target VCC

Use the Target VCC option to specify the voltage provided by the USB interface. Type
the value in Volts with one decimal’s precision in the range 1.0-4.0 V. This option can
only be used with a USB connection.

BREAKPOINTS

The Breakpoints page in the FET debugger category contains options specific to
breakpoints.

Breakpoints |

™ Use virtual breakpoints

System breakpoints on
[it

v putchar
v getchar

Figure 81: FET debugger breakpoint options

MSP430 IAR Embedded Workbench® IDE

200 User Guide

C-SPY® FET-specific debugging ___o

Use virtual breakpoints

The option Use virtual breakpoints allows C-SPY to use virtual breakpoints when all
available hardware breakpoints have been used. When virtual breakpoints are used,
C-SPY is forced into single-step mode.

To prevent C-SPY form entering single-step mode, disable this option. In this case
C-SPY will not use virtual breakpoints, even though all hardware breakpoints are
already used. For further information, see Available breakpoints, page 204the MSP430
IAR Embedded Workbench® IDE User Guide.

System breakpoints on

The option System breakpoints on can be used for fine-tuning the use of system
breakpoints in the CLIB runtime environment. If the C-SPY Terminal I/O window is not
required or if you do not need a breakpoint on the exit label, you can save hardware
breakpoints by not reserving system breakpoints. Select or deselect the options exit,
putchar, and getchar respectively, if you want, or not want, C-SPY to use system
breakpoints for these. For further information, see Available breakpoints, page 204the
MSP430 IAR Embedded Workbench® IDE User Guide.

In the DLIB runtime environment, C-SPY will always set a system breakpoint on the
__DebugBreak label. You cannot disable this behavior.

Part 6. IAR C-SPY® FET Debugger 201

Emulator menu

Emulator menu

Using the C-SPY FET driver creates a new menu on the menu bar—the Emulator
menu.

Emulator
MSP430F 44
Device Information

Release JTAG on Go

Resynchronize JTAG
Init Mew Device
Secure

Breakpoint usage. ..

Clock Caontral...
Emulation Mode. ..
Memary Dump...
Breakpoint Combiner ...

Skate Storage Control
Stake Storage Window
Sequencer Control

"Power on" Reset
GIE onjoff

Leave Target Running
Force Single Stepping
Force hardware RST/MMI

Figure 82: Emulator menu

The following commands are available on the menu:

Menu Command Description

Connected device The name of the device used for debugging.

Device Opens a window with information about the target device being used.
information

Release JTAG on Sets the JTAG drivers in tri-state so that the device is released from JTAG

Go control—TEST pin is set to GND—when GO is activated.
Resynchronize Regains control of the device.
JTAG It is not possible to Resynchronize JTAG while the device is operating.

Init New Device Initializes the device according to the specified options on the Flash
Emulation Tool page. The current program file is downloaded to the
device memory, and the device is then reset. This command can be used to
program multiple devices with the same program from within the same
C-SPY session.

It is not possible to choose Init New Device while the device is operating,
thus the command will be dimmed.

Table 30: Emulator menu commands

MSP430 IAR Embedded Workbench® IDE
202 User Guide

GIE

Menu Command

C-SPY® FET-specific debugging ___o

Description

Secure

Breakpoint Usage

Advanced>Clock
Control

Advanced>

Emulation Mode

Advanced>

Memory Dump

Advanced>
Breakpoint
Combiner

State Storage
Control

State Storage
Window

Sequencer
Control

“Power on” Reset

GIE on/off

Leave Target
Running

Blows the fuse on the target device. After the fuse is blown, no
communication with the device is possible.

Displays the Breakpoint Usage dialog box which lists all active
breakpoints; see Breakpoint Usage dialog box, page 216.

Depending on the hardware support, clock control comes in one of two
variants, General Clock Control or Extended Clock Control. Extended
Clock Control gives you module level control over the clocks.

Specifies the device to be emulated. The device must be reset (or
reinitialized by using the menu command Init New Device) following a
change to the emulation mode.

Writes the specified device memory contents to a specified file. A dialog box
is displayed where you can specify a filename, a memory starting address, and
a length. The addressed memory is then written in a text format to the
named file. Options permit you to select word or byte text format, and
address information and register contents can also be appended to the file.
The Dump Memory length specifier is restricted to four hexadecimal digits
(O-FFFF). This limits the number of bytes that can be written from 0 to
65535. Consequently, it is not possible to write memory from 0 to OXFFFF
inclusive as this would require a length specifier of 65536 (or 0x10000).

Combines two already defined breakpoints. Select a breakpoint in the
Breakpoint combiner dialog box, then right-click to display a list to select
the breakpoint to combine it with.

Only available if you are using a device that supports the Enhanced Emulation
Module. The settings are not saved when the debug session is closed.

Opens the State Storage Control window, which lets you define the use of
the state storage module. This is only possible if you are using a device that
contains support for the Enhanced Emulation Module.

Opens the State Storage window which contains state storage information
according to your definitions.

Opens the Sequencer Control window, which lets you define a state
machine.

The device is reset by cycling power to the device.

Clears the General Interrupt Enable bit (GIE) in the Processor Status
register.

Leaves the application running on the target hardware after the debug
session is closed.

Table 30: Emulator menu commands (Continued)

Part 6. IAR C-SPY® FET Debugger

203

Using breakpoints

204

Menu Command Description

Force Single Forces single step debugging.
Stepping

Force hardware Forces an RST/NMI clear reset when the Reset button is pressed.
RST/NMI

Table 30: Emulator menu commands (Continued)

Note: Not all Emulator>Advanced submenus are available on all MSP430 devices.

Using breakpoints

This section provides an overview of the available breakpoints for the C-SPY FET
Debugger. The following is described:

Available breakpoints, page 204

Customizing the use of breakpoints, page 206
Range breakpoints, page 207

Conditional breakpoints, page 210

Advanced trigger breakpoints, page 213
Breakpoint Usage dialog box, page 216.

For information about the different methods for setting breakpoints, the facilities for
monitoring breakpoints, and the different breakpoint consumers, see the chapter Using
breakpoints, page 129 in this guidethe MSP430 IAR Embedded Workbench® IDE User
Guide.

AVAILABLE BREAKPOINTS

With the C-SPY FET Debugger you can set code breakpoints. If you are using a device
that supports the Enhanced Emulation Module you also have access to an extended
breakpoint system with support for:

e breakpoints on addresses, data, and registers

e defining which type of access that should trigger the breakpoint: read, write, or
fetch

e range breakpoints

setting conditional breakpoints

e triggering different actions: stopping the execution, or starting the state storage
module.

The Enhanced Emulation Module also gives you access to the sequencer module which
is a state machine that uses breakpoints for triggering new states.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® FET-specific debugging ___o

Hardware and virtual breakpoints

To set breakpoints, the C-SPY FET Debugger uses the hardware breakpoints available
on the device. When all hardware breakpoints are used, C-SPY can use virtual
breakpoints (can also be referred to as software breakpoints), which means that you can
set an unlimited amount of breakpoints.

The number of available hardware breakpoints for each device is:

Device Breakpoints (IV) Range breakpoints
MSP430F | x| 2
MSP430F I Ix2 2
MSP430F | 2x 2
MSP430F [2x2 2
MSP430F I 3x 3
MSP430F [4x 3
MSP430F | 5x 8
MSP430F | 6x 8
MSP430F20xx 2
MSP430F2 I xx 2
2
2
8
8
2
2
2
2

MSP430F41x
MSP430F42x
MSP430F43x
MSP430F44x
MSP430FE42x
MSP430FG43x
MSP430FW42x
MSP430FG43x
MSP430FW42x 2

Table 31: Available hardware breakpoints
For the latest device information, see the release notes.

If there are N or fewer breakpoints active, C-SPY will always operate at full speed. If
there are more than N breakpoints active, and virtual breakpoints are enabled, C-SPY
will be forced to single step between the breakpoints. This means that execution will not
be at full speed.

Part 6. IAR C-SPY® FET Debugger 205

Using breakpoints

206

System breakpoints

Sometimes C-SPY must set breakpoints for internal use. These breakpoints are called
system breakpoints. In the CLIB runtime environment, C-SPY will set a system
breakpoint when:

o the library functions putchar () and getchar () are used (low-level routines used
by functions like printf and scanf)
e the application has an exit label.

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.

C-SPY will also set a temporary system breakpoint when:

o the command Edit>Run to Cursor is used
e the option Run to is selected

The system breakpoints will use hardware breakpoints when available. When the
number of available hardware breakpoints is exceeded, virtual breakpoints will be used
instead.

When the Run to option is selected and all hardware breakpoints have already been
used, a virtual breakpoint will be set even if you have deselected the Use virtual
breakpoints option. When you start the debugger under these conditions, C-SPY will
prompt you to choose whether you want to execute in single-step mode or stop at the
first instruction.

CUSTOMIZING THE USE OF BREAKPOINTS

It is possible to prevent the debugger from executing in single-step mode. You do this
by disabling the use of virtual breakpoints and—in the CLIB runtime environment—by
fine-tuning the use of system breakpoints. This will increase the performance of the
debugger, but you will only have access to the available number of hardware
breakpoints. For further information about the necessary options, see Breakpoints, page
200.

Periodically monitoring data

If you are using a device that does not support the Enhanced Emulation Module, the
break-on-data capability of the MSP430 is not utilized. In that case, breakpoints can
only be set to occur during an instruction fetch. However, C-SPY provides a
non-realtime data breakpoint mechanism, which lets you periodically monitor data
without using data breakpoints. For a description of the data breakpoint mechanism, see
the chapter Using breakpointsMSP430 IAR Embedded Workbench® IDE User Guide.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® FET-specific debugging ___o

Using breakpoints when programming flash memory

When programming the flash memory, do not set a breakpoint on the instruction
immediately following the write to flash operation. A simple work-around is to follow
the write to flash operation with a NOP instruction, and set a breakpoint on the instruction
following the NOP instruction.

RANGE BREAKPOINTS

Range breakpoints can be set on a data or an address range, and the action can be
specified to occur on an access inside or outside the specified range. These breakpoints
are only available if you are using a device that supports the Enhanced Emulation
Module.

The options for setting range breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Range to set a new breakpoint. Alternatively, to modify an existing
breakpoint, select a breakpoint in the Breakpoint window and choose Edit on the
context menu.

The Range breakpoints dialog box appears.

;‘% Fange |

Start value

| Y

— Range delimiter
& End value
' Length
 Automatic

— Type Acce: Action Action when...—

& Address [MAB)| | € Read v Break @ Inside range

' Data [MDE) ke State ' Dutside range
 Readfwite || T Storage

@ Felch izt

Figure 83: Range breakpoints dialog box

Note: You can also use a C-SPY system macro to set a range breakpoint, see
_setRangeBreak, page 417.

Part 6. IAR C-SPY® FET Debugger 207

Using breakpoints

208

Start value

Set the start value location for the range breakpoint using the Edit button. These are the
locations you can choose between and their possible settings:

Location

Description/Examples

Expression

Absolute Address

Source Location

Any expression that evaluates to a valid address, such as a variable name.
For example, my_var refers to the location of the variable my_var,
and arr[3] refers to the third element of the array arr.

An absolute location on the form zone:hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory : 0x42

If you enter a combination of a Zone and an address that is not valid,
C-SPY will indicate the mismatch.

A location in the C source program using the syntax {file
path}.row.column

File specifies the filename and full path. Row specifies the row in which
you want the breakpoint. Column specifies the column in which you want
the breakpoint.

For example,

{C:\IAR Systems\xxx\Utilities.c}.22.3

sets a breakpoint on the third character position on line 22 in the source
fle Utilities.c.

Table 32: Range breakpoint start value types

Range delimiter

This option sets the end location of the range. It can be one of the value types used for
the Start value, the Length of the range in hexadecimal notation, or Automatic.
Automatic means that the range will automatically be based on the type of expression
the breakpoint is set on. For example, if you set the breakpoint on a 12-byte structure,
the range of the breakpoint will be 12 bytes.

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging ___o

Type

To choose which breakpoint type to use, select one of the following options:

Breakpoint type Description

Address (MAB) Sets a breakpoint on a specified address, or anything that can be
evaluated to one. The breakpoint is triggered when the specified location
is accessed. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop
exactly before the instruction will be executed.

Data (MDB) Sets a breakpoint on a specified value. It is the value on the data bus that
triggers the breakpoint.

Table 33: Range breakpoint types

Access type

You can specify the type of access that triggers the selected breakpoint. Select one of the
following options:

Access Description

Read Read from location.

Write Werite to location.

Read/Write Read from or write to location.
Fetch At instruction fetch.

Table 34: Range breakpoint access types

Action
There are two action options—Break and State Storage Trigger.
If you select the option Break, the execution will stop when the breakpoint is triggered.

If you select the option State Storage Trigger, the breakpoint is defined as a state
storage trigger. To define the behavior of the state storage module further, use the
options in the State Storage Control window.

Action when

Specifies whether the action should occur at an access inside or outside of the specified
range.

Part 6. IAR C-SPY® FET Debugger 209

Using breakpoints

210

CONDITIONAL BREAKPOINTS

Conditional breakpoints are only available if you are using a device that supports the
Enhanced Emulation Module.

The options for setting conditional breakpoints are available from the context menu that
appears when you right-click in the Breakpoints window. On the context menu, choose
New Breakpoint>Conditional to set a new breakpoint. Alternatively, to modify an
existing breakpoint, select a breakpoint in the Breakpoint window and choose Edit on
the context menu.

The Conditional breakpoints dialog box appears.

; Conditional |

Break &t
Ox220 Edit...l
~Type————— ~ Operator Access — bask
& Address bus [MAB)| | & == ' Read " Enable
O Databus MDB] | | 5= || € wite [eFrFF
" Register o= ' Read/wite
= ' Fetch
— Condition — Action
MDE Yal
lﬁ Operator Access W' Break
¥ == * Read State
St
Mask e | |0 vt [tes
" Enable <= Feadfwiite
I OxFFFF 1=

Figure 84: Conditional breakpoints dialog box

Note: You can also use a system macro to set a conditional breakpoint, see
__setConditionalBreak, page 415.

Break At location

Set the break location using the Edit button. These are the locations you can choose
between and their possible settings:

Location Description/Examples

Expression Any expression that evaluates to a valid address, such as a function or
variable name.
For example, my_var refers to the location of the variable my_var,
and arr [3] refers to the third element of the array arr.

Table 35: Conditional break at location types

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® FET-specific debugging ___o

Location Description/Examples

Absolute Address An absolute location on the form zone : hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory : 0x42
If you enter a combination of a Zone and an address that is not valid,
C-SPY will indicate the mismatch.

Source Location A location in the C source program using the syntax {file
path}.row.column
File specifies the filename and full path. Row specifies the row in which
you want the breakpoint. Column specifies the column in which you want
the breakpoint. Note that the Source Location type is only meaningful
for code breakpoints.
For example,
{C:\IAR Systems\xxx\Utilities.c}.22.3
sets a breakpoint on the third character position on line 22 in the source
fle Utilities.c.

Table 35: Conditional break at location types (Continued)

Type

To choose which breakpoint type to use, select one of the following options:

Breakpoint type Description

Address bus (MAB) Sets a breakpoint on a specified address, or anything that can be
evaluated to one. The breakpoint is triggered when the specified location
is accessed. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop
exactly before the instruction will be executed.

Data bus (MDB) Sets a breakpoint on a specified value. It is the value on the data bus that
triggers the breakpoint.

Register Sets a breakpoint on a register. In the Register Value text box, type
the value that should trigger the breakpoint. Specify the register, or
anything that can be evaluated to such, in the Break At text box.

Table 36: Conditional breakpoint types

Part 6. IAR C-SPY® FET Debugger 211

Using breakpoints

212

Operator

You can specify one of the following condition operators for when the breakpoint should
be triggered:

Condition Description

== Equal to.

>= Greater than or equal to.
<= Less than or equal to.

1= Not equal to.

Table 37: Conditional breakpoint condition operators

Access

You can specify the type of access that triggers the selected breakpoint. Select one of the
following options:

Access Description

Read Read from location.

Write Werite to location.

Read/Write Read from or write to location.
Fetch At instruction fetch.

Table 38: Conditional breakpoint access types

Mask

You can specify a bit mask value that the breakpoint address or value will be masked
with. (On the FET hardware the mask is inverted, but this is not the case in the FET
Debugger driver.)

Condition

You can specify an additional condition to a conditional breakpoint. This means that a
conditional breakpoint can be a single data breakpoint or a combination of two
breakpoints that must occur at the same time. The following settings can be specified for
the additional condition:

Access Description

MDB/Register Value The extra conditional data value.

Mask The bit mask value that the breakpoint value will be masked with.

Table 39: Conditional breakpoint condition types

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® FET-specific debugging ___o

Access Description
Operator The operator of condition, either ==, >=, <=, or !=.
Access The access type of the condition, either Read, Write, or Read/Write.

Table 39: Conditional breakpoint condition types (Continued)

Action
There are two action options—Break and State Storage Trigger.
If you select the option Break, the execution will stop when the breakpoint is triggered.

If you select the option State Storage Trigger, the breakpoint is defined as a state
storage trigger. To define the behavior of the state storage module further, use the
options in the State Storage Control window.

ADVANCED TRIGGER BREAKPOINTS

Advanced trigger breakpoints are only available if you are using a device that supports
the Enhanced Emulation Module.

The options for setting advanced trigger breakpoints are available from the context
menu that appears when you right-click in the Breakpoints window. On the context
menu, choose New Breakpoint>Advanced Trigger to set a new breakpoint.
Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoint
window and choose Edit on the context menu.

The Advanced Trigger breakpoints dialog box appears.

; Advanced Trigger |

Break &t
Edit...l
Type —Mask
& ddress bus MAE) " Enable
" Data bus [MDE) I 0xFFFF
" Register
Vel — Action
¥ Break
Access type r g:z::ge
IInstruction Fetch j Trigger

Figure 85: Advanced trigger dialog box

Note: You can also use a C-SPY system macro to set an advanced trigger breakpoint,
__setAdvancedTriggerBreak, page 412.

Part 6. IAR C-SPY® FET Debugger 213

Using breakpoints

214

Break At location

Set the break location using the Edit button. These are the locations you can choose
between and their possible settings:

Location

Description/Examples

Expression

Absolute Address

Source Location

Any expression that evaluates to a valid address, such as a function or
variable name.

For example, my_var refers to the location of the variable my_var,
and arr[3] refers to the third element of the array arr.

An absolute location on the form zone :hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory: 0x42

If you enter a combination of a Zone and an address that is not valid,
C-SPY will indicate the mismatch.

A location in the C source program using the syntax {file
path}.row.column

file specifies the filename and full path. row specifies the row in which
you want the breakpoint. column specifies the column in which you
want the breakpoint. Note that the Source Location type is only
meaningful for code breakpoints.

For example,

{C:\IAR Systems\xxx\Utilities.c}.22.3

sets a breakpoint on the third character position on line 22 in the source
file Utilities.c.

Table 40: Advanced triggers break at location types

Type

To choose which breakpoint type to use, select one of the following options:

Breakpoint type

Description

Address bus (MAB)

Data bus (MDB)

Sets a breakpoint on a specified address, or anything that can be
evaluated to one. The breakpoint is triggered when the specified location
is accessed. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop
exactly before the instruction will be executed.

Sets a breakpoint on a specified value. It is the value on the data bus that
triggers the breakpoint.

Table 41: Advanced trigger types

MSP430 IAR Embedded Workbench® IDE
User Guide

C-SPY® FET-specific debugging ___o

Breakpoint type Description

Register Sets a breakpoint on a register. In the Register Value text box, type
the value that should trigger the breakpoint. Specify the register, or
anything that can be evaluated to such, in the Break At text box.

Table 41: Advanced trigger types (Continued)

Operator

You can specify one of the following condition operators for when the breakpoint should
be triggered:

Condition Description

== Equal to.

>= Greater than or equal to.
<= Less than or equal to.

1= Not equal to.

Table 42: Advanced trigger condition operators

Mask

You can specify a bit mask value that the breakpoint address or value will be masked
with. (On the FET hardware the mask is inverted, but this is not the case in the FET
Debugger driver.)

Value

The data value in the specified register that should be triggered.

Access type

Use this option to specify the type of access that triggers the selected breakpoint.

Action
There are two action options—Break and State Storage Trigger.
If you select the option Break, the execution will stop when the breakpoint is triggered.

If you select the option State Storage Trigger, the breakpoint is defined as a state
storage trigger. To define the behavior of the state storage module further, use the
options in the State Storage Control window.

Part 6. IAR C-SPY® FET Debugger 215

Using state storage

216

BREAKPOINT USAGE DIALOG BOX

HistoryThe Breakpoint Usage dialog box—available from the driver-specific
menu—-Iists all active breakpoints.

Breakpoint Usage [%]

[Fetch
-SSP Terminal 140 & libsupport module

Figure 86: Breakpoint Usage dialog box
In addition to listing all breakpoints that you have defined, this dialog box also lists the
internal breakpoints that the debugger is using.

For each breakpoint in the list the address and access type are shown. Each breakpoint
in the list can also be expanded to show its originator.

For more information, see Viewing all breakpoints, page 132the MSP430 IAR
Embedded Workbench® IDE User Guide.

Using state storage

The state storage module is a limited variant of a traditional trace module. It can store
eight states and can be used for monitoring program states or program flow, without
interfering with the execution. The state storage module is only available if you are using
a device that supports the Enhanced Emulation Module.

To use the state storage module, you must:

Define one or multiple range breakpoints or conditional breakpoints that you want to
trigger the state storage module. In the breakpoints dialog box, make sure to select the
action State Storage Trigger. This means that the breakpoint is defined as a state
storage trigger. (State storage can also be triggered from the Sequencer Control
window.)

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® FET-specific debugging ___o

Note that depending on the behavior you want when the state storage module is
triggered, it is useful to consider the combination of the Action options and the options
available in the State Storage Control window. See the examples following immediately
after these steps.

Choose Emulator>State Storage Control to open the State Storage Control window.

Select the option Enable state storage. Set the options Buffer wrap around, Trigger
action, and Storage action according to your preferences.

In the list State Storage Triggers, all breakpoints defined as state storage triggers are
listed.

For further details about the options, see State Storage Control window, page 218.
Click Apply.
Choose Emulator>State Storage window to open the State Storage window.

Choose Debug>Go to execute your application. Before you can view the state storage
information, you must stop the execution. You can do this, for instance, by using the
Break command.

For information about the window contents, see State Storage Window, page 220.
As an example, assume the following setup:

e There is a conditional breakpoint which has both of the action options
selected—Break and State Storage Trigger

o The state storage options Instruction fetch and Buffer wrap around are selected
in the State Storage Control window.

This will start the state storage immediately when you start executing your application.
When the breakpoint is triggered, the execution will stop and the last eight states can be
inspected in the State Storage window.

However, if you do not want the state storage module to start until a specific state is
reached, you would usually not want the execution to stop, because no state information
has been stored yet.

In this case, select the State Storage Trigger action in the Conditional breakpoints
dialog box (making sure that Break is deselected), and deselect the option Buffer wrap
around in the State Storage Control window.

When the breakpoint is triggered, the execution will not stop, but the state storage will
start. Because the option Buffer wrap around is deselected, you have ensured that the
data in the buffer will not be overwritten.

Part 6. IAR C-SPY® FET Debugger 217

Using state storage

218

When another breakpoint (which has Break selected) is triggered, or if you stop the
execution by clicking the Break button, the State Storage window will show eight states
starting with the breakpoint that was used for starting the state storage module.

STATE STORAGE CONTROL WINDOW

Use the State Storage Control window—available from the Emulator menu—to define
how to use the state storage module available on devices that support the Enhanced
Emulation Module.

State Storage Control]

IV Enable state storage Reset |
¥ Buffer wrap around
Apply |

—Trigger ackion Storage ackion on
(o Start on brigger “ Triggers
" Stop on krigger & Instruction fetch

& MNone all oyles

State storage triggers
Conditional @ {fet440_1.c}.26.3 == [MAB-F]

Figure 87: State Storage Control window

Enable state storage

This option enables the state storage module.

Buffer wrap around

This option controls if the state storage buffer should wrap around. If you select the
option Buffer wrap around the state storage buffer is continuously overwritten until the
execution is stopped or a breakpoint is triggered. Only the eight last states are stored.

Alternatively, in order not to overwrite the information in the state storage buffer,
deselect this option. To guarantee that the eight first states will be stored, you should also
click Reset.

Reset

Resets the state storage module.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® FET-specific debugging ___o

Trigger action

This option acts upon the breakpoints that are defined as state storage triggers. The
option defines what action should take place when these breakpoints have been
triggered. You can choose between the following options:

Start on trigger State storage starts when the breakpoint is triggered.

Stop on trigger State storage starts immediately when execution starts. State storage
stops when the breakpoint is triggered.

None State storage starts immediately when execution starts. State storage
does not stop when the breakpoint is triggered. However, if
execution stops, state storage also stops but it will resume when
execution resumes.

Storage action on

This option defines when the state information should be collected. You can choose
between the following options:

Triggers Stores state information at the time when the state storage trigger is
triggered. That is, when the breakpoint defined as a state storage
trigger is triggered.

Instruction fetch Stores state information at all instruction fetches.

All cycles Stores state information for all cycles.

State storage triggers

Lists all the breakpoints that are defined as state storage triggers. That is, the breakpoints
that have the action State Storage Trigger selected.

Part 6. IAR C-SPY® FET Debugger 219

Using state storage

220

STATE STORAGE WINDOW

The State Storage window—available from the Emulator menu—displays state storage
information for eight states. Invalid data is displayed in red color.

State Storage Window =]
[Ipdate | V Automatic update [Automatic restat [Append data

Address bus... | Instr. | Mnermonic | Data bus ... | Contral Signals | Contral Signals... |
0x1100 314004 movay #0xA00LSF 0x4031 0x03 Break Trig. =10; ..
0x1104 BOT21211 call #main 0x12B0 0x03 Break Trig.=0; ...
0x0000 ---- 7 0x0000 0x00 Break Trig. = 0; ..
0x0000 ---- 7 0x0000 0x00 Break Trig. = 0; ..
0x0000 ---- 7 0x0000 0x00 Break Trig. = 0; ..
0x0000 ---- 7 0x0000 0x00 Break Trig. = 0; ..
0x0000 ---- 7 0x0000 0x00 Break Trig. = 0; ..
0x0000 ---- 7 0x0000 0x00 Break Trig. = 0; ..

Figure 88: State Storage window

Update

Click the update button to refresh the data in the State Storage window, alternatively to
append new data.

Automatic update

Select this option to automatically update the data in the state storage window each time
new data is available in the state storage buffer.

Automatic restart

Select this option to reset the state storage module for consecutive data readouts after
each readout.

Append data

Select this option to append collected data from the state storage buffer to the data that
is already present in the State Storage window. The new data is added below the data
that is already present.

The window contains the following columns:

Column Description

Address bus Displays the stored value of the address bus.
Instruction Displays the instruction.

Mnemonic Displays the mnemonic.

Table 43: Columns in State Storage window

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® FET-specific debugging ___o

Column Description

Data bus Displays the stored content of the data bus.

Control signals (byte) Displays the stored value of the control signals during storage.
Bit I: Instruction fetch
Bit 2: Byte/Word
Bit 3: Interrupt request
Bit 4: CPU off
Bit 5: The value of the Power Up Clear (PUC) signal
Bit 6:ZERO|HALT (which one depends on the used device)
Bit 7: Break trigger

Control signals (bits) Displays each bit in the stored value of the control signals during storage.

Table 43: Columns in State Storage window (Continued)

Using the sequencer

The sequencer module lets you break the execution or trigger the state storage module
by using a more complex method than a standard breakpoint. This is useful if you want
to stop the execution under certain conditions, for instance a specific program flow. You
can combine this with letting the state storage module continuously store information.
At the time when the execution stops, you will have useful state information logged in
the State storage window.

Consider this example:

void my_putchar (char c)

{

/* Code suspected to be erroneous */

void my_function (void)

{
my_putchar('a');
my_putchar('x');

my_putchar('@') ;

Part 6. IAR C-SPY® FET Debugger 221

Using the sequencer

222

In this example, the customized putchar function my_putchar () has for some reason
a problem with special characters. To locate the problem, it might be useful to stop
execution when the function is called, but only when it is called with one of the
problematic characters as the argument.

To achieve this, you can:
Set a breakpoint on the statement my_putchar ('@') ;.
Set another breakpoint on the suspected code within the function my_putchar ().

Define these breakpoints as transition triggers. Choose Emulator>Sequencer Control
to open the Sequencer Control window. Select the option Enable sequencer.

In this simple example you will only need two transition triggers. Make sure the
following options are selected:

Option Setting

Transition trigger 0 The breakpoint which is set on the function call my_putchar ('@"') ;

Transition trigger | The breakpoint which is set on the suspected code within the function
my_putchar ()
Action Break

Table 44: Sequencer settings - example

The transition trigger 1 depends on the transition trigger 0. This means that the execution
will stop only when the function my_putchar () is called by the function call
my_putchar('@') ;

Click OK.

Now you should set up the state storage module. Choose Emulator>State Storage
Control to open the State Storage Control window. Make sure the following options
are selected:

Option Setting

Enable state storage Selected
Buffer wrap around Selected
Storage action Instruction fetch

Trigger action None

Table 45: State Storage Control settings - example

Click OK.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® FET-specific debugging ___o

6 Start the program execution. The state storage module will continuously store trace
information. Execution stops when the function my_putchar () has been called by the
function call my_putchar('@') ;

7 Choose Emulator>State Storage Window to open the State Storage window. You
can now examine the stored trace information. For further details, see State Storage
Window, page 220.

8 When the sequencer is in state 3, C-SPY’s breakpoint mechanism—which is used for
all breakpoints, not only transition triggers—can be locked. Therefore, you should
always end the session with one of these steps:

e Disabling the sequencer module. This will restore all breakpoint actions.
e Resetting the state machine by clicking the Reset States button. The sequencer will
still be active and trigger on the defined setup during the program execution.

SEQUENCER CONTROL WINDOW

The Sequencer Control window—available from the Emulator menu—Iets you break
the execution or trigger the state storage module by using a more complex method than
a standard breakpoint. This is useful if you, for instance, want to stop the execution or
start the state storage module under certain conditions, for instance a specific program
flow. The sequencer is only available if you are using a device that supports the
Enhanced Emulation Module.

The sequencer works as a state machine. In a simple setup, you can define three
transition triggers, where the last one triggers an action.

In an advanced setup, the state machine can have four states (0-3). State O is the starting
state, and state 3 is the state that triggers a breakpoint. This breakpoint can be designed
either to stop execution, or to trigger the state storage module.

Part 6. IAR C-SPY® FET Debugger 223

Using the sequencer

For each state you can define up to two different transitions (a-b) to other states. For each
transition you define a transition trigger and which the next state should be. For state 3
you must also define an action: stop the execution or start the state storage module.

Sequencer Control]
¥ Enable sequencer Action Current state : 0 Reset States |
v Break
R " Reset Trigger Apply |
™ State Storage Trigger I - j
IAdvanced €

—State 0 — State 2
Trangition trigger a Trangition trigger b Trangition trigger a Trangition trigger b
[oa12¢[F] 1] =il - = E [=
Mewt state |1 = Mext state ID 'l Mext stateID 'l Mext stateID 'l
—State 1 — State 3 [action state]
Trangition trigger a Trangition trigger b Trangition trigger a Trangition trigger b
: =l 3} || B =l =
Mext state I 1] 'l Mext state I 1] 'l Mext state I 1] 'l Mext state I 1] 'l

Figure 89: Sequencer Control window (advanced setup)

To enable the sequencer, select the option Enable Sequencer. From the eight available
hardware breakpoints (0-7) of the device, the breakpoint number 7 will be reserved for
state 3.

The Transition trigger drop-down lists let you define one breakpoint each, where the
breakpoint should act as a transition trigger.

To define an advanced setup, click the Advanced button. This will let you define 4 states
(0-3) with two transition triggers each (a and b). For each transition trigger, you can
define which state should be the next state after the transition.

Use the following options:

State Storage Triggers to move the state machine from one state to another. Select a
Trigger breakpoint from the drop-down list. Note: to do this you must first
define the required conditional breakpoints.

Next state Defines which state should be the next state after the transition. Select
one state, out of four, from the drop-down list.

Finally, you must define an action. This option defines the result of the final transition
trigger. If you select the option Break, the execution will stop. If you select the option
State Storage Trigger, the state storage module will be triggered.

MSP430 IAR Embedded Workbench® IDE

224 User Guide

C-SPY® FET-specific debugging ___o

The Reset States button will set the state machine to state 0. Current state shows the
current state of the state machine.

Stepping

Be aware that stepping might cause some unexpected side-effects.

PROGRAMMING FLASH

Multiple internal machine cycles are required to clear and program the flash memory.
When single-stepping over instructions that manipulate the flash, control is given back
to C-SPY before these operations are complete. Consequently, C-SPY will update its
memory window with erroneous information. A workaround to this behavior is to
follow the flash access instruction with a NOP instruction, and then step past the NOP
before reviewing the effects of the flash access instruction.

SINGLE-STEPPING WITH ACTIVE INTERRUPTS

When you single-step with active and enabled interrupts, it can seem as if only the
interrupt service routine (ISR) is active. That is, the non-ISR code never appears to
execute, and the single-step operation always stops on the first line of the ISR. However,
this behavior is correct because the device will always process an active and enabled
interrupt.

There is a workaround for this behavior. While within the ISR, disable the GIE bit on
the stack so that interrupts will be disabled after exiting the ISR. This will permit the
non-ISR code to be debugged (but without interrupts). Interrupts can later be re-enabled
by setting GIE in the status register in the Register window.

On devices with Clock Control, it may be possible to suspend a clock between single
steps and delay an interrupt request.

C-SPY FET communication

C-SPY uses the JTAG pins of the device to debug the device. On some MSP430 devices,
these JTAG pins are shared with the device port pins. Normally, C-SPY maintains the
pins in JTAG mode so that the device can be debugged. During this time the port
functionality of the shared pins is not available.

Part 6. IAR C-SPY® FET Debugger 225

C-SPY FET communication

RELEASING JTAG

When you choose Emulator>Release JTAG on Go, the JTAG drivers are set to tri-state
and the device will be released from JTAG control (the TEST pin is set to GND) when
GO is activated. Any active on-chip breakpoints are retained and the shared JTAG port
pins revert to their port functions.

At this time, C-SPY has no access to the device and cannot determine if an active
breakpoint has been triggered. C-SPY must be manually told to stop the device, at which
time the state of the device will be determined (that is, has a breakpoint been reached?).

If you choose Emulator>Release JTAG on Go, the JTAG pins will be released if, and
only if, there are N or fewer active breakpoints.

‘When making current measurements of the device, ensure that the JTAG control signals
are released (Emulator>Release JTAG on Go), otherwise the device will be powered
by the signals on the JTAG pins and the measurements will be erroneous.

PARALLEL PORT DESIGNATORS

The parallel port designators (LPTx) have the following physical addresses: LPT1:
0x378, LPT2: 0x278, LPT3: 0x3BC. The configuration of the parallel port (ECP,
Compatible, Bidirectional, Normal) is not significant; ECP is recommended.

TROUBLESHOOTING

If establishing communication between the C-SPY FET driver and the target system
fails, possible solutions to this problem include:

e Restart your host computer.

o Ensure that R6 on the MSP-FET430X110 and the FET Interface module has a value
of 82 ohms. Early units were built using a 330-ohm resistor for R6. The FET
Interface module can be opened by inserting a thin blade between the case halves,
and then carefully twisting the blade to pry the case halves apart.

e Ensure that the correct parallel port has been specified in the options category FET
Debugger available from the Project>Options menu. Check the PC BIOS for the
parallel port address (0x378, 0x278, 0x3BC), and the parallel port configuration
(ECP, Compatible, Bidirectional, or Normal).

e Ensure that no other software application has reserved/taken control of the parallel
port (for instance, printer drivers, ZIP drive drivers, etc.). Such software can prevent
the C-SPY FET driver from accessing the parallel port, and therefore also from
communicating with the device.

e Revisions 1.0, 1.1, and 1.2 of the FET Interface module require a hardware
modification; a 0.1uF capacitor needs to be installed between U1 pin 1 (signal
VCC_MSP) and ground. A convenient (electrically equivalent) installation point for
this capacitor is between pins 4 and 5 of Ul.

MSP430 IAR Embedded Workbench® IDE
226 User Guide

C-SPY® FET-specific debugging ___o

Note: The hardware modification may already have been performed during
manufacturing, or your tool might contain an updated version of the FET Interface
module.

o Revisions 0.1 and 1.0 of the MSP-TS430PM64 Target Socket module require a
hardware modification; the PCB trace connecting pin 6 of the JTAG connector to
pin 9 of the MSP430 (signal XOUT) needs to be severed.

Note: The hardware modification may already have been performed during
manufacturing, or your tool might contain an updated version of the Target Socket
module.

Also note that if the modified Target Socket module is used with the PRGS, Version 1.10
or later of the PRGS software is required.

For revisions 1.0, 1.1, and 1.2 of the FET Interface module, install a 0.1uF capacitor
between the indicated points (pins 4 and 5 of U1).

Part 6. IAR C-SPY® FET Debugger

227

C-SPY FET communication

MSP430 IAR Embedded Workbench® IDE
228 User Guide

Design considerations for
in-circuit programming

This chapter describes the design considerations related to the bootstrap
loader, device signals, and external power for in-circuit programming. This
chapter also describes how you can adapt your own target hardware to be run
with C-SPY.

Bootstrap loader

The JTAG pins provide access to the flash memory of the MSP430Fxxx devices. On
some devices, these pins must be shared with the device port pins, and this sharing of
pins can complicate a design (or it might simply not be possible to do so). As an
alternative to using the JTAG pins, MSP430Fxxx devices contain a program—a
bootstrap loader—that permits the flash memory to be easily erased and programmed,
using a reduced set of signals.

Device signals

The following device signals should be made accessible so that the FET and PRGS
(serial programming adapter) tools can be utilized:

RST/NMI, TMS, TCK, TDI, TDO, GND, VCC, and TEST (if present).

Note: Connections to XIN and XOUT are not required, and should not be made. PRGS
software Version 1.10 or later must be used.

The BSL tool requires the following device signals: RST/NMI, TCK, GND, VCC, P1.1,
P2.2, and TEST (if present).

Part 6. IAR C-SPY® FET Debugger

229

External power

230

External power

The PC parallel port is capable of supplying a limited amount of current. Because of the
ultra low power requirement of the MSP430, a stand-alone FET Debugger can run on
the available current. However, if additional circuitry is added to the tool, this current
might not be enough. In this case, external power can be supplied to the tool via the
connections provided on the MSP-FET430X110 and the Target Socket modules. Refer
to Figure 90, JTAG signal connection (MSP-FET430X110) and Figure 91, JTAG signal
connection (MSP-FET430Pxx0), respectively, to locate the external power connections.

When an MSP-FET430X110 device is powered from an external supply, an on-board
device regulates the external voltage to the level required by the MSP430.

When a Target Socket module is powered from an external supply, the external supply
powers the device on the Target Socket module and any user circuitry connected to the
Target Socket module, and the FET Interface module continues to be powered from the
PC via the parallel port. If the externally supplied voltage differs from that of the FET
Interface module, the Target Socket module must be modified so that the externally
supplied voltage is routed to the FET Interface module (so that it can adjust its output
voltage levels accordingly). For details of the Target Socket module schematic, see the
documentation supplied by the chip manufacturer.

Signal connections for in-system programming

With the proper connections, you can use the C-SPY Debugger and the
MSP-FET430X110, as well as the MSP-FET430Pxx0 ('P120, 'P140, 'P410, 'P440), to
program and debug code on your own target board. In addition, the connections will
support the MSP430 Serial Programming Adapter (PRGS), thus providing an easy way
to program prototype boards, if desired.

Note: The IAR XLINK Linker can be configured to output objects in msp430-txt
format for use with the PRGS tool. Choose Project>Options and click the Output tab
in the Linker category. Select the option Other and then choose msp430-txt from the
Output format drop-down list. The Intel and Motorola formats can also be used.

MSP-FET430X110

Figure 90, JTAG signal connection (MSP-FET430X110), shows the connections
between the FET device and the target device required to support in-system
programming and debugging using C-SPY. If your target board has its own “local”
power supply, such as a battery, do not connect Vcc to pin 2 of the JTAG header.
Otherwise, contention might occur between the FET device and your local power

supply.

MSP430 IAR Embedded Workbench® IDE

User Guide

Design considerations for in-circuit programming ___o

The figure shows a 14-pin header (available from Digi-Key, p/n MHB14K-ND), being
used for the connections on your target board. It is recommended that you build a wiring
harness from the FET device with a connector which mates to the 14-pin header, and
mount the 14-pin header on your target board. This will allow you to unplug your target
board from the FET device as well as use the Serial Programming Adapter to program
prototype boards, if desired.

The signals required are routed on the FET device to header locations for easy
accessibility. Refer to the hardware documentation for more details.

After you make the connections from the FET device to your target board, remove the
MSP430 device from the socket on the FET device so that it does not conflict with the
MSP430 device in your target board. Now simply use C-SPY as you would normally to
program and debug.

Disconnect if target has its own v

'local' power source }
1OOnF‘L ‘L1OUF
IT t
S 100K VAV DV

RST/NMI
2 1[I0 TDO/TDI
TDIN

43 I

6 5lIMS ™S

s 7 LICK oK
X—to o fCND
¥—12 11 RST/NMI l MSP430
X—14 13 —X B)

14 pos. header Test/Vpp

(3M p/n 2514-6002)

(Digi-Key p/n MHB14K-ND)

20K

VSS/AVSSIDVSS’“t

* Not present on all devices
** Pins vary by device.

"]

*** Pulldown not required on all devices.
Check device datasheet pin description.

Figure 90: JTAG signal connection (MSP-FET430X110)

Note: No JTAG connection is required to the XOUT pin of the MSP430 device as
shown on some schematics.

Part 6. IAR C-SPY® FET Debugger 231

Signal connections for in-system programming

MSP-FET430PXXO0 (‘P120, ‘P140, ‘P410, ‘P440)

Figure 91, JTAG signal connection (MSP-FET430Pxx0) shows the connections between
the FET Interface module and the target device required to support in-system
programming and debugging using C-SPY. The figure shows a 14-pin header (available
from Digi-Key, p/n MHB 14K-ND) connected to the MSP430. With this header mounted
on your target board, the FET Interface module can be plugged directly into your target.
Then simply use C-SPY as you would normally to program and debug.

The connections for the FET Interface module and the Serial Programming Adapter
(PRGS) are identical with the exception of VCC. Both the FET Interface module and
PRGS can supply VCC to your target board (via pin 2). In addition, the FET Interface
module has a VCC-sense feature that, if used, requires an alternate connection (pin 4
instead of pin 2). The FET Interface module VCC-sense feature senses the local VCC
(present on the target board, i.e. a battery or other “local” power supply) and adjusts its
output signals accordingly. The PRGS does not support this feature, but does provide the
user the ability to adjust its JTAG signal levels to the VCC level on your target board
through the GUI.

If the target board is to be powered by a local VCC, then the connection to pin 4 on the
JTAG should be made, and not the connection to pin 2. This utilizes the VCC-sense
feature of the FET Interface module and prevents any contention that might occur if the
local on-board VCC were connected to the VCC supplied from the FET Interface
module or the PRGS. If the VCC-sense feature is not necessary (that is, the target board
is to be powered from the FET Interface module or the PRGS) the VCC connection is
made to pin 2 on the JTAG header and no connection is made to pin 4.

MSP430 IAR Embedded Workbench® IDE
232 User Guide

Design considerations for in-circuit programming ___o

The figure shows a jumper block in use. The jumper block supports both scenarios of
supplying VCC to the target board. If this flexibility is not required, the desired VCC
connections can be hard-wired eliminating the jumper block.

Connect if target has its own v
'local' power sourci I

Connect to power target from
FET or PRGS if not using a 100K VAV oDV ™
local power source

RST/NMI
chcszmToo\ 2 1 Ig:gDO TDO/TDI
CC(Local 4 3 PP TDI
X—6 5[MS ™S
Test/Vpp 8 7 TCK TCK
%—fto o CND
i 11 RSTAMI l MSP430
X—14 13 —X)
14 pos. header TestVer!
(3M p/n 2514-6002)
(Digi-Key p/n MHB14K-ND)

20K

Vsd/AVsd/DVs™
= 1 * Not present on all devices

** Pins vary by device.

*** Pulldown not required on all devices.
Check device datasheet pin description.

Figure 91: JTAG signal connection (MSP-FET430Pxx0)

Note: No JTAG connection is required to the XOUT pin of the MSP430 as shown on
some schematics.

Part 6. IAR C-SPY® FET Debugger

233

Signal connections for in-system programming

MSP430 IAR Embedded Workbench® IDE
234 User Guide

Part 7. Reference
information

This part of the MSP430 IAR Embedded Workbench® IDE User Guide
contains the following chapters:

e IAR Embedded Workbench® IDE reference
e C-SPY® Debugger reference

e General options

e Compiler options

e Assembler options

e Custom build options

o Build actions options

e Linker options

e Library builder options

e Debugger options

o C-SPY® macros reference.

.hmuiuhhhi

235

ARARAIed

236

IAR Embedded
Workbench® IDE
reference

This chaptersection contains reference information about the windows,
menus, menu commands, and the corresponding components that are found
in the IAR Embedded Workbench IDE. Information about how to best use the
Embedded Workbench for your purposes can be found in parts 3 to 7 in this
guide.Information about how to best use the Embedded Workbench for your
purposes can be found in the MSP430 IAR Embedded Workbench® IDE User
Guide.

The IAR Embedded Workbench IDE is a modular application. Which menus
are available depends on which components are installed.

Windows

The available windows are:

TAR Embedded Workbench IDE window
Workspace window

Editor window

Source Browser window

Breakpoints window

Message windows.History

In addition, a set of C-SPY®-specific windows becomes available when you start the
IAR C-SPY Debugger. Reference information about these windows can be found in the
chapter C-SPY® Debugger reference in this guide.

Part 7. Reference information 237

238

Windows

IAR EMBEDDED WORKBENCH IDE WINDOW

The figure shows the main window of the IAR Embedded Workbench IDE and its
different components. The window might look different depending on which plugin

modules you are using.

% 1R Embedded Workbench IDE
Menu bar

[_[o]x]
Fle Edt View Project Tools Window Help
Toolbar DERE S 5 Bl ol
e ¥ | Tutor.
Debug - =
e T ﬁ ;n:reaze thet f:l{count'tvzz-;azle. -
- st and print the assiciated Fibonacci mumber.
ElSprojecti - Debug [[|| (N5 P
-2 [Tutor.c woid do_foreground_process (void)
| 8 & output [
| — ETll_t_O_f-h unsigned int fih;
| L— @ uilitiesh next_counter () ;
[Utilities.c f£ib - ger_fib| call_count];
L@ (3 0utput pur_fib{ fib);
Workspace Vo
window —
e
Main program.
Prints the Fibonacci numbers.
7
void main(void)
{
call_count = 0;
init_fibi);
while (call _count < MAX_FIE)
do_toreground_process()
i
Dverview project] | project2 |F(J| |‘\ |>
* ‘ Messages File | Line ‘
Building configuration: project - Debug
Configuration is up-to-date
Status bar ——

tn 25, col 21 [o | 4

Figure 92: IAR Embedded Workbench IDE window

Editor
window

Each window item is explained in greater detail in the following sections.

Menu bar

Gives access to the JAR Embedded Workbench IDE menus.

Menu Description

File

The File menu provides commands for opening source and project files, saving

and printing, and exiting from the IAR Embedded Workbench IDE.

Edit
and for enabling and disabling breakpoints in C-SPY.

The Edit menu provides commands for editing and searching in editor windows

Table 46: IAR Embedded Workbench IDE menu bar

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference ___¢

Menu Description

View Use the commands on the View menu to open windows and decide which
toolbars to display.
Project The Project menu provides commands for adding files to a project, creating

groups, and running the IAR Systems tools on the current project.

Tools The Tools menu is a user-configurable menu to which you can add tools for use
with the IAR Embedded Workbench IDE.

Window With the commands on the Window menu you can manipulate the IAR
Embedded Workbench IDE windows and change their arrangement on the
screen.

Help The commands on the Help menu provide help about the IAR Embedded
Workbench IDE.

Table 46: IAR Embedded Workbench IDE menu bar (Continued)

For reference information for each menu, see Menus, page 264.

Toolbar

The IAR Embedded Workbench IDE toolbar—available from the View
menu—>provides buttons for the most useful commands on the IAR Embedded
Workbench IDE menus, and a text box for typing a string to do a quick search.

You can display a description of any button by pointing to it with the mouse button.
When a command is not available, the corresponding toolbar button will be dimmed,
and you will not be able to click it.

This figure shows the menu commands corresponding to each of the toolbar buttons:

Next
Open Cut Redo Find Bookmark Make
Toggle
Save All Paste Go to Navigate Forward Breakpoint

DR & =2alo o Sy eumEe » @6 B0NE XL D

Save Copy Quick search text box Replace Navigate Backward Stop Build

New Print Undo Find Next Toggle Bookmark Compile Debug
Figure 93: IAR Embedded Workbench IDE toolbar

Note: When you start C-SPY, the Debug button will change to a Make and Debug
button.

A

Part 7. Reference information 239

Windows

240

Status bar

The Status bar at the bottom of the window—available from the View menu—displays
the status of the IAR Embedded Workbench IDE, and the state of the modifier keys.

As you are editing, the status bar shows the current line and column number containing
the insertion point, and the Caps Lock, Num Lock, and Overwrite status.

ILn 8. Cal 4 CAP [MUM | OWR 4

Figure 94: IAR Embedded Workbench IDE window status bar

WORKSPACE WINDOW

The Workspace window, available from the View menu, shows the name of the current

workspace and a tree representation of the projects, groups and files included in the
workspace.

Configuration
drop-down menu

x
[ebug -
Files I“:Iml a|
=] .pm]ecﬂ - Debug
Lo @ --I'_'l
= B ut|I|t|es C
L@ 3 Output
Indicates that the file will
Tabs for be rebuilt next time the
choosing project is built
workspace
display ——— | DOverview project] I project? I

Column containing
status information
about option overrides

Figure 95: Workspace window

In the drop-down list at the top of the window you can choose a build configuration to

display in the window for a specific project.

MSP430 IAR Embedded Workbench® IDE

User Guide

Column containing
source code control
status information

IAR Embedded Workbench® IDE reference ___¢

The column that contains status information about settings and overrides can have one
of three icons for each level in the project:

Blank There are no settings/overrides for this file/group
Black check mark There are local settings/overrides for this file/group
Red check mark There are local settings/overrides for this file/group, but they are

identical with the inherited settings, which means the overrides are
superfluous.

For details about the different source code control icons, see Source code control states,
page 244.

At the bottom of the window you can choose which project to display. Alternatively, you
can choose to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see
the chapter Managing projects in Part 3. Project management and building in this
guide.For more information about project management and using the Workspace
window, see the MSP430 IAR Embedded Workbench® IDE User Guide.

Workspace window context menu

Clicking the right mouse button in the Workspace window displays a context menu
which gives you convenient access to several commands.

Options. ..

Make:
L =
Rebuild all
Clean

Shop Build

Add 3
Remave

Source Code Contral »

File Properties. ..

Sefk as fAekive

Figure 96: Workspace window context menu

Part 7. Reference information 241

Windows

242

The following commands are available on the context menu:

Menu command

Description

Options

Make

Compile

Rebuild All

Clean

Stop Build
Add>Add Files
Add>Add "filename"

Add>Add Group
Remove

Source Code Control

File Properties

Set as Active

Displays a dialog box where you can set options for each build tool on
the selected item in the Workspace window. You can set options on the
entire project, on a group of files, or on an individual file.

Brings the current target up to date by compiling, assembling, and linking
only the files that have changed since the last build.

Compiles or assembles the currently active file as appropriate. You can
choose the file either by selecting it in the Workspace window, or by
selecting the editor window containing the file you want to compile.

Recompiles and relinks all files in the selected build configuration.
Deletes intermediate files.

Stops the current build operation.

Opens a dialog box where you can add files to the project.

Adds the indicated file to the project. This command is only available if
there is an open file in the editor.

Opens a dialog box where you can add new groups to the project.
Removes selected items from the Workspace window.

Opens a submenu with commands for source code control, see Source
Code Control menu, page 243.

Opens a standard File Properties dialog box for the selected file.

Sets the selected project in the overview display to be the active project.
It is the active project that will be built when the Make command is
executed.

Table 47: Workspace window context menu commands

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference ___¢

Source Code Control menu

The Source Code Control menu is available from the Project menu and from the
context menu in the Workspace window. This menu contains some of the most
commonly used commands of external, third-party source code control systems.

CheckIn...

Check Qut,..
Unda Checkout:
et Latest Yersion
Compare. ..
History...
Properties...

Refresh

Add Project To Source Cantral, .,
Femave Project From Source Contral, ..

Figure 97: Source Code Control menu

For more information about interacting with an external source code control system, see
Source code control, page 86the MSP430 IAR Embedded Workbench® IDE User Guide.

The following commands are available on the submenu:

Menu command Description

Check In Opens the Check In Files dialog box where you can check in the
selected files; see Check In Files dialog box, page 246. Any changes you
have made in the files will be stored in the archive. This command is
enabled when currently checked-out files are selected in the Workspace
window.

Check Out Checks out the selected file or files. Depending on the SCC system you
are using, a dialog box may appear; see Check Out Files dialog box, page
247. This means you get a local copy of the file(s), which you can edit.
This command is enabled when currently checked-in files are selected in
the Workspace window.

Undo Check out The selected files revert to the latest archived version; the files are no
longer checked-out. Any changes you have made to the files will be lost.
This command is enabled when currently checked-out files are selected
in the Workspace window.

Get Latest Version Replaces the selected files with the latest archived version.

Compare Displays—in a SCC-specific window—the differences between the local
version and the most recent archived version.

Table 48: Description of source code control commands

Part 7. Reference information 243

Windows

Menu command Description

History Displays SCC-specific information about the revision history of the
selected file.

Properties Displays information available in the SCC system for the selected file.

Refresh Updates the SCC display status for all the files that are part of the

project. This command is always enabled for all projects under SCC.

Add Project To Source Opens a dialog box, which originates from the SCC client application, to

Control let you create a connection between the selected IAR Embedded
Workbench project and an SCC project; the IAR Embedded Workbench
project will then be an SCC-controlled project. After creating this
connection, a special column that contains status information will appear
in the Workspace window.

Remove Project From Removes the connection between the selected IAR Embedded

Source Control Workbench project and an SCC project; your project will no longer be a
SCC-controlled project. The column in the Workspace window that
contains SCC status information will no longer be visible for that project.

Table 48: Description of source code control commands (Continued)

Source code control states

Each source code-controlled file can be in one of several states.

SCC state Description
D Checked out to you. The file is editable.
Checked out to you. The file is editable and you have modified the file.

(grey padlock) Checked in. In many SCC systems this means that the file is
write-protected.

(grey padlock) Checked in. There is a new version available in the archive.

A (red padlock) Checked out exclusively to another user. In many SCC systems this
means that you cannot check out the file.

Al (red padlock) Checked out exclusively to another user. There is a new version available
in the archive. In many SCC systems this means that you cannot check
out the file.

Table 49: Description of source code control states

MSP430 IAR Embedded Workbench® IDE
244 User Guide

IAR Embedded Workbench® IDE reference ___¢

Note: The source code control in IAR Embedded Workbench depends on the
information provided by the SCC system. If the SCC system provides incorrect or
incomplete information about the states, IAR Embedded Workbench might display
incorrect symbols.

Select Source Code Control Provider dialog box

The Select Source Code Control Provider dialog box is displayed if there are several
SCC systems from different vendors available. Use this dialog box to choose the SCC
system you want to use.

Select Source Code Control Provider E
Cancel |

[Micrasaft visual SaurceSare

Figure 98: Select Source Code Control Provider dialog box

Part 7. Reference information 245

Windows

246

Check In Files dialog box

The Check In Files dialog box is available by choosing the Project>Source Code
Control>Check In command, alternatively available from the Workspace window
context menu.

Check In Files E

Comment

K

Cancel

Ik

Advanced. .,
™ Keep checked out

Files

C:hprojectshtutor\Utilities. o

Figure 99: Check In File dialog box

Comment

A text box in which you can write a comment—typically a description of your
changes—that will be stored in the archive together with the file revision. This text box
is only enabled if the SCC system supports the adding of comments at check-in.

Keep checked out

The file(s) will continue to be checked out after they have been checked in. Typically,
this is useful if you want to make your modifications available to other members in your
project team, without stopping your own work with the file.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check in.

Files

A list of the files that will be checked in. The list will contain all files that were selected
in the Workspace window when this dialog box was opened.

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

Check Out Files dialog box

The Check Out File dialog box is available by choosing the Project>Source Code
Control>Check Out command, alternatively available from the Workspace window
context menu. However, this dialog box is only available if the SCC system supports
adding comments at check-out or advanced options.

Check Dut Files E

Comment

K

Cancel

Advanced. .,

Ik

Files
C:hprojectshtutor\Utilities. o

Figure 100: Check Out File dialog box

Comment

A text field in which you can write a comment—typically the reason why the file is
checked out—that will be placed in the archive together with the file revision. This text
box is only enabled if the SCC system supports the adding of comments at check-out.

Advanced

Opens a dialog box, originating from the SCC client application, that contains advanced
options. This button is only available if the SCC system supports setting advanced
options at check out.

Files

A list of files that will be checked out. The list will contain all files that were selected in
the Workspace window when this dialog box was opened.

Part 7. Reference information 247

Windows

248

EDITOR WINDOW

Source files are displayed in editor windows. You can have one or several editor
windows open at the same time. The editor window is always docked, and its size and
position depends on other currently open windows.

Drop-down menu
listing all open files

Tabs
— Splitter
Initialize MAX FIB Fibonacci numbers. control
*
void init_fib{ void j
{
short i = 45;
root[0] = root[l] = 1;
for { i=2 ; i<MAX_FIE ; i++)
Bookmark —

root[i] = get_fib{i) + get fih(i-1):
'

/*
Return the Fibonacci mumber 'nr'.
*
unsigned int get_fib({ int nr |
{

if | nrx0 &s& nr<=MiX FIE) -
[fal 1] | B
Il

Splitter control ~ Go to function

Figure 101: Editor window

The name of the open source file is displayed on the tab. If a file is read-only, a padlock
icon is visible at the bottom left corner of the editor window. If a file has been modified
after it was last saved, an asterisk appears after the filename on the tab, for example
Utilities.c *. All open files are available from the drop-down menu in the upper
right corner of the editor window.

For information about using the editor, see the chapter Editing, page 95.For information
about using the editor, see the MSP430 IAR Embedded Workbench® IDE User Guide.
Split commands

Use the Window>Split command—or the Splitter controls—to split the editor window
horizontally or vertically into multiple panes.

On the Window menu you also find commands for opening multiple editor windows, as
well as commands for moving files between the different editor windows.

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

Go to function

With the Go to function button in the bottom left-hand corner of the editor window you
can display all functions in the C or C++ editor window. You can then choose to go
directly to one of them.

Editor window tab context menu

The context menu that appears if you right-click on a tab in the editor window provides
access to commands for saving and closing the file.

Save intermupt.c
Cloze

Figure 102: Editor window tab context menu

Editor window context menu

The context menu available in the editor window provides convenient access to several
commands.

Ut

Copy.
Paste

Complete
Match Brackets
Insert Template 3

Open HeaderfSource File

5o ko definition

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)
Enablefdisable Ereakpaoint

Set Mext Statement

Quick \Watch
Add to Wakch

Move to PC
Run ko Cursor

Options. ..

Figure 103: Editor window context menu

Note: The contents of this menu depend on different circumstances, which means it
may contain other commands compared to this figure. All commands available are
described in the Table 50, Description of commands on the editor window context menu.

Part 7. Reference information 249

Windows

250

The following commands are available on the editor window context menu:

Menu command

Description

Cut, Copy, Paste

Complete

Match Brackets

Insert Template

Open "headerh"

Open Header/Source
File

Go to definition

Check In
Check Out
Undo Checkout

Toggle Breakpoint
(Code)

Toggle Breakpoint
(Log)

Enable/disable
Breakpoint

Standard window commands.

Attempts to complete the word you have begun to type, basing the guess
on the contents of the rest of the editor document.

Selects all text between the brackets immediately surrounding the
insertion point, increases the selection to the next hierarchic pair of
brackets, or beeps if there is no higher bracket hierarchy.

Displays a list in the editor window from which you can choose a code
template to be inserted at the location of the insertion point. If the code
template you choose requires any field input, the Template dialog box
appears; for information about this dialog box, see Template dialog box,
page 274. For information about using code templates, see Using and
adding code templates, page 99the MSP430 IAR Embedded Workbench®
IDE User Guide.

Opens the header file "headerh" in an editor window. This menu
command is only available if the insertion point is located on an
#include line when you open the context menu.

Jumps from the current file to the corresponding header or source file. If
the destination file is not open when performing the command, the file
will first be opened. This menu command is only available if the insertion
point is located on any line except an #include line when you open
the context menu. This command is also available from the File>Open

menu.
Shows the declaration of the symbol where the insertion point is placed.

Commands for source code control; for more details, see Source Code
Control menu, page 243. These menu commands are only available if the
current source file in the editor window is SCC-controlled. The file must
also be a member of the current project.

Toggles a code breakpoint at the statement or instruction containing or
close to the cursor in the source window. For information about code
breakpoints, see Code breakpoints dialog box, page 256.

HistoryToggles a log breakpoint at the statement or instruction
containing or close to the cursor in the source window. For information
about log breakpoints, see Log breakpoints dialog box, page 258.

Toggles a breakpoint between being disabled, but not actually
removed—making it available for future use—and being enabled again.

Table 50: Description of commands on the editor window context menu

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

Menu command Description

Set Next Statement Sets the PC directly to the selected statement or instruction without
executing any code. Use this menu command with care. This menu
command is only available when you are using the debugger.

Quick Watch Opens the Quick Watch window, see Quick Watch window, page 325.
This menu command is only available when you are using the debugger.

Add to Watch Adds the selected symbol to the Watch window. This menu command is
only available when you are using the debugger.

Move to PC Moves the insertion point to the current PC position in the editor
window. This menu command is only available when you are using the
debugger.

Run to Cursor Executes from the current statement or instruction up to a selected

statement or instruction. This menu command is only available when you
are using the debugger.

Options HistoryDisplays the IDE Options dialog box, see Tools menu, page 286.

Table 50: Description of commands on the editor window context menu (Continued)

Source file paths

The IAR Embedded Workbench IDE supports relative source file paths to a certain
degree.

If a source file is located in the project file directory or in any subdirectory of the project
file directory, the IAR Embedded Workbench IDE will use a path relative to the project
file when accessing the source file.

Editor key summary

The following tables summarize the editor’s keyboard commands.

Use the following keys and key combinations for moving the insertion point:

To move the insertion point Press

One character left Arrow left

One character right Arrow right

One word left Ctri+Arrow left
One word right Ctrl+Arrow right
One line up Arrow up

One line down Arrow down

To the start of the line Home

Table 51: Editor keyboard commands for insertion point navigation

Part 7. Reference information 251

Windows

252

To move the insertion point Press

To the end of the line End

To the first line in the file Ctrl+Home
To the last line in the file Ctrl+End

Table 51: Editor keyboard commands for insertion point navigation (Continued)

Use the following keys and key combinations for scrolling text:

To scroll

Press

Up one line
Down one line
Up one page

Down one page

Ctrl+Arrow up
Ctrl+Arrow down
Page Up

Page Down

Table 52: Editor keyboard commands for scrolling

Use the following key combinations for selecting text:

To select

Press

The character to the left

The character to the right

One word to the left

One word to the right

To the same position on the previous line
To the same position on the next line
To the start of the line

To the end of the line

One screen up

One screen down

To the beginning of the file

To the end of the file

Shift+Arrow left
Shift+Arrow right
Shift+Ctrl+Arrow left
Shift+Ctrl+Arrow right
Shift+Arrow up
Shift+Arrow down
Shift+Home
Shift+End

Shift+Page Up
Shift+Page Down
Shift+Ctrl+Home
Shift+Ctrl+End

Table 53: Editor keyboard commands for selecting text

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

SOURCE BROWSER WINDOW

The Source Browser window—available from the View menu—displays an hierarchical
view in alphabetical order of all symbols defined in the active build configuration.

[® [Name — —
project] - Debug

< call_count
+ do_foreground_process
] 1
* init_fib
* main
4+ next_counter
*
w

put_fib
root

KN — i
Full name: get_fibling)

Symbol type: function

Filename: ChprojectsiUtilities.c

ource Browse

Figure 104: Source Browser window

The window consists of two separate panes. The top pane displays the names of global
symbols and functions defined in the project.

Each row is prefixed with an icon, which corresponds to the Symbol type classification,
see Table 54, Information in Source Browser window. By clicking in the window header,
you can sort the symbols either by name or by symbol type.

In the top pane you can also access a context menu; see Source Browser window context
menu, page 254.

For a symbol selected in the top pane, the bottom pane displays the following
information:

Type of information Description

Full name Displays the unique name of each element, for instance
classname:membername.

Symbol type Displays the symbol type for each element: enumeration, enumeration
constant, class, typedef, union, macro, field or variable, function,
template function, template class, and configuration.

Filename Specifies the path to the file in which the element is defined.

Table 54: Information in Source Browser window

Part 7. Reference information 253

Windows

For further details about how to use the Source Browser window, see Displaying browse
information, page 85.For further details about how to use the Source Browser window,
see the MSP430 IAR Embedded Workbench® IDE User Guide.

Source Browser window context menu

Right-clicking in the Source Browser window displays a context menu with convenient
access to several commands.

5o ko definition
Move ko parent

All symbols

v Functions & variables
Types
Constants & macros

All files
v Exclude system includes
Only project members

Figure 105: Source Browser window context menu

The following commands are available on the context menu:

Menu command Description
Go to Source The editor window will display the definition of the selected item.
Move to parent If the selected element is a member of a class, struct, union,

enumeration, or namespace, this menu command can be used for
moving to its enclosing element.

All symbols Type filter; all global symbols and functions defined in the project will
be displayed.

Functions & variables Type filter; all functions and variables defined in the project will be
displayed.

Types Type filter; all types such as structures and classes defined in the

project will be displayed.

Constants & macros Type filter; all constants and macros defined in the project will be
displayed.
All files File filter; symbols from all files that you have explicitly added to your

project and all files included by them will be displayed.

Exclude system includes File filter; symbols from all files that you have explicitly added to your
project and all files included by them will be displayed, except the
include files in the IAR Embedded Workbench installation directory.

Table 55: Source Browser window context menu commands

MSP430 IAR Embedded Workbench® IDE
254 User Guide

IAR Embedded Workbench® IDE reference ___¢

Menu command Description

Only project members File filter; symbols from all files that you have explicitly added to your
project will be displayed, but no include files.

Table 55: Source Browser window context menu commands (Continued)

BREAKPOINTS WINDOW

The Breakpoints window—available from the View menu—Ilists all breakpoints. From
the window you can conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

Code @ Tutar.c:46.2

Figure 106: Breakpoints window

All breakpoints you define are displayed in the Breakpoints window.

For more information about the breakpoint system and how to set breakpoints, see the
chapter Using breakpoints in Part 4. Debugging For more information about the
breakpoint system and how to set breakpoints, see the MSP430 IAR Embedded
Workbench® IDE User Guide.

Breakpoints window context menu

Right-clicking in the Breakpoints window displays a context menu with several
commands.

G0 to Source
Edit...

Delete
Disable
Enable Al
Disable Al

Mew Breakpoint ¥

Figure 107: Breakpoints window context menu

Part 7. Reference information 255

Windows

256

The following commands are available on the context menu:

Menu command

Description

Go to Source

Edit

Delete

Enable

Disable

Enable All
Disable All

New Breakpoint

Moves the insertion point to the location of the breakpoint, if the
breakpoint has a source location. Double-click a breakpoint in the
Breakpoints window to perform the same command.

Opens the Edit Breakpoint dialog box for the selected breakpoint.

Deletes the selected breakpoint. Press the Delete key to perform the
same command.

Enables the selected breakpoint. The check box at the beginning of the
line will be selected. You can also perform the command by manually
selecting the check box. This command is only available if the selected
breakpoint is disabled.

Disables the selected breakpoint. The check box at the beginning of the
line will be cleared. You can also perform this command by manually
deselecting the check box.This command is only available if the selected
breakpoint is enabled.

Enables all defined breakpoints.
Disables all defined breakpoints.

Displays a submenu where you can open the New Breakpoint dialog
box for the available breakpoint types. All breakpoints you define using
the New Breakpoint dialog box are preserved between debug
sessions. In addition to code and log breakpoints—see Code breakpoints
dialog box, page 256 and —other types of breakpoints might be available
depending on the C-SPY driver you are using. For information about
driver-specific breakpoint types, see the driver-specific debugger
documentation.

Table 56: Breakpoints window context menu commands

Code breakpoints dialog box

Code breakpoints are triggered when an instruction is fetched from the specified
location. If you have set the breakpoint on a specific machine instruction, the breakpoint
will be triggered and the execution will stop, before the instruction is executed.

To set a code breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Log on the context menu. To modify an existing breakpoint, select it in the
Breakpoints window and choose Edit on the context menu.

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

The Code breakpoints dialog box appears.

é Code |
Break &f:
f Edit...l
— Size
& Auta (1] I_I—
 Marual
— Action
Expression: I
Condition:
Expression:
& Condition true Skip count; I—D
" Condition changed

Figure 108: Code breakpoints page

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit browse button to open the Enter Location dialog box; see Enter Location dialog
box, page 260.

Size

Optionally, you can specify a size—in practice, a range—of locations. Each fetch access
to the specified memory range will trigger the breakpoint. There are two different ways
the size can be specified:

e Auto, the size will be set automatically, typically to 1
e Manual, you specify the size of the breakpoint range manually in the Size text box.
Action

You can optionally connect an action to a breakpoint. Specify an expression, for instance
a C-SPY macro function, which is evaluated when the breakpoint is triggered and the
condition is true.

Part 7. Reference information 257

Windows

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Skip count The number of times that the breakpoint must be fulfilled before a break
occurs (integer).

Table 57: Breakpoint conditions

Log breakpoints dialog box

Log breakpoints are triggered when an instruction is fetched from the specified location.
If you have set the breakpoint on a specific machine instruction, the breakpoint will be
triggered and the execution will temporarily halt and print the specified message in the
C-SPY Debug Log window. This is a convenient way to add trace printouts during the
execution of your application, without having to add any code to the application source
code.

To set a log breakpoint, right-click in the Breakpoints window and choose New
Breakpoint>Log on the context menu. To modify an existing breakpoint, select it in the
Breakpoints window and choose Edit on the context menu.

The Log breakpoints dialog box appears.

2 Log |
Break &f:
I{E:\tutor\Tutor.c}.4?.3 Edit...l
Meszage: [~ CSpymaco"__message” style

I"depth =", call_count

Condition:
Expression:

& Condition tue
" Condition changed

Figure 109: Log breakpoints page

MSP430 IAR Embedded Workbench® IDE

258 User Guide

IAR Embedded Workbench® IDE reference ___¢

The quickest—and typical—way to set a log breakpoint is by choosing Toggle
Breakpoint (Log) from the context many available by right-clicking in either the editor
or the Disassembly window. For more information about how to set breakpoints, see
Defining breakpoints, page 129.

Break At

Specify the location of the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter Location dialog box; see Enter Location dialog box, page
260.

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
"__message' style—a comma-separated list of arguments.

C-SPY macro "__message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 400.

Conditions

You can specify simple and complex conditions.

Conditions Description

Expression A valid expression conforming to the C-SPY expression syntax.
Condition true The breakpoint is triggered if the value of the expression is true.
Condition changed The breakpoint is triggered if the value of the expression has changed

since it was last evaluated.

Table 58: Log breakpoint conditions

Part 7. Reference information 259

Windows

Enter Location dialog box

Use the Enter Location dialog box—available from a breakpoints dialog box—to
specify the location of the breakpoint.

Enter Location E

Type
' Expression

7 Absolute address

 Souree location

Expression:

o]

Cancel |

Figure 110: Enter Location dialog box

You can choose between these locations and their possible settings:

Location type

Description/Examples

Expression

Absolute Address

Source Location

Any expression that evaluates to a valid address, such as a function or
variable name. Code breakpoints are set on functions and data
breakpoints are set on variable names. For example, my_var refers to
the location of the variable my_var, and arr [3] refers to the third
element of the array arr.

An absolute location on the form zone: hexaddress or simply
hexaddress. Zone specifies in which memory the address belongs.
For example Memory: 0x42.

If you enter a combination of a zone and address that is not valid, C-SPY
will indicate the mismatch.

A location in the C source code using the syntax:

{file path}.row.column. File specifies the filename and full path.
Row specifies the row in which you want the breakpoint. Column specifies
the column in which you want the breakpoint. Note that the Source
Location type is usually meaningful only for code breakpoints.

For example, {C:\my_projects\Utilities.c}.22.3

sets a breakpoint on the third character position on line 22 in the source
file Utilities.c.

Table 59: Location types

MSP430 IAR Embedded Workbench® IDE

260 User Guide

IAR Embedded Workbench® IDE reference ___¢

BUILD WINDOW

The Build window—available by choosing View>Messages—displays the messages
generated when building a build configuration. When opened, this window is by default
grouped together with the other message windows, see Windows, page 237.

| Messages | File | Line |
Tutar.c
A\ Warming[Pe0b4]: declaration does not declare amahing CAProgram File. ATutarc 17
€3 Eror[Pe020] identifier "call_count" is undefined CAProgram File. \Tutorc 24
€3 Eror[Pe020]: identifier "call_count" is undefined CAProgram File. \Tutorc 35
€3 Eror[Pe020] identifier "call_count" is undefined CAProgram File. \Tutorc 45
Dane. 3 errors). 1 warning(s)

Figure 111: Build window (message window)

Double-clicking a message in the Build window opens the appropriate file for editing,
with the insertion point at the correct position.

Right-clicking in the Build window displays a context menu which allows you to copy,
select, and clear the contents of the window.

Gy
Select Al

Clear Al

Options. ..

Figure 112: Build window context menu

The Options command opens the Messages page of the IDE options dialog box. On
this page you can set options related to messages; see Messages page, page 290.

Part 7. Reference information 261

Windows

262

FIND IN FILES WINDOW

The Find in Files window—available by choosing View>Messages—displays the
output from the Edit>Find and Replace>Find in Files command. When opened, this
window is by default grouped together with the other message windows, see Windows,
page 237.

Find in Files B
Fath | Line | String -
Chprojectsh. ATutorc 4 * Ctutarial. Print the Fibonacci numbers.
Chprojectsh. ATutorc 14 int call_count;

Chprojectsh. ATutor.c 28 Getand printthe associated Fibonacci number.
Chprojectsh. ATutor.c 32 unsigned intfik;

Chprojectsh. ATutor.c 41 Prints the Fibonacci numbers.

Chproject. \Utilities.c 16 unsigned int root[MAx_FIB]:

Chproject. \Utilities.c 23 inti=45;

Chproject. \Utilities.c 35 unsigned int get_fib(intnr) -
« | _>l_I
Call Stack | Debug Lag |Builld Find in Files ITooI Cutput x

Figure 113: Find in Files window (message window)

Double-clicking an entry in the page opens the appropriate file with the insertion point
positioned at the correct location.

Right-clicking in the Find in Files window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 114: Find in Files window context menu

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

TOOL OUTPUT WINDOW

The Tool Output window—available by choosing View>Messages—displays any
messages output by user-defined tools in the Tools menu, provided that you have
selected the option Redirect to Output Window in the Configure Tools dialog box;
see Configure Tools dialog box, page 303. When opened, this window is by default
grouped together with the other message windows, see Windows, page 237.

Output |

Tool Output

Figure 115: Tool Output window (message window)

Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 116: Tool Output window context menu

Part 7. Reference information

263

Menus

264

DEBUG LOG WINDOW

The Debug Log window—available by choosing View>Messages—displays debugger
output, such as diagnostic messages and trace information. This output is only available
when the C-SPY Debugger is running. When opened, this window is by default grouped
together with the other message windows, see Windows, page 237.

Log
Fri Feb 06 10:41:40 2004: Loaded module
Fri Felb 06 10:41:40 2004: Target reset

Debug Log

Debug Log

Figure 117: Debug Log window (message window)

Right-clicking in the Tool Output window displays a context menu which allows you to
copy, select, and clear the contents of the window.

Copy
Select Al

Clear Al

Figure 118: Debug Log window context menu

Menus

The following menus are available in the IAR Embedded Workbench IDE:

File menu
Edit menu
View menu
Project menu
Tools menu
Window menu
Help menu.

In addition, a set of C-SPY-specific menus become available when you start the IAR
C-SPY Debugger. Reference information about these menus can be found in the chapter
C-SPY® Debugger reference, page 313.

MSP430 IAR Embedded Workbench® IDE

User Guide

Y=

FILE MENU

IAR Embedded Workbench® IDE reference ___¢

The File menu provides commands for opening workspaces and source files, saving and
printing, and exiting from the IAR Embedded Workbench IDE.

The menu also includes a numbered list of the most recently opened files and
workspaces to allow you to open one by selecting its name from the menu.

Mew 3
Open 3
Close

Save Workspace
Close Workspace

Save CTRLES
Save fs..,

Save Al

Page Setup...

Print. .. CTRL+P
Recent Files 3
Recent Workspaces 3

Exit

Figure 119: File menu

The following commands are available on the File menu:

Menu command Shortcut Description

New CTRL+N Displays a submenu with commands for creating a new
workspace, or a new text file.

Open>File CTRL+O Displays a submenu from which you can select a text file to
open.

Open> Displays a submenu from which you can select a workspace file

Workspace to open. Before a new workspace is opened you will be
prompted to save and close any currently open workspaces.

Open> CTRL+ Opens the header file or source file that corresponds to the

Header/Source File SHIFT+H

Close

current file, and jumps from the current file to the newly
opened file. This command is also available from the context
menu available from the editor window.

Closes the active window. You will be given the opportunity to
save any files that have been modified before closing.

Table 60: File menu commands

Part 7. Reference information

265

Menus

266

Menu command Shortcut

Description

Open Workspace

Save Workspace
Close Workspace
Save CTRL+S

Save As

Save All
Page Setup
Print CTRL+P

Recent Files

Recent Workspaces

Exit

Displays a dialog box where you can open a workspace file.
You will be given the opportunity to save and close any
currently open workspace file that has been modified before
opening a new workspace.

Saves the current workspace file.
Closes the current workspace file.
Saves the current text file or workspace file.

Displays a dialog box where you can save the current file with a
new name.

Saves all open text documents and workspace files.
Displays a dialog box where you can set printer options.
Displays a dialog box where you can print a text document.

Displays a submenu where you can quickly open the most
recently opened text documents.

Displays a submenu where you can quickly open the most
recently opened workspace files.
Exits from the IAR Embedded Workbench IDE. You will be

asked whether to save any changes to text windows before
closing them. Changes to the project are saved automatically.

Table 60: File menu commands (Continued)

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

EDIT MENU

The Edit menu provides several commands for editing and searching.

Lrida Chrl+-Z

Redo Chrl4-

Cuf: Chrl4-

Copy Chrl+C

Paste Chrl4+y

Paste Special...

Select Al Chrl4+-4

Find and Replace 3
Mavigate 3
Code Templates 3
Mext ErrorfTag F4

Previous ErrorfTag Shift+F4
Complete Chrl+Space
Match Brackets Chrl+B

Auko Indent Chrl+T

Block Comment Chrl4+k

Block Unomment Chrl+Shift+k
Toggle Breakpoink F2
Enable/Disable Breakpoint Ctrl+F9

Figure 120: Edit menu

Menu command Shortcut Description
Undo CTRL+Z Undoes the last edit made to the current editor window.
Redo CTRL+Y Redoes the last Undo in the current editor window.

You can undo and redo an unlimited number of edits
independently in each editor window.

Cut CTRL+X The standard Windows command for cutting text in editor

il
o
|

windows and text boxes.

Copy CTRL+C The standard Windows command for copying text in editor
windows and text boxes.

Paste CTRL+V The standard Windows command for pasting text in editor

windows and text boxes.

Paste Special Provides you with a choice of the most recent contents of the
clipboard to choose from when pasting in editor documents.

Select All CTRL+A Selects all text in the active editor window.

Table 61: Edit menu commands

Part 7. Reference information 267

Menus

268

hd

¥z

Menu command Shortcut

Description

Find and Replace>Find CTRL+F

Find and Replace> F3
Find Next

Find and Replace> CTRL+H
Replace

Find and Replace>
Find in Files

Find and Replace> CTRL+I
Incremental Search

Navigate>Go To CTRL+G

Navigate> CTRL+F2
Toggle Bookmark

Navigate> F2

Go to Bookmark

Navigate> ALT+Left

Navigate Backward arrow

Navigate> ALT+Right
Navigate Forward arrow

Displays the Find dialog box where you can search for text
within the current editor window. Note that if the insertion
point is located in the Memory window when you choose the
Find command, the dialog box will contain a different set of
options than it would otherwise do. If the insertion point is
located in the Trace window when you choose the Find
command, the Find in Trace dialog box is opened; the
contents of this dialog box depend on the C-SPY driver you
are using, see the driver documentation for more
information.

Finds the next occurrence of the specified string.

Displays a dialog box where you can search for a specified
string and replace each occurrence with another string. Note
that if the insertion point is located in the Memory window
when you choose the Replace command, the dialog box will
contain a different set of options than it would otherwise do.

Displays a dialog box where you can search for a specified
string in multiple text files; see Find in Files dialog box, page
271.

Displays a dialog box where you can gradually fine-tune or
expand the search by continuously changing the search string.

Displays a dialog box where you can move the insertion point
to a specified line and column in the current editor window.

Toggles a bookmark at the line where the insertion point is
located in the active editor window.

Moves the insertion point to the next bookmark that has
been defined with the Toggle Bookmark command.

Navigates backward in the insertion point history. The
current position of the insertion point is added to the history
by actions like Go to definition and clicking on a result from
the Find in Files command.

Navigates forward in the insertion point history. The current
position of the insertion point is added to the history by
actions like Go to definition and clicking on a result from
the Find in Files command.

Table 61: Edit menu commands (Continued)

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

Menu command Shortcut Description

Code Templates> CTRL+ Displays a list in the editor window from which you can

Insert Template SHIFT+ choose a code template to be inserted at the location of the
SPACE insertion point. If the code template you choose requires any

field input, the Template dialog box appears; for
information about this dialog box, see Template dialog box,
page 274. For information about using code templates, see
Using and adding code templates, page 99the MSP430 IAR
Embedded Workbench® IDE User Guide.

Code Templates> Opens the current code template file, where you can modify

Edit Templates existing code templates and add your own code templates.
For information about using code templates, see Using and
adding code templates, page 99the MSP430 IAR Embedded
Workbench® IDE User Guide.

Next Error/Tag F4 If there is a list of error messages or the results from a Find
in Files search in the Messages window, this command will
display the next item from that list in the editor window.

Previous Error/Tag ~ SHIFT+F4 |If there is a list of error messages or the results from a Find
in Files search in the Messages window, this command will
display the previous item from that list in the editor window.

Complete CTRL+ Attempts to complete the word you have begun to type,
SPACE basing the guess on the contents of the rest of the editor
document.
Auto Indent CTRL+T Indents one or several lines you have selected in a C/C++

source file. To configure the indentation, see Configure Auto
Indent dialog box, page 292.

Match Brackets Selects all text between the brackets immediately
surrounding the insertion point, increases the selection to the
next hierarchic pair of brackets, or beeps if there is no higher
bracket hierarchy.

Block Comment CTRL+K HistoryPlaces the C++ comment character sequence // at
the beginning of the selected lines.

Block Uncomment ~ CTRL+K HistoryRemoves the C++ comment character sequence //
from the beginning of the selected lines.

Table 61: Edit menu commands (Continued)

Part 7. Reference information 269

Menus

270

Menu command Shortcut Description

Toggle Breakpoint F9

Toggles a breakpoint at the statement or instruction that
contains or is located near the cursor in the source window.
This command is also available as an icon button in the debug
bar.

Enable/Disable CTRL+F9 Toggles a breakpoint between being disabled, but not actually

Breakpoint

removed—making it available for future use—and being
enabled again.

Table 61: Edit menu commands (Continued)

Find dialog box

The Find dialog box is available from the Edit menu.History

Option

Description

Find What
Match Whole Word Only

Match Case

Direction

Search as Hex

Find Next
Stop

Selects the text to search for.

Searches the specified text only if it occurs as a separate word.
Otherwise specifying int will also find print, sprintf etc. This
option is not available when you perform the search in the Memory
window.

Searches only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.
This option is not available when you perform the search in the
Memory window.

Specifies the direction of the search. Choose between the options
Up and Down.

Searches for the specified hexadecimal value. This option is only
available when you perform the search in the Memory window.

Searches the next occurrence of the selected text.

Stops an ongoing search. This function button is only available during
a search.

Table 62: Find dialog box options

Replace dialog box

The Replace dialog box is available from the Edit menu.History
Option Description
Find What Selects the text to search for.

Table 63: Replace dialog box options

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

Option Description
Replace With Selects the text to replace each found occurrence in the Replace
With box.

Match Whole Word Only Searches the specified text only if it occurs as a separate word.
Otherwise int will also find print, sprintf etc. This checkbox
is not available when you perform the search in the Memory window.

Match Case Searches only occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.
This checkbox is not available when you perform the search in the
Memory window.

Search as Hex Searches for the specified hexadecimal value. This checkbox is only
available when you perform the search in the Memory window.

Find Next Searches the next occurrence of the text you have specified.

Replace Replaces the searched text with the specified text.

Replace All Replaces all occurrences of the searched text in the current editor
window.

Table 63: Replace dialog box options (Continued)

Find in Files dialog box

Use the Find in Files dialog box—available from the Edit menu—to search for a string
in files.

Find in Files [%]

Find what Find |
I j Close |

™ Match case
™ Makch whale word

Look in
& Project files

" Project files and user include files
" Project files and all include Files
" Direckory:

| g2 o

¥ | Lack i subdirectaries

File types

I*.c,'*.cpp;*.cc,'*.h;*.hpp,‘*.s*;*.msa;*.asm j

Figure 121: Find in Files dialog box

Part 7. Reference information 271

Menus

The result of the search appears in the Find in Files messages window—available from
the View menu. You can then go to each occurrence by choosing the Edit>Next
Error/Tag command, alternatively by double-clicking the messages in the Find in Files
messages window. This opens the corresponding file in an editor window with the
insertion point positioned at the start of the specified text. A blue flag in the left-most
margin indicates the line.

In the Find in Files dialog box, you specify the search criteria with the following
settings.
Find what

A text field in which you type the string you want to search for. There are two options
for fine-tuning the search:

Match case Searches only for occurrences that exactly match the case of the
specified text. Otherwise specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

Look in

The options in the Look in area lets you specify which files you want to search in for a
specified string. Choose between:

Project files The search will be performed in all files that you have explicitly added to
your project.

Project files and user The search will be performed in all files that you have explicitly added to
include files your project and all files included by them, except the include files in the
IAR Embedded Workbench installation directory.

Project files and all The search will be performed in all project files that you have explicitly
include files added to your project and all files included by them.

Directory The search will be performed in the directory that you specify. Recent
search locations are saved in the drop-down list. Locate the directory
using the browse button.

Look in The search will be performed in the directory that you have specified
subdirectories and all its subdirectories.

MSP430 IAR Embedded Workbench® IDE
272 User Guide

IAR Embedded Workbench® IDE reference ___¢

File types

This is a filter for choosing which type of files to search; the filter applies to all options
in the Look in area. Choose the appropriate filter from the drop-down list. HistoryNote
that the File types text field is editable, which means that you can add your own filters.
Use the * character to indicate zero or more unknown characters of the filters, and the 2
character to indicate one unknown character.

Stop
Stops an ongoing search. This function button is only available during an ongoing
search.

Incremental Search dialog box

The Incremental Search dialog box—available from the Edit menu—Ilets you
gradually fine-tune or expand the search string.

Incremental Search x|

Findwhat: | =l
[T Mateh Cass Cloze |

Figure 122: Incremental Search dialog box

Find What

Type the string to search for. The search will be performed from the location of the
insertion point—the start point. Gradually incrementing the search string will gradually
expand the search criteria. Backspace will remove a character from the search string; the
search will be performed on the remaining string and will start from the start point.

If a word in the editor window is selected when you open the Incremental Search
dialog box, this word will be displayed in the Find What text box.

Match Case

Use this option to find only occurrences that exactly match the case of the specified text.
Otherwise searching for int will also find INT and Int.

Part 7. Reference information 273

Menus

274

Function buttons

Function button Description

Find Next Searches for the next occurrence of the current search string. If the
Find What text box is empty when you click the Find Next button, a
string to search for will automatically be selected from the drop-down
list. To search for this string, click Find Next.

Close Closes this dialog box.

Table 64: Incremental Search function buttons

Template dialog box

Use the Template dialog box to specify any field input that is required by the source
code template you insert. This dialog box appears when you insert a code template that
requires any field input.

Template “for™ E
End Yalue I 10 ok I

‘ariable I i Cancel

fForfink i =0; i < 10; +-+i)

+

Figure 123: Template dialog box

Note: This figure reflects the default code template that can be used for automatically
inserting code for a for loop.

The contents of this dialog box match the code template. In other words, which fields
that appear depends on how the code template is defined.

At the bottom of the dialog box, the code that would result from the code template is
displayed.

For more information about using code templates, see Using and adding code templates,
page 99the MSP430 IAR Embedded Workbench® IDE User Guide.

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

VIEW MENU

With the commands on the View menu you can choose what to display in the IAR
Embedded Workbench IDE. During a debug session you can also open
debugger-specific windows from the View menu.

Messages 3

‘Warkspace

Source Browser

Breakpoints

Toolbars 3
v Status Bar

Figure 124: View menu

Menu command Description

Messages Opens a submenu which gives access to the message windows—aBuild,
Find in Files, Tool Output, Debug Log—that display messages and text
output from the IAR Embedded Workbench commands. If the window
you choose from the menu is already open, it becomes the active

window.
Workspace Opens the current Workspace window.
Source Browser Opens the Source Browser window.
Breakpoints Opens the Breakpoints window.
Toolbars The options Main and Debug toggle the two toolbars on and off.
Status bar Toggles the status bar on and off.

Table 65: View menu commands

Part 7. Reference information 275

Menus

Menu command Description

Debugger windows During a debugging session, the different debugging windows are also
available from the View menu:
Disassembly window
Memory window
Register window
Watch window
Locals window
Auto window
Live Watch window
Quick Watch window
Call Stack window
Terminal 1/O window
Code Coverage window
Profiling window
Stack window
LCD window
For descriptions of these windows, see C-SPY windows, page 313.

Table 65: View menu commands (Continued)

MSP430 IAR Embedded Workbench® IDE
276 User Guide

IAR Embedded Workbench® IDE reference ___¢

PROJECT MENU

The Project menu provides commands for working with workspaces, projects, groups,
and files, as well as specifying options for the build tools, and running the tools on the
current project.

Add Files. ..

Add Group. ..

Import File List, .,
Edit Configurations. ..

Remayve

Create Mew Project. ..
Add Existing Project. ..

Options. .. ALT+F?
Source Code Contral 3
Make F?

Compile CTRL+F7
Rebuild all

Clean

Batch build. .. F&

Stop Build

Debug CTRL+D

IMake & Restark Debugger

Figure 125: Project menu

Menu Command Description

Add Files Displays a dialog box that where you can select which files to include to
the current project.

Add Group Displays a dialog box where you can create a new group. The Group
Name text box specifies the name of the new group. The Add to Target
list selects the targets to which the new group should be added. By
default the group is added to all targets.

Import File List Displays a standard Open dialog box where you can import information
about files and groups from projects created using another IAR tool
chain.

To import information from project files which have one of the older
filename extensions pew or prj you must first have exported the
information using the context menu command Export File List
available in your own IAR Embedded Workbench.

Edit Configurations Displays the Configurations for project dialog box, where you can
define new or remove existing build configurations.

Table 66: Project menu commands

Part 7. Reference information 277

Menus

278

Menu Command

Description

Remove

Create New Project

Add Existing Project

Options

Source Code Control

Make

Compile

Rebuild All
Clean

Batch Build

Stop Build
Debug

In the Workspace window, removes the selected item from the
workspace.

Displays a dialog box where you can create a new project and add it to
the workspace.

Displays a dialog box where you can add an existing project to the
workspace.

Displays the Options for node dialog box, where you can set options
for the build tools on the selected item in the Workspace window. You
can set options on the entire project, on a group of files, or on an
individual file.

Opens a submenu with commands for source code control, see Source
Code Control menu, page 243.

Brings the current build configuration up to date by compiling,
assembling, and linking only the files that have changed since the last
build.

Compiles or assembles the currently selected file, files, or group.

One or more files can be selected in the Workspace window—all files in
the same project, but not necessarily in the same group. You can also
select the editor window containing the file you want to compile. The
Compile command is only enabled if every file in the selection is
individually suitable for the command.

You can also select a group, in which case the command is applied to each
file in the group (including inside nested groups) that can be compiled,
even if the group contains files that cannot be compiled, such as header
files.

Rebuilds and relinks all files in the current target.
Removes any intermediate files.

Displays a dialog box where you can configure named batch build
configurations, and build a named batch.

Stops the current build operation.

Starts the IAR C-SPY Debugger so that you can debug the project object
file. If necessary, a make will be performed before running C-SPY to
ensure the project is up to date. Depending on your IAR product
installation, you can choose which debugger drive to use by selecting the
appropriate C-SPY driver on the C-SPY Setup page available by using the
Project>Options command.

Table 66: Project menu commands (Continued)

MSP430 IAR Embedded Workbench® IDE

IAR Embedded Workbench® IDE reference ___¢

Menu Command Description

Make & Restart
Debugger

Stops the debugger, makes the active build configuration, and starts the
debugger again; all in a single command. This button is only available
during debugging.

Table 66: Project menu commands (Continued)

Argument variables summary

Variables can be used for paths and arguments. The following argument variables can

be used:

Variable Description

$CUR_DIRS Current directory

$CUR_LINES Current line

$SEW_DIRS Top directory of IAR Embedded Workbench, for example
c:\program files\iar systems\embedded workbench
4.n

$EXE_DIRS Directory for executable output

$FILE_BNAMES
$FILE_BPATHS
$FILE_DIRS

$FILE_FNAMES

SFILE_PATHS

Filename without extension
Full path without extension
Directory of active file, no filename
Filename of active file without path

Full path of active file (in Editor, Project, or Message window)

SLIST_DIRS Directory for list output
SOBJ_DIRS Directory for object output
$PROJ_DIRS Project directory

$PROJ_FNAMES
$PROJ_PATHS
$TARGET_DIRS
$TARGET_BNAMES
$TARGET_BPATHS
$TARGET_FNAMES$
$TARGET_PATHS

STOOLKIT_DIRS

Project file name without path

Full path of project file

Directory of primary output file

Filename without path of primary output file and without extension
Full path of primary output file without extension

Filename without path of primary output file

Full path of primary output file

Directory of the active product, for example ¢ : \program
files\iar systems\embedded workbench 4.n\430

Table 67: Argument variables

Part 7. Reference information

279

Menus

280

Configurations for project dialog box

In the Configuration for project dialog box—available by choosing Project>Edit
Configurations—you can define new build configurations for the selected project;
either entirely new, or based on a previous project.

Configurations for "Project1™

Configurations: QK

Release Mew..

Remove

i

Figure 126: Configurations for project dialog box

The dialog box contains the following:

Operation Description

Configurations Lists existing configurations, which can be used as templates for new
configurations.

New Opens a dialog box where you can define new build configurations.

Remove Removes the configuration that is selected in the Configurations list.

Table 68: Configurations for project dialog box options

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

New Configuration dialog box

In the New Configuration dialog box—available by clicking New in the
Configurations for project dialog box—you can define new build configurations;
either entirely new, or based on any currently defined configuration.

Mew Configuration [%]

M ame:

Tool chain:

(] |
[S|

Cancel

|msP430

Based on configuration:

I [ebug

Factory settings
& Debug
" Felease

Figure 127: New Configuration dialog box

The dialog box contains the following:

Item Description
Name The name of the build configuration.
Tool chain The target to build for. If you have several versions of IAR Embedded

Based on configuration

Factory settings

Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

A currently defined build configuration that you want the new
configuration to be based on. The new configuration will inherit the
project settings as well as information about the factory settings from
the old configuration. If you select None, the new configuration will have
default factory settings and not be based on an already defined
configuration.

Specifies the default factory settings—either Debug or Release—that
you want to apply to your new build configuration. These factory
settings will be used by your project if you press the Factory Settings
button in the Options dialog box.

Table 69: New Configuration dialog box options

Part 7. Reference information 281

Menus

Create New Project dialog box

The Create New Project dialog box is available from the Project menu, and lets you

create a new project based on a template project. There are template projects available
for C/C++ applications, assembler applications, and library projects. You can also create
your own template projects.

Create Hew Project =]

Toel chain: |MSP430 4|

Project templates:

|

Drescription:

Creates an empty project.

()8 I Cancel

Figure 128: Create New Project dialog box

The dialog box contains the following:

Item Description

Tool chain The target to build for. If you have several versions of IAR Embedded
Workbench for different targets installed on your host computer, the
drop-down list can contain these targets.

Project templates Lists all available template projects that you can base a new project on.

Table 70: Description of Create New Project dialog box

MSP430 IAR Embedded Workbench® IDE
282 User Guide

IAR Embedded Workbench® IDE reference ___¢

Options dialog box
The Options dialog box is available from the Project menu.

In the Category list you can select the build tool for which you want to set options. The
options available in the Category list will depend on the tools installed in your IAR
Embedded Workbench IDE, and will typically include the following options:

Category Description

General Options General options

C/C++ Compiler MSP430 IAR C/C++ Compiler options

Assembler MSP430 IAR Assembler options

Custom Build Options for extending the tool chain

Build Actions Options for pre-build and post-build actions

Linker IAR XLINK Linker options. This category is
available for application projects.

Library Builder IAR XAR Library Builder options. This
category is available for library projects.

Debugger IAR C-SPY Debugger options

FET Debugger FET-specific options

Simulator Simulator-specific options

Table 71: Project option categories

Note: Additional debugger categories might be available depending on the debugger
drivers installed.

Selecting a category displays one or more pages of options for that component of the
IAR Embedded Workbench IDE.

For detailed information about each option, see the option reference chapters: available
in the MSP430 IAR Embedded Workbench® IDE User Guide.

General options
Compiler options
Assembler options
Custom build options
Build actions options
Linker options

Library builder options
Debugger options.

For information about the options related to available hardware debugger systems, see
the online help system.

Part 7. Reference information 283

Menus

284

Batch Build dialog box

The Batch Build dialog box—available by choosing Project>Batch build—lists all
defined batches of build configurations.

Batch Build [%]
Batches:
Mew..

Femove

Edit...

Cloze

il L

Cancel

— Build

Make Clean Rebuid Al |

Figure 129: Batch Build dialog box

The dialog box contains the following:

Item Description

Batches Lists all currently defined batches of build configurations.

New Displays the Edit Batch Build dialog box, where you can define new
batches of build configurations.

Remove Removes the selected batch.

Edit Displays the Edit Batch Build dialog box, where you can modify

already defined batches.

Build Consists of the three build commands Make, Clean, and Rebuild All.

Table 72: Description of the Batch Build dialog box

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

Edit Batch Build dialog box

In the Edit Batch Build dialog box—available from the Batch Build dialog box—you
can create new batches of build configurations, and edit already existing batches.

Edit Batch Build [%]

— Mame

Awailable configurations Configurations to build [drag to order]

project] - Debug
project] - Release 5
project? - Debug

project? - Release

Il

L4+

()3 I Cancel

Figure 130: Edit Batch Build dialog box

The dialog box contains the following:

Item Description

Name The name of the batch.

Available configurations Lists all build configurations that are part of the workspace.

Configurations to build Lists all the build configurations you select to be part of a named
batch.

Table 73: Description of the Edit Batch Build dialog box

To move appropriate build configurations from the Available configurations list to the
Configurations to build list, use the arrow buttons. Note also that you can drag the
build configurations in the Configurations to build field to specify the order between
the build configurations.

Part 7. Reference information 285

Menus

286

TOOLS MENU

The Tools menu provides commands for customizing the environment, such as changing
common fonts and shortcut keys.

It is a user-configurable menu to which you can add tools for use with IAR Embedded
Workbench. Thus, it might look different depending on which tools have been
preconfigured to appear as menu items. See Configure Tools dialog box, page 303.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 131: Tools menu

Tools menu commands

Menu command

Description

Options

Configure Tools

Filename Extensions

Configure Viewers

Notepad

Displays the IDE Options dialog box where you can customize the IAR
Embedded Workbench IDE. Select the feature you want to customize by
clicking the appropriate tab. Which pages are available in this dialog box
depends on your IAR Embedded Workbench IDE configuration, and
whether the IDE is in a debugging session or not

Displays a dialog box where you can set up the interface to use external
tools.

Displays a set of dialog boxes where you can define the filename
extensions to be accepted by the build tools.

Displays a dialog box where you can configure viewer applications to
open documents with.

User-configured. This is an example of a user-configured addition to the
Tools menu.

Table 74: Tools menu commands

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference ___¢

External Editor page

On the External Editor page—available by choosing Tools>Options—you can
specify an external editor.

IDE Dptions [%]

Editor | Editor Colors and Fonts I Project I Debugger I
External E ditor | Common Fonts I K.ey Bindings I Messages

Type: |DDE =]
Editar: |c:\cwaz\w32£><5 J

Service: IEodewright

Cormmand: |System BufEditFile $FILE_PATHS
$FILE_PATH$ MovToline $CUR_LINES

QK I Cancel Apply Help

Figure 132: External Editor page with command line settings

Options

Option Description

Use External Editor Enables the use of an external editor.

Type Selects the method for interfacing with the external editor. The type can
be either Command Line or DDE (Windows Dynamic Data Exchange).

Editor Type the filename and path of your external editor. A browse button is
available for your convenience.

Arguments Type any arguments to pass to the editor. Only applicable if you have
selected Type as Command Line.

Service Type the DDE service name used by the editor. Only applicable if you
have selected Type as DDE.

Command Type a sequence of command strings to send to the editor. The
command strings should be typed as:
DDE-Topic CommandString
DDE-Topic CommandString
Only applicable if you have selected Type as DDE.

Table 75: External Editor options

Part 7. Reference information 287

Menus

288

The service name and command strings depend on the external editor that you are using.
Refer to the user documentation of your external editor to find the appropriate settings.

Note: Variables can be used in arguments. See Argument variables summary, page
279, for information about available argument variables.
Common fonts page

The Common Fonts page—available by choosing Tools>Options—displays the fonts
used for all project windows except the editor windows.

Editor Colors and Fonts I Project I Debugger I Fiegister Filker I Terminal |40 I
Camman Forts | Key Bindings I External E ditar I Messages I Editar
— Fied Width Font

Fant... | IEourier, zize =10
r— Proportional '#fidth Font

Fart.. | IMSSansSerif,size=1D

QK | Cancel | Apply | Help |

Figure 133: Common Fonts page

With the Font buttons you can change the fixed and proportional width fonts,
respectively.

Any changes to the Fixed Width Font options will apply to the Disassembly, Register,
and Memory windows. Any changes to the Proportional Width Font options will
apply to all other windows.

None of the settings made on this page apply to the editor windows. For information
about how to change the font in the editor windows, see Editor Colors and Fonts page,
page 295.

MSP430 IAR Embedded Workbench® IDE

User Guide

Key Bindings

The Key Bindings page—available by choosing Tools>Options—displays the shortcut

keys used for eac

IAR Embedded Workbench® IDE reference ___¢

page

h of the menu options, which you can change, if you wish.

Editor Colors and Fonts | Project | Debugger I Fiegister Filker I Terminal |40 I
Common Fonts Key Bindings | External Editar I Meszages I Editor
Category: IFiIe j
Command | Frimary | Alias | -
Mew CTRL+M
Open CTRL+O
Cloze
Open Workspace =
Save Workspace
Cloze Workspace
Save CTRL+S
Caa he LI
Prezz shortcut key: Frimary Aliaz
I et Al
[lear | [lear | Reset Al |
QK | Cancel | Apply | Help

Figure 134: Key Bindings page

Options
Option Description
Category Drop-down menu to choose the menu you want to edit. Any currently

Press shortcut key

Primary

Alias

Reset All

defined shortcut keys are shown in the scroll list below.
Type the key combination you want to use as shortcut key.

The shortcut key will be displayed next to the command on the menu.
Click Set to set the combination, or Clear to delete the shortcut.

The shortcut key will work but not be displayed on the menu. Click

either Add to make the key take effect, or Clear to delete the shortcut.

Reverts all command shortcut keys to the factory settings.

Table 76: Key Bindings page options

It is not possible

To delete a shortcut key definition, select the corresponding menu command in the scroll

to set or add the shortcut if it is already used by another command.

list and click Clear under Primary or Alias. To revert all command shortcuts to the

factory settings, click Reset All. Click OK to make the new shortcut key bindings take

effect.

Part 7. Reference information

289

Menus

290

Messages page

On the Messages page—available by choosing Tools>Options—you can choose the
amount of output in the Messages window.

IDE Dptions [%]
Common Fonts I Key Bindings I External Editar I
Messages | Editor I Editor Colors and Fonts I Project
Show build messages: IMessages 'l
Log File

™ Enable build log file
& sppend to end of file
= Oyenrite old file

QK I Cancel Apply Help

Figure 135: Messages page

Show build messages

Use this drop-down menu to specify the amount of output in the Messages window.
Choose between:

All Shows all messages, including compiler and linker information.
Messages Shows messages, warnings, and errors.

Woarnings Shows warnings and errors.

Errors Show errors only.

Log File

Use the options in this area to log build messages in a file. To enable the options, select
the Enable build log file option. Choose between:

Append to end of file Appends the messages at the end of the specified file.

Overwrite old file Replaces the contents in the file you specify.

Type the filename you want to use in the text box. A browse button is available for your
convenience.

MSP430 IAR Embedded Workbench® IDE

User Guide

Editor page

IAR Embedded Workbench® IDE reference ___¢

On the Editor page—available by choosing Tools>Options—you can change the editor

options.

Tab size: I8
Indent size: |2

Tab Key Function:
£ Ingert tab

& |ndent with spaces

EOL characters: |FC x

V' Show right margin
" Printing edge

& Calurnres ISD

Editor

V' Syritax highlighting
¥ Autoindsrt

Configure. .. |
[Show line rumbers
V' Scan for changed files
¥ Show bookmarks
[~ Enable virtual space

™ Remove trailing blarks

Figure 136: Editor page

Options

Option

Description

Tab Size
Indent Size

Tab Key Function

EOL character

Show right margin

Syntax Highlighting

Specifies the number of character spaces corresponding to each tab.

Specifies the number of character spaces to be used for indentation.

Specifies how the tab key is used. Either as Insert Tab or as Indent
with Spaces.

Selects line break character.

PC (default) uses Windows and DOS end of line character.

Unix uses UNIX end of line characters.

Preserve uses the same end of line character as the file had when it
was read from the disc drive. The PC format is used by default, and
if the read file did not have any breaks, or if there is a mixture of
break characters used in the file.

HistoryShows the area of the editor window outside the right-side
margin as a light gray field. You can choose to set the size of the text
field between the left-side margin and the right-side margin using
one of the options Printing edge or Columns.

Displays the syntax of C or C++ applications in different text styles.

Table 77: Editor page options

Part 7. Reference information

291

Menus

292

Option

Description

Auto Indent

Show Line Numbers

Scan for Changed Files

Show Bookmarks

Enable Virtual Space

Remove trailing blanks

Ensures that when you press Return, the new line will automatically
be indented. For C/C++ source files, indentation will be performed
as configured in the Configure Auto Indent dialog box. Click the
Configure button to open the dialog box where you can configure
the automatic indentation; see Configure Auto Indent dialog box, page
292. For all other text files, the new line will have the same
indentation as the previous line.

Displays line numbers in the Editor window.

Checks if files have been modified by some other tool and
automatically reloads them. If a file has been modified in the IAR
Embedded Workbench IDE, you will be prompted first.

Displays a column on the left side in the editor window, with icons
for compiler errors and warnings, Find in Files results, user
bookmarks and breakpoints.

Allows the insertion point to move outside the text area.

Removes trailing blanks from files when they are saved to disk.
Trailing blanks are blank spaces between the last non-blank
character and the end of line character.

Table 77: Editor page options (Continued)

For more information about the IAR Embedded Workbench IDE Editor and how it can
be used, see Editing, page 95.For more information about the IAR Embedded
Workbench IDE editor and how it can be used, see the MSP430 IAR Embedded
Workbench® IDE User Guide.

Configure Auto Indent dialog box

Use the Configure Auto Indent dialog box to configure the automatic indentation
performed by the editor for C/C++ source code. To open the dialog box:

I Choose Tools>Options.
2 Click the Editor tab.

3 Select the Auto indent option.

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

4 Click the Configure button.

Configure Auto Indent [%]
Sample code
(Opening Brace () int fiint x)
o al i
] switch (%)
Body (b) al| {
|2 c case 0O:
] return 1;
Label {c) c defanlt:
ID—] EEetuUrn X:
+
+
[8]4 I Cancel |

Figure 137: Configure Auto Indent dialog box

To read more about indentation, see Automatic text indentation, page 98the MSP430 IAR
Embedded Workbench® IDE User Guide.

Type the number of spaces to indent in the appropriate text box for each category of

indentation:

Opening Brace (a) The number of spaces used to indent an opening brace.

Body (b) The number of additional spaces used to indent code after an opening
brace, or a statement that continues onto a second line.

Label (c) The number of additional spaces used to indent a label, including case

labels.

Sample code

Reflects the settings made in the text boxes for indentation. All indentations are relative
to the preceding line, statement, or other syntactic structures.

Part 7. Reference information 293

Menus

Editor Setup Files page

On the Editor Setup Files page—available by choosing Tools>Options—you can
specify setup files for the editor.

IDE Dptions E

Common Fonts I Key Bindings I External Editar I Meszages I
Editor Colors and Fonts I Project | Source Code Control |
Editor Editor Setup Files

™ Use Custom Keyword File

| 5

¥ Use Code Templates
Ition [atatAR Embedded Workbench\CodeTemplates.tat |~ |

QK I Cancel Aol Help

Figure 138: Editor Setup Files page

Use Custom Keyword File

Use this option to specify a text file containing keywords that you want the editor to
highlight. For information about syntax coloring, see Syntax coloring, page 97the
MSP430 IAR Embedded Workbench® IDE User Guide.

Use Code Templates

Use this option to specify a text file with code templates that you can use for inserting
frequently used code in your source file. For information about using code templates,
see Using and adding code templates, page 99the MSP430 IAR Embedded Workbench®
IDE User Guide.

MSP430 IAR Embedded Workbench® IDE
294 User Guide

Editor Colors and Fonts page

IAR Embedded Workbench® IDE reference ___¢

The Editor Colors and Fonts page—available by choosing Tools>Options—allows
you to specify the colors and fonts used for text in the Editor windows.

IDE Dptions [%]
Common Fonts | Key Bindings I External Editar I Meszages I Editor I

Editar Calars and Forts | Project I Debugger I Register Filter I Terrinal /0

— Editar Faont

Font... I ICourier Mew, size = 3

— Syntax Coloring

Default
C Keyword
Shings

Char
Preprocessor
Integer [dec]
Integer [oct] Sample

Lalar |

Type Style:

Integer [hex)
Float LI |

QK | Cancel | Help
Figure 139: Editor Colors and Fonts page
Options
Option Description
Font Opens a dialog box to choose font and its size.

Syntax Coloring

Lists the possible items for which you can specify font and style of

syntax. The elements you can customize are: C or C++, compiler

keywords, assembler keywords, and user-defined keywords.

Color Chooses a color from a list of colors.
Type Style Chooses a type style from a drop-down list.
Sample Displays the current setting.

Table 78: Editor Colors and Fonts page options

The keywords controlling syntax highlighting for assembler and C or C++ source code
are specified in the files syntax_icc.cfgand syntax_asm. cfg, respectively. These

files are located in the config directory.

Part 7. Reference information 295

Menus

Project page

On the Project page—available by choosing Tools>Options—you can set options for
Make and Build. The following table describes the options and their available settings.

Project |

INever 'l
Save editor windows before building: IAIways 'l

Save workspace and projects before IAIways vl
building:
IAIways 'l

Stop build operation on:

Make before debugging:
™ Reload last workspace at startup
V¥ Play a sound after build operations

¥ Generate browss information

Figure 140: Projects page

Options

Option Description

Stop build operation on Specifies when the build operation should stop.
Never: Do not stop.
Warnings: Stop on warnings and errors.

Errors: Stop on errors.

Save editor windows before
building

Save workspace and projects
before building

Make before debugging

Always: Always save before Make or Build.
Ask: Prompt before saving.
Never: Do not save.

Always: Always save before Make or Build.
Ask: Prompt before saving.

Never: Do not save.

Always: Always make before debugging.
Ask: Always prompt before Making.
Never: Do not make.

Reload last workspace at startup Select this option if you want the last active workspace to
load automatically the next time you start IAR Embedded
Workbench.

Play a sound after build operations Plays a sound when the build operations are finished.

Table 79: Project page options

MSP430 IAR Embedded Workbench® IDE
296 User Guide

IAR Embedded Workbench® IDE reference ___¢

Option Description

Generate browse information Enables the use of the Source Browser window.

Table 79: Project page options (Continued)

Debugger page

On the Debugger page—available by choosing Tools>Options—you can set options
for configuring the debugger environment.

IDE Options [%]

Common Fonts I Key Bindings | External Editar I Meszages I Editor I
Editor Colors and Fonts I Project Debugger | Fiegister Filker I Terminal [0
—when zource resolves to multiple function instances

™ Automatically choose all instances

— Source code color in di bly windo
- Calar |
— Step into functions——— [~ 5TL container expansion

& Al functi l—
unctions Degth: [0

" Functions with source only

i~ Live watch—————————————— [~ Default integer format
Update interval - =
[milliseconds]): I‘I oo I Decimal J

QK I Cancel | Aol | Help

Figure 141: Debugger page

Options

Option Description

When source resolves to Some source code corresponds to multiple code instances, for

multiple function instances: example template code. When specifying a source location in such

Automatically choose all code, for example when setting a source breakpoint, you can make

instances C-SPY act on all instances or a subset of instances. This option lets
C-SPY act on all instances without first asking.

Source code color in Specifies the color of the source code in the Disassembly window.

Disassembly window

Table 80: Debugger page options

Part 7. Reference information 297

Menus

298

Option

Description

Step into functions

STL container expansion

Live watch

Default integer format

This option controls the behavior of the Step Into command.

If you choose the Functions with source only option, the
debugger will only step into functions for which the source code is
known. This helps you avoid stepping into library functions or
entering disassembly mode debugging.

The value decides how many elements that are shown initially
when a container value is expanded in, for example, the Watch
window. Additional elements can be shown by clicking the
expansion arrow.

The value decides how often the C-SPY Live Watch window is
updated during execution.

Sets the default integer format in the Watch, Locals, and related
windows.

Table 80: Debugger page options (Continued)

Register Filter page

On the Register Filter page—available by choosing Tools>Options when the IAR
C-SPY Debugger is running—you can choose to display registers in the Register
window in groups you have created yourself. See Register groups, page 138, for more
information about how to create register groups.For information about register groups,
see the MSP430 IAR Embedded Workbench® IDE User Guide.

IDE Dptions [%]
Common Fonts I Key Bindings I External Editar | Meszages I Editor I

Editor Colors and Fonts I Project I Debugger Register Filter | Terminal |40

¥ Use register filter Groups:

IMyFiIter.fIt Filer Files...l I VI
- CPU Registers MI

h Group members:

Baze
™ Ovenide
€ Bin
et
& Dec
 Hex

QK I Cancel Apply Help

Figure 142: Register Filter page

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

Options

Option Description

Use register filter Enables the usage of register filters.

Filter Files Displays a dialog box where you can select or create a new filter file.

Groups Lists available groups in the register filter file, alternatively displays the
new register group.

New Group The name for the new register group.

Group members Lists the registers selected from the register scroll bar window.

Base Changes the default integer base.

Table 81: Register Filter options

Terminal I/O page

On the Terminal I/O page—available by choosing Tools>Options when the IAR
C-SPY Debugger is running—you can configure the C-SPY terminal I/O functionality.

Editor Setup Files I Editor Colors and Fonts

Project I Source Code Contral I Debugger
Common Fonts I Key Bindings I External Editar | Meszages | Editor

Stack I Register Filter Terminal /0
 Input Mode

& Keyboard " File

& Buffered & Text

" Direct | Binary

[FFRO._DIRSATemiDinput st J
— Input Echaing

IV Lag file

[~ Output window

[~ Show target reset in Dutput windaw

QK I Cancel Apply Help

Figure 143: Terminal I/O page

Part 7. Reference information 299

Menus

300

Options

Option Description

Input Mode: Keyboard Buffered: All input characters are buffered.
Direct: Input characters are not buffered.

Input Mode: File Input characters are read from a file, either a text file or a binary file. A
browse button is available for locating the file.

Input Echoing Input characters can be echoed either in a log file, or in the C-SPY
Terminal I/O window. To echo input in a file requires that you have
enabled the option Enable log file that is available by choosing
Debug>Logging.

Show target reset in ~ When the target resets, a message is displayed in the C-SPY Terminal I/O

Output window window.

Table 82: Terminal 1/0 options

Source Code Control page

On the Source Code Control page—available by choosing Tools>Options—you can
configure the interaction between an IAR Embedded Workbench project and an SCC
project.

IDE Dptions [%]

Common Fonts I Key Bindings I External Editar | Meszages I Editor I
Editor Colors and Fonts I Project Source Code Control | Debugger

™ Keep items checked out when checking in

Save editor windows befare perfarming IAIways vl

source code contral commands:

QK I Cancel Apply Help

Figure 144: Source Code Control page

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

Keep items checked out when checking in

Determines the default setting for the option Keep Checked Out in the Check In Files
dialog box; see Check In Files dialog box, page 246.

Save editor windows before performing source code control commands

Specifies whether editor windows should be saved before you perform any source code
control commands. The following options are available:

Ask When you perform any source code control commands, you will be asked
about saving editor windows first.

Never Editor windows will never be saved first when you perform any source
code control commands.

Always Editor windows will always be saved first when you perform any source
code control commands.

Stack page

HistoryOn the Stack page—available by choosing Tools>Options—you can set
options specific to the Stack window.

IDE Dptions [%]

Editor Setup Files I Editor Colors and Fonts
Project I Source Code Contral I Debugger
Common Fonts | Key Bindings I External Editar I Meszages I Editor
Stack | Register Filter I Terminal 10

[V Enable graphical stack display and stack usage tracking
I—SD % stack uzage threshold
[V ‘wam when exceeding stack threshold

[V ‘wam when stack pointer is out of bounds

[~ Stack pointer(z] not valid until program reaches:

Imain
Warnings

& Log

" Log and alert

I~ Limit stack display to B2 bytes

QK I Cancel | Apply | Help

Figure 145: Stack page

Part 7. Reference information ~ 301

Menus

302

Enable graphical stack display and stack usage tracking

Use this option to enable the graphical stack bar available at the top of the Stack window.
At the same time, it enables the functionality needed to detect stack overflows. To read
more about the stack bar and the information it provides, see The graphical stack bar,
page 333.

% stack usage threshold

Use this text field to specify the percentage of stack usage above which C-SPY should
issue a warning for stack overflow.

Warn when exceeding stack threshold

Use this option to make C-SPY issue a warning when the stack usage exceeds the
threshold specified in the % stack usage threshold option.

Warn when stack pointer is out of bounds

Use this option to make C-SPY issue a warning when the stack pointer is outside the
stack memory range.

Stack pointer(s) not valid until reaching

Use this option to specify a location in your application code from where you want the
stack display and verification to take place. The Stack window will not display any
information about stack usage until execution has reached this location. By default,
C-SPY will not track the stack usage before the main function. If your application does
not have a main function, for example, if it is an assembler-only project, your should
specify your start label.

Typically, the stack pointer is set up in the system initialization code cstartup, but not
necessarily from the very first instruction. By using this option you can avoid incorrect
warnings or misleading stack display for this part of the application.

Warnings

You can choose to issue warnings using one of the following options:

Log Warnings are issued in the Debug Log window
Log and alert Warnings are issued in the Debug Log window and as alert dialog
boxes.

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

Limit stack display to

Use this option to limit the amount of memory displayed in the Stack window by
specifying a number, counting from the stack pointer. This can be useful if you have a
big stack or if you are only interested in the topmost part of the stack. Using this option
can improve the Stack window performance, especially if reading memory from the
target system is slow. By default, the Stack window shows the whole stack, or in other
words, from the stack pointer to the bottom of the stack. If the debugger cannot
determine the memory range for the stack, the byte limit is used even if the option is not
selected.

Note: The Stack window does not affect the execution performance of your
application, but it might read a large amount of data to update the displayed information
when the execution stops.

Configure Tools dialog box

In the Configure Tools dialog box—available from the Tools menu—you can specify
a user-defined tool to add to the Tools menu.

Configure Tools
Menu Content:
Cancel

=
g
=

Remove
Menu Text:
I&N otepad
Command:
IE:\W’INNT\Notepad.exe Browse... |
Argument:

Initial Directary:

™ Redirect to Output \Window

™ Prampt for Cormand Line

Tool Available:

IAIways j

Figure 146: Configure Tools dialog box

Part 7. Reference information 303

Menus

304

Note: If you intend to add an external tool to the standard build tool chain, see
Extending the tool chain, page 93the MSP430 IAR Embedded Workbench® IDE User

Guide.
Options

Option

Description

Menu Content

Menu Text

Command

Argument
Initial Directory

Redirect to Output window

Prompt for Command Line

Tool Available

Lists all available user defined menu commands.

Specifies the text for the menu command. By adding the sign &, the
following letter, N in this example, will then appear as the
mnemonic key for this command. The text you type in this field
will be reflected in the Menu Content field.

Specifies the command, and its path, to be run when you choose
the command from the menu. A browse button is available for
your convenience.

Optionally type an argument for the command.
Specifies an initial working directory for the tool.

Specifies any console output from the tool to the Tool Output
page in the Messages window. Tools that are launched with this
option cannot receive any user input, for instance input from the
keyboard.

Tools that require user input or make special assumptions regarding
the console that they execute in, will not work at all if launched
with this option.

Displays a prompt for the command line argument when the
command is chosen from the Tools menu.

Specifies in which context the tool should be available, only when
debugging or only when not debugging.

Table 83: Configure Tools dialog box options

Note: Variables can be used in the arguments, allowing you to set up useful tools such
as interfacing to a command line revision control system, or running an external tool on

the selected file.

You can remove a command from the Tools menu by selecting it in this list and clicking

Remove.

Click OK to confirm the changes you have made to the Tools menu.

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

The menu items you have specified will then be displayed on the Tools menu.

Options. ..

Configure Tools, ..
Filename Extensions. ..
Configure Viewers. ..
Motepad

Figure 147: Customized Tools menu

Specifying command line commands or batch files

Command line commands or batch files need to be run from a command shell, so to add
these to the Tools menu you need to specify an appropriate command shell in the
Command text box. These are the command shells that can be entered as commands:

System Command shell

Windows 98/Me command . com

Windows NT/2000/XP cmd.exe (recommended) or command. com

Table 84: Command shells

Filename Extensions dialog box

In the Filename Extensions dialog box—available from the Tools menu—you can
customize the filename extensions recognized by the build tools. This is useful if you
have many source files that have a different filename extension.

If you have an IAR Embedded Workbench for a different microprocessor installed on
your host computer, it can appear in the Tool Chain box. In that case you should select
the tool chain you want to customize.

File Extensions

Tool Chain

Cancel
Edit...

Figure 148: Filename Extensions dialog box

P Il

Note the * sign which indicates that there are user-defined overrides. If there is no *
sign, factory settings are used.

Click Edit to open the Filename Extension Overrides dialog box.

Part 7. Reference information 305

Menus

306

Filename Extension Overrides dialog box

The Filename Extension Overrides dialog box—available by clicking Edit in the
Filename Extensions dialog box—Ilists the available tools in the build chain, their
factory settings for filename extensions, and any defined overrides.

Filename Extension Overrides

Taol | Factaory Setting | Overide ()3 I
C/C++ Compiler .CLCPP.LCC <Niones

Azzembler SN0 ASMLMEA S <hones Cancel |
Browse Info Compiler .cioc.cpp <none

Linker ik <none:

Library Builder i i Edit... |
Browse Info Builder .pbi <none

| | i

Figure 149: Filename Extension Overrides dialog box

Select the tool for which you want to define more recognized filename extensions, and
click Edit to open the Edit Filename Extensions dialog box.

Edit Filename Extensions dialog box

The Edit File Extensions dialog box—available by clicking Edit in the Filename
Extension Overrides dialog box—Ilists the filename extensions accepted by default,
and you can also define new filename extensions.

Edit Filename Extensions

Factaory setting
I.c:;.c:c:;.c:pp QK

¥ Overide Cancel |
I.c;.cc;.cpp

Figure 150: Edit Filename Extensions dialog box

Click Override and type the new filename extension you want to be recognized.
Extensions can be separated by commas or semicolons, and should include the leading
period.

MSP430 IAR Embedded Workbench® IDE

User Guide

IAR Embedded Workbench® IDE reference ___¢

Configure Viewers dialog box

The Configure Viewers dialog box—available from the Tools menu—Iists the
filename extensions of document formats that IAR Embedded Workbench can handle,
and which viewer application that will be used for opening the document type. Explorer
Default in the Action column means that the default application associated with the
specified type in Windows Explorer is used for opening the document type.

Configure Yiewers [%]
Extensions | Ackion | Ok
Explorer Default
.htm Explorer Default Cancel

Mg

Edit...

Remave

g

Figure 151: Configure Viewers dialog box

To specity how to open a new document type or editing the setting for an existing
document type, click New or Edit to open the Edit Viewer Extensions dialog box.

Edit Viewer Extensions dialog box

Type the filename extension for the document type—including the separating
period (.)—in the Filename extensions box.

Edit Yiewer Extensions [%]
File name extensians:
| bl

Action
€ Buile-in text editor

& st file explorer associations

 Command line

| |

Figure 152: Edit Viewer Extensions dialog box
Then choose one of the Action options:

o Built-in text editor—select this option to open all documents of the specified type
with the JAR Embedded Workbench text editor.

o Use file explorer associations—select this option to open all documents with the
default application associated with the specified type in Windows Explorer.

Part 7. Reference information 307

Menus

308

o Command line—select this option and type or browse your way to the viewer
application, and give any command line options you would like to the tool.

WINDOW MENU

Use the commands on the Window menu to manipulate the IAR Embedded Workbench
IDE windows and change their arrangement on the screen.

The last section of the Window menu lists the windows currently open on the screen.
Choose the window you want to switch to.

Close Tab

Close Window Chrl+F4

Split

Mew Vertical Editor Window
Mew Horizontal Editor Window
IMayve Tabs To Mext Windaw
IMave Tabs To Previous Window
Close All Tabs Except Active
Close All Editor Tabs

Figure 153: Window menu

Window menu commands

Menu command

Description

Close Tab
Close Window CTRL+F4
Split

New Vertical Editor
Window

New Horizontal
Editor Window
Move Tabs To Next
Window

Move Tabs To

Previous Window

Close All Tabs Except
Active

Close All Editor Tabs

Closes the active tab.
Closes the active editor window.

Splits an editor window horizontally or vertically into two,
or four panes, to allow you to see more parts of a file
simultaneously.

Opens a new empty window next to current editor
window.

Opens a new empty window under current editor window.
Moves all tabs in current window to next window.

Moves all tabs in current window to previous window.

Closes all the tabs except the active tab.

Closes all tabs currently available in editor windows.

Table 85: Window menu commands

MSP430 IAR Embedded Workbench® IDE
User Guide

IAR Embedded Workbench® IDE reference ___¢

HELP MENU

The Help menu provides help about the IAR Embedded Workbench IDE and displays
the version numbers of the user interface and of the MSP430 IAR Embedded
Workbench IDE.

Menu command Description

Content Opens the contents page of the IAR Embedded
Workbench IDE online help.

Index Opens the index page of the IAR Embedded
Workbench IDE online help.

Search Opens the search page of the IAR Embedded
Workbench IDE online help.

Release notes Provides access to late-breaking information about
IAR Embedded Workbench.

MSP430 Embedded Workbench User Guide Provides access to an online version of this user
guide, available in PDF format.

MSP430 Assembler Reference Guide Provides access to an online version of the
MSP430 IAR Assembler Reference Guide, available in
PDF format.

MSP430 C/C++ Compiler Reference Guide Provides access to an online version of the
MSP430 IAR C/C++ Compiler Reference Guide,
available in PDF format.

MSP430 Migration Guide Provides access to an online version of the
MSP430 IAR Embedded Workbench Migration Guide,
available in hypertext PDF format.

IAR MISRA C Reference Guide Provides access to the online version of the IAR
Embedded Workbench® MISRA C Reference Guide,
available in PDF format.

Product updates Provides access to the latest product updates
available on the IAR Systems web site.

Linker and Library Tools Reference Guide Provides access to the online version of the IAR
Linker and Library Tools Reference Guide, available in
PDF format.

IAR on the Web Allows you to browse the home page, the news
page, and the technical notes search page of the
IAR Systems web site, and to contact IAR
Technical Support.

Table 86: Help menu commands

Part 7. Reference information 309

Menus

Menu command Description

Startup Screen Displays the Embedded Workbench Startup
dialog box; see Embedded Workbench Startup dialog
box, page 311.

About>Product Info Displays detailed information about the installed

IAR products. Copy this information (using the
Ctrl+C keyboard shortcut) and include it in your
message if you contact IAR Technical Support via
electronic mail.

About>Install Log Opens the license manager log file 1ms . 1og in
the editor. Attach this file to the email message if
you contact IAR Technical Support regarding any
problems related to the license management
system.

Table 86: Help menu commands (Continued)

Note: Additional documentation might be available on the Help menu depending on
your product installation.

MSP430 IAR Embedded Workbench® IDE
310 User Guide

IAR Embedded Workbench® IDE reference ___¢

Embedded Workbench Startup dialog box

The Embedded Workbench Startup dialog box—available from the Help
menu—provides an easy access to ready-made example workspaces that can be built
and executed out of the box for a smooth development startup.

Embedded Workbench Startup x|

"
IIDI Create new project in current work space
Add existing project to current work space

Open exigting workspace

Example workspaces

Fecent workspaces:

tutorials Open |

™ Da not show this window at startup.

Cancel |

Figure 154: Embedded Workbench Startup dialog box

Part 7. Reference information 311

Menus

MSP430 IAR Embedded Workbench® IDE
312 User Guide

C-SPY® Debugger
reference

This chaptersection contains detailed reference information about the
windows, menus, menu commands, and the corresponding components that
are specific for the IAR C-SPY Debugger.

C-SPY windows

The following windows specific to C-SPY are available in the IAR C-SPY Debugger:

IAR C-SPY Debugger main window
Disassembly window
Memory window
Register window

Watch window

Locals window

Auto window

Live Watch window
Quick Watch window
Call Stack window
Terminal I/O window
Code Coverage window
Profiling window

Stack windowHistory
LCD window.

Additional windows will be available depending on which C-SPY driver you are using.

For information about driver-specific windows, see the driver-specific documentation.

EDITING IN C-SPY WINDOWS

You can edit the contents of the Memory, Register, Auto, Watch, Locals, Live Watch,
and Quick Watch windows.

Use the following keyboard keys to edit the contents of the Register and Watch
windows:

Key Description

Enter Makes an item editable and saves the new value.

Table 87: Editing in C-SPY windows

Part 7. Reference information

313

C-SPY windows

314

Key Description

Esc Cancels a new value.

Table 87: Editing in C-SPY windows (Continued)

IAR C-SPY DEBUGGER MAIN WINDOW

When you start the IAR C-SPY Debugger, the following debugger-specific items appear
in the main IAR Embedded Workbench IDE window:

e A dedicated debug menu with commands for executing and debugging your
application

o Depending on the C-SPY driver you are using, a driver-specific menu. Typically,
this menu contains menu commands for opening driver-specific windows and dialog
boxes. See the driver-specific documentation for more information

® A special debug toolbar

e Several windows and dialog boxes specific to C-SPY.

The window might look different depending on which components you are using.

Each window item is explained in greater detail in the following sections.

Menu bar

In addition to the menus available in the development environment, the Debug menu is
available when C-SPY is running. The Debug menu provides commands for executing
and debugging the source application. Most of the commands are also available as icon
buttons in the debug toolbar. The following menus are available when C-SPY is running:

Menu Description

Debug The Debug menu provides commands for executing and debugging the source
application. Most of the commands are also available as icon buttons in the debug
toolbar.

Simulator The Simulator menu provides access to the dialog boxes for setting up interrupt

simulation and memory maps. Only available when the C-SPY Simulator is used.

Emulator The Emulator menu provides access to commands specific to the C-SPY FET
debugger. Only available when the C-SPY FET debugger is used.

Table 88: C-SPY menu

Additional menus might be available, depending on which debugger drivers have been
installed; for information, see the driver-specific documentation.
Debug toolbar

The debug toolbar provides buttons for the most frequently-used commands on the
Debug menu.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

You can display a description of any button by pointing to it with the mouse pointer.
‘When a command is not available the corresponding button will be dimmed and you will
not be able to select it.

The following diagram shows the command corresponding to each button:

Next G
Break Step Into Statement °

| | |
o B2 LEZZ R
| | | | |

Reset Step Over Step Out Run To Stop
Cursor Debugging

Figure 155: C-SPY debug toolbar

DISASSEMBLY WINDOW

The C-SPY Disassembly window—available from the View menu—shows the
application being debugged as disassembled application code.

Part 7. Reference information 315

C-SPY windows

316

Go to memory
address

Code coverage
information

Current position

Breakpoint

The current position—highlighted in green—indicates the next assembler instruction to
be executed. You can move the cursor to any line in the Disassembly window by clicking
on the line. Alternatively, you can move the cursor using the navigation keys.
Breakpoints are indicated in red. Code that has been executed—code coverage—is
indicated with a green diamond.

Zone display
Disassembly]
Toggle embedded
Gt I = IME"“U'}| = IlEéhl source mode
El
001122 3041 ret
nvold do_foreground processiveid) =
L
do_foreground process:
001124 OAlzZ rush.w R10
next counter():
o0ll2s EOL121E11 call #next_counter
fil = get_ fiki{ call count J:
O0l12A 1420002 NG LW &call_count R12
O0112E BO125411 <all #get_fik

put fik(fik),
001154 0C4n OOV W RElo.R12
001138 BOLl2AC1L1 call #rut_fik

Q01152 3041
call count=0;
main:

Q0115E

imdt fi

82430002 clr.w &call_count
s

AP

Figure 156: C-SPY Disassembly window

To change the default color of the source code in the Disassembly window, choose
Tools>Options>Debugger. Set default color using the Set source code coloring in
Disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
window and drag it to the Disassembly window.

Disassembly window operations

At the top of the window you can find a set of useful text boxes, drop-down lists and

command buttons:

Operation Description

Go to The memory location you want to view.

Table 89: Disassembly window operations

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

Operation Description

Zone display Lists the available memory or register zones to display. Read more about

Zones in section Memory zones, page | 14.

Disassembly mode Toggles between showing only disassembly or disassembly together with

the corresponding source code. Source code requires that the

corresponding source file has been compiled with debug information.

Table 89: Disassembly window operations (Continued)

Disassembly context menu

Clicking the right mouse button in the Disassembly window displays a context menu
which gives you access to some extra commands.

Move to PC
Run ko Cursor

Code Coverage 3

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)
Enablefdisable Ereakpaoint

Set Mext Statement

Copy Window Contents

Figure 157: Disassembly window context menu

Operation

Description

Move to PC

Run to Cursor

Code Coverage
Enable
Show

Clear

Toggle Breakpoint (Code)

Toggle Breakpoint (Log)

Displays code at the current program counter location.

Executes the application from the current position up to the line
containing the cursor.

Opens a submenu with commands for controlling code coverage.
Enable toggles code coverage on and off.

Show toggles between displaying and hiding code coverage. Executed
code is indicated by a green diamond.

Clear clears all code coverage information.

Toggles a code breakpoint. Assembler instructions at which code
breakpoints have been set are highlighted in red. For information
about code breakpoints, see Code breakpoints dialog box, page 256.

Toggles a log breakpoint for trace printouts. Assembler instructions
at which log breakpoints have been set are highlighted in red. For
information about log breakpoints, see Log breakpoints dialog box, page
258.

Enable/Disable Breakpoint Enables and Disables a breakpoint.

Table 90: Disassembly context menu commands

Part 7. Reference information 317

C-SPY windows

318

Go to memory —— Goto j IMemory j |Z|

address

Operation Description

Set Next Statement Sets program counter to the location of the insertion point.

Copy Window Contents Copies the selected contents of the Disassembly window to the
clipboard.

Table 90: Disassembly context menu commands (Continued)

MEMORY WINDOW

The Memory window—available from the View menu—gives an up-to-date display of
a specified area of memory and allows you to edit it. You can open several instances of
this window, which is very convenient if you want to keep track of different memory or
register zones, or monitor different parts of the memory.

Zone display

Ole® 00 Q0 Q0 00 00 00 Q0 QO
OLED 00 Q0 Q0 00 00 00 Q0 QO
OLER 00 Q0 Q0 00 00 00 00 OO
0200 i i
0208
0210
0218 Se 38 Ze 56 2c d4a 62 Za
0220 28 %4 ac 11 54 15 e0 22
0228 45 a7 ef eb 2a ge 76 b7

Lix |

Figure 158: Memory window

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

Memory window operations

At the top of the window you can find commands for navigation:

Operation Description
Go to The address of the memory location you want to view.
Zone display Lists the available memory or register zones to display. Read more about

Zones in section Memory zones, page | 14.

Table 91: Memory window operations

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

Memory window context menu

The context menu available in the Memory window provides above commands, edit
commands, and a command for opening the Fill dialog box.

Copy
Paste

Zong 3

<

1 Units
2x Units
¢ Units

Little Endian
Big Endian

<

Data Coverage 3

Memory Fill...
Memory Upload. ..

Set Data Breakpoink

Figure 159: Memory window context menu

Menu command Description
Copy, Paste Standard editing commands.
Zone Lists the available memory or register zones to display. Read more about

Zones in Memory zones, page | 14.

x|, x2, x4 Units Switches between displaying the memory contents in units of 8, 16, or 32
bits

Little Endian Switches between displaying the contents in big-endian or little-endian

Big Endian order. An asterisk (*) indicates the default byte order.

Data Coverage

Enable Enable toggles data coverage on and off.

Show Show toggles between showing and hiding data coverage.

Clear Clear clears all data coverage information.
Memory Fill Opens the Fill dialog box, where you can fill a specified area with a value.
Memory Upload Displays the Memory Upload dialog box, where you can save a selected

memory area to a file in Intel Hex format.

Set Data Breakpoint Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted; you can see, edit, and remove it in the Breakpoints dialog
box. The breakpoints you set in this window will be triggered for both
read and write access.

Table 92: Commands on the memory window context menu

Part 7. Reference information 319

C-SPY windows

320

Data coverage display
Data coverage is displayed with the following colors:

o Yellow indicates data that has been read
o Blue indicates data that has been written
e Green indicates data that has been both read and written.

Fill dialog box

In the Fill dialog box—available from the context menu available in the Window
memory—you can fill a specified area of memory with a value.

Start Address Length Zone
[p-1000 [t |Memay =]
Vel Operation

HFF @ Copy C AND

 HOR 0R

()3 I Cancel

Figure 160: Fill dialog box

Options

Option Description

Start Address Type the start address—in binary, octal, decimal, or hexadecimal
notation.

Length Type the length—in binary, octal, decimal, or hexadecimal notation.

Zone Select memory zone.

Value Type the 8-bit value to be used for filling each memory location.

Table 93: Fill dialog box options

These are the available memory fill operations:

Operation Description
Copy The Value will be copied to the specified memory area.
AND An AND operation will be performed between the Value and the

existing contents of memory before writing the result to memory.

Table 94: Memory fill operations

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

Operation Description

XOR An XOR operation will be performed between the Value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between the Value and the existing
contents of memory before writing the result to memory.

Table 94: Memory fill operations (Continued)

REGISTER WINDOW

The Register window—available from the View menu—gives an up-to-date display of
the contents of the processor registers, and allows you to edit them. When a value
changes it becomes highlighted. Some registers are expandable, which means that the
register contains interesting bits or sub-groups of bits.

You can open several instances of this window, which is very convenient if you want to
keep track of different register groups.

I CPU Registers j

PC = Ox113E R11 = 0x0003
8P = OxOSFE R12 = 0x02le

[fISR = 0x0003 R13 = OxOEZE
R4 = OxOE&S R14 = 0x00le
RE = OxlABS R15 = 0x02le
R6 = OxTAZA CYCLECOUNTER = 202
RT = Ox0OAQQ CCTIMER1 = 202
RE = OxSDEO CCTIMER2 = 202
RO = Ox&ECe%
R10 = OxO004

Figure 161: Register window

You can select which register group to display in the Register window using the
drop-down list. To define application-specific register groups, see Defining
application-specific groups, page 139.For more information about register groups, see
the MSP430 IAR Embedded Workbench® IDE User Guide.

Part 7. Reference information 321

C-SPY windows

322

WATCH WINDOW

The Watch window—available from the View menu—allows you to monitor the values
of C-SPY expressions or variables. You can view, add, modify, and remove expressions
in the Watch window. Tree structures of arrays, structs, and unions are expandable,
which means that you can study each item of these.

Watch B

Expression | Walue | Location | Type |
i 45 R10 short
= root <array> Mermor:0x202 unsigned int[10]
0 Mermory:0x202 unsigned int
Mermory:0x204 unsigned int
Mermory:0<206 unsigned int
Mermory:0x208 unsigned int
Mermory:0<20A unsigned int
Mermory:0<20C unsigned int
Mermory:0<20E unsigned int
Mermory:0<210 unsigned int
Mermor:0x212 unsigned int
Mermor:0x214 unsigned int

Figure 162: Watch window

Every time execution in C-SPY stops, a value that has changed since the last stop is
highlighted. In fact, every time memory changes, the values in the Watch window are
recomputed, including updating the red highlights.History

Woatch window context menu

The context menu available in the Watch window provides commands for adding and
removing expressions, changing the display format of expressions, as well as commands
for changing the default type interpretation of variables.

Add
Remave

v Default Format
Binary Format
Ockal Farmat
Decimal Format
Hexadecimal Format
Char Farmat

Show As 3

Figure 163: Watch window context menu

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

The menu contains the following commands:

Menu command Description

Add, Remove Adds or removes the selected expression.

Default Format, Changes the display format of expressions. The display format setting
Binary Format, affects different types of expressions in different ways, see Table 96,
Octal Format, Effects of display format setting on different types of expressions. Your
Decimal Format, selection of display format is saved between debug sessions.

Hexadecimal Format,
Char Format

Show As Provides a submenu with commands for changing the default type
interpretation of variables. The commands on this submenu are mainly
useful for assembler variables—data at assembler labels—as these are by
default displayed as integers. For more information, see Viewing assembler
variables, page 128.

Table 95: Watch window context menu commands

The display format setting affects different types of expressions in different ways:

Type of expressions Effects of display format setting

Variable The display setting affects only the selected variable, not other variables.
Array element The display setting affects the complete array, that is, same display format
is used for each array element.

Structure field All elements with the same definition—the same field name and C
declaration type—are affected by the display setting.

Table 96: Effects of display format setting on different types of expressions

LOCALS WINDOW

The Locals window—available from the View menu—automatically displays the local
variables and function parameters.

Locals =]
Expression | Yalue | Location | Type |
jila} 3 R0 unsigned int

Figure 164: Locals window

Part 7. Reference information 323

C-SPY windows

324

Locals window context menu

The context menu available in the Locals window provides commands for changing the
display format of expressions; for information about these commands, see Watch
window context menu, page 322.

AUTO WINDOW

The Auto window—available from the View menu—automatically displays a useful
selection of variables and expressions in, or near, the current statement.

Expression | Yalue | Location | Type |
i 3 R10 short
rootfi] 0 Mermor:0<208 unsigned int
root <array> Mermor:0x202 unsigned int[10]
get_fib get_fib (0x1134) unsigned int (*)...

Figure 165: Auto window

Auto window context menu

The context menu available in the Auto window provides commands for changing the
display format of expressions; for information about these commands, see Watch
window context menu, page 322.

LIVE WATCH WINDOW

The Live Watch window—available from the View menu—repeatedly samples and
displays the value of expressions while your application is executing. Variables in the
expressions must be statically located, such as global variables.

Live Watch =]

Expression | Yalue | Location | Type |
Mermor:0x200 int

Figure 166: Live Watch window

Typically, this window is useful for hardware target systems supporting this feature.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

Live Watch window context menu

The context menu available in the Live Watch window provides commands for adding
and removing expressions, changing the display format of expressions, as well as
commands for changing the default type interpretation of variables. For information
about these commands, see Watch window context menu, page 322.

In addition, the menu contains the Options command, which opens the Debugger
dialog box where you can set the Update interval option. The default value of this
option is 1000 milliseconds, which means the Live Watch window will be updated once
every second during program execution.

QUICK WATCH WINDOW

In the Quick Watch window—available from the View menu—you can watch the value
of a variable or expression and evaluate expressions.

Quick Watch B

G| EREEE H

| Expression | Yalue | Location | Type |
WD Tstatus() "Timer disabled" macro string

Figure 167: Quick Watch window

Type the expression you want to examine in the Expressions text box. Click the
Recalculate button to calculate the value of the expression. For examples about how to
use the Quick Watch window, see Using the Quick Watch window, page 126 and
Executing macros using Quick Watch, page 148the MSP430 IAR Embedded
Workbench® IDE User Guide.

Part 7. Reference information

325

C-SPY windows

326

Quick Watch window context menu

The context menu available in the Quick Watch window provides commands for
changing the display format of expressions, as well as commands for changing the
default type interpretation of variables. For information about these commands, see
Watch window context menu, page 322.

In addition, the menu contains the Add to Watch window command, which adds the
selected expression to the Watch window.

CALL STACK WINDOW

The Call stack window—available from the View menu—displays the C function call
stack with the current function at the top. To inspect a function call, double-click it.
C-SPY now focuses on that call frame instead.

Call Stack =]

7 filhanacci:nthiint ——— Destination for Step
Binth(3) Into

[?estart_call_main + 0x4]

Figure 168: Call Stack window
Each entry has the format:
function(values)

where (values) is alist of the current value of the parameters, or empty if the function
does not take any parameters.

If the Step Into command steps into a function call, the name of the function is
displayed in the grey bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

Call Stack window context menu

The context menu available by right-clicking in the Call Stack window provides the
following commands:

G0 to Source

v Show Arguments
Run ko Cursor
Toggle Breakpoint {Code)
Toggle Breakpoint {Log)
Enablefdisable Ereakpaoint

Figure 169: Call Stack window context menu

Commands

Go to Source Displays the selected functions in the Disassembly or editor
windows.

Show Arguments Shows function arguments.

Run to Cursor Executes to the function selected in the call stack.

Toggle Breakpoint (Code) Toggles a code breakpoint.
Toggle Breakpoint (Log) Toggles a log breakpoint.

Enable/Disable Breakpoint Enables or disables the selected breakpoint.

Part 7. Reference information 327

C-SPY windows

328

TERMINAL 1/O0 WINDOW

In the Terminal I/O window—available from the View menu—you can enter input to
the application, and display output from it. To use this window, you need to link the
application with the option Debug info with terminal I/O. C-SPY will then direct
stdin, stdout and stderr to this window. If the Terminal I/O window is closed,
C-SPY will open it automatically when input is required, but not for output.

Terminal I;0 B
Output: Loq file: OFff
1 =
1
2
3
5
8
13
21
34
55 -
K| 3
Input: LCtl codes | Input Mode... |
I— Buffer size: 1]

Figure 170: Terminal I/0 window

Clicking the Ctrl codes button opens a menu with submenus for input of special
characters, such as EOF (end of file) and NUL.

0:x00-0x0f »
O:x10-0:x1F »
ECF

Figure 171: Ctrl codes menu

Clicking the Input Mode button opens the Change Input Mode dialog box where you
choose whether to input data from the keyboard or from a text file.

 Input Mode
. ak. I
& Keyboard File
C |
& Buffered & Text il

" Direct | Binary

$PROJ_DIREAT ermnlOlnput bt J

Figure 172: Change Input Mode dialog box

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

For reference information about the options available in the dialog box, see Terminal I/0
page, page 299.

CODE COVERAGE WINDOW
Code coverage is only supported by the C-SPY Simulator.

The Code Coverage window—available from the View menu—reports the status of the
current code coverage analysis, that is, what parts of the code that have been executed
at least once since the start of the analysis. The compiler generates detailed stepping
information in the form of step points at each statement, as well as at each function call.
The report includes information about all modules and functions. It reports the amount
of all step points, in percentage, that have been executed and lists all step points that have
not been executed up to the point where the application has been stopped. The coverage
will continue until turned off.

[0 5] cf g
=% project] 91.18%
=% Tutor 100.00%

4 do_foreground_pracess 100.00%
% main 100.00%

&% Utilities 86.96%
&9 get_filb 86.67%

& init_fib 100.00%
@ put_fib 84.62%

Figure 173: Code Coverage window
Note:

e You can enable the Code Coverage plugin module on the Debugger>Plugins page
available in the Options dialog box.

o Code coverage is not supported by all C-SPY drivers. For information about
whether the C-SPY driver you are using supports code coverage, see Differences
between the C-SPY drivers, page 192the driver-specific documentation. Code
coverage is supported by the C-SPY Simulator.

Part 7. Reference information 329

C-SPY windows

330

2 ot e

©

Code coverage commands

In addition to the commands available as icon buttons in the toolbar, clicking the right
mouse button in the Code Coverage window displays a context menu that gives you
access to these and some extra commands.

v Activate
Clear
Refresh
Auko-refresh
Save As...

Figure 174: Code coverage context menu

You can find the following commands on the menu:

Activate/Deactivate Switches code coverage on and off during execution.

Clear Clears the code coverage information. All step points are marked as not
executed.

Refresh Updates the code coverage information and refreshes the window. All step
points that has been executed since the last refresh are removed from the
tree.

Auto-refresh Toggles the automatic reload of code coverage information on and off.

When turned on, the code coverage information is reloaded automatically
when C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As Saves the current code coverage information in a text file.

The following icons are used to give you an overview of the current status on all levels:

o A red diamond signifies that 0% of the code has been executed

e A green diamond signifies that 100% of the code has been executed

e A red and green diamond signifies that some of the code has been executed

o A yellow diamond signifies a step point that has not been executed.

For step point lines, the information displayed is the column number range and the row
number of the step point in the source window, followed by the address of the step point.

<column start>-<column end>:<row>.

PROFILING WINDOW

The Profiling window—available from the View menu—displays profiling information,
that is, timing information for the functions in an application. Profiling must be turned
on explicitly using a button in the window’s toolbar, and will stay active until it is turned
off.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

The profiler measures time at the entry and return of a function. This means that time
consumed in a function is not added until the function returns or another function is
called. You will only notice this if you are stepping into a function.

[0 b|E|=| | of

Function | Calls | Flat Time (cycles) | Flat Time (%) | Accumulated Tim.. | Accumulated Tim. |
Qutside main 0 207 428 207 428
__datalb_memze.. 1 0 n.og 0 n.og
__putchar 24 72 149 72 149
_exit o 0 ono 0 ono
do_foreground_p... 10 280 79 3980 g2.23
exit 1 3 008 3 008
get_fib 26 390 8.06 390 8.06
init_fib 1 248 512 486 10.08
main 1 159 329 627 95.60
next_counter 10 70 1.45 70 1.45
put_fib 10 3336 68.93 3480 71.90
futchar 24 72 149 144 2498

Figure 175: Profiling window
Note:

® You can enable the Profiling plugin module on the Debugger>Plugins page
available in the Options dialog box.

e Profiling is not supported by all C-SPY drivers. For information about whether the
C-SPY driver you are using supports profiling, see Differences between the C-SPY
drivers, page 192the driver-specific documentation. Profiling is supported by the
C-SPY Simulator.

Profiling commands

In addition to the toolbar buttons, the context menu available in the Profiling window
gives you access to these and some extra commands:

v Activate
Mew Measurement
v Graph
Show details
Refresh
Auko refresh
Save As...

Figure 176: Profiling context menu

You can find the following commands on the menu:

Activate Toggles profiling on and off during execution.

New measurement Starts a new measurement. By clicking the button, the values displayed
are reset to zero.

Part 7. Reference information

331

C-SPY windows

332

© o [

Graph Displays the percentage information for Flat Time and Accumulated
Time as graphs (bar charts) or numbers.

Show details Shows more detailed information about the function selected in the list.
A window is opened showing information about callers and callees for
the selected function.

Refresh Updates the profiling information and refreshes the window.

Auto refresh Toggles the automatic update of profiling information on and off. When
turned on, the profiling information is updated automatically when
C-SPY stops at a breakpoint, at a step point, and at program exit.

Save As Saves the current profiling information in a text file.

Profiling columns

The Profiling window contains the following columns:

Column Description

Function The name of each function.

Calls The number of times each function has been called.

Flat Time The total time spent in each function in cycles or as a percentage of the
total number of cycles, excluding all function calls made from that
function.

Accumulated Time Time spent in each function in cycles or as a percentage of the total

number of cycles, including all function calls made from that function.

Table 97: Profiling window columns

There is always an item in the list called Outside main. This is time that cannot be
placed in any of the functions in the list. That is, code compiled without debug
information, for instance, all startup and exit code, and C/C++ library code.

STACK WINDOW

HistoryThe Stack window is a memory window that displays the contents of the stack.
In addition, some integrity checks of the stack can be performed to detect and warn
about problems with stack overflow. For example, the Stack window is useful for
determining the optimal size of the stack.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

Before you can open the Stack window you must make sure it is enabled: choose
Project>Options>Debugger>Plugins and select Stack from the list of plugins. In
C-SPY, you can then open a Stack window by choosing View>Stack. You can open
several Stack windows, each showing a different stack—if several stacks are
available—or the same stack with different display settings.

| Locati0n| Data | Yariable | Yalue | Frame |
IseREE] oxon

+1 Ox08

+2 0x0000 p.mStatus 0 [1] _exit

+4 Ox4A

+5 0Ox67

+6 OxEOD

+7 0Ox04

Figure 177: Stack window

The stack drop-down menu

If the microcontroller you are using has multiple stacks, you can use the stack
drop-down menu at the top of the window to select which stack to view.

The graphical stack bar

At the top of the window, a stack bar displays the state of the stack graphically. To view
the stack bar you must make sure it is enabled: choose Tools>Options>Stack and select
the option Enable graphical stack display and stack usage tracking.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. A green line represents the current value of
the stack pointer. The part of the stack memory that has been used during execution is
displayed in a dark gray color, and the unused part in a light gray color. The graphical
stack bar turns red when the stack usage exceeds a threshold that you can specify.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xcD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can
incorrectly grow outside its bounds, and even modify memory outside the stack range,

Part 7. Reference information 333

C-SPY windows

334

without actually modifying any of the bytes near the stack range. Likewise, your
application might modify memory within the stack range by mistake. Furthermore, the
Stack window cannot detect a stack overflow when it happens, but can only detect the
signs it leaves behind.

Note: The size and location of the stack is retrieved from the definition of the segment
holding the stack, typically CSTACK, made in the linker command file. If you, for some
reason, modify the stack initialization made in the system startup code, cstartup, you
should also change the segment definition in the linker command file accordingly;
otherwise the Stack window cannot track the stack usage. To read more about this, see
the MSP430 IAR C/C++ Compiler Reference Guide.

When the stack bar is enabled, the functionality needed to detect and warn about stack

overflows is also enabled, see Stack page, page 301.

The Stack window columns

The main part of the window displays the contents of stack memory in the following
columns:

Column Description

Location Displays the location in memory. The addresses are displayed in
increasing order. The address referenced by the stack pointer, in other
words the top of the stack, is highlighted in a green color.

Data Displays the contents of the memory unit at the given location. From the
Stack window context menu, you can select how the data should be
displayed; as a |-, 2-, or 4-byte group of data.

Variable Displays the name of a variable, if there is a local variable at the given
location. Variables are only displayed if they are declared locally in a
function, and located on the stack and not in registers.

Value Displays the value of the variable that is displayed in the Variable
column.
Frame Displays the name of the function the call frame corresponds to.

Table 98: Stack window columns

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

The Stack window context menu

The following context menu is available if you right-click in the Stack window:

v Show Yariables
v Show Offsets
v 1 Units

2x Units

¢ Units

Options. ..

Figure 178: Stack window context menu

The following commands are available in the context window:

Show variables Separate columns named Variables, Value, and Frame are
displayed in the Stack window. Variables located at memory
addresses listed in the Stack window are displayed in these
columns.

Show offsets When this option is selected, locations in the Location column are
displayed as offsets from the stack pointer. When deselected,
locations are displayed as absolute addresses.

Ix Bytes The data in the Data column is displayed as single bytes.

2x Bytes The data in the Data column is displayed as 2-byte groups.

4x Bytes The data in the Data column is displayed as 4-byte groups.
Options Opens the IDE Options dialog box where you can set options

specific to the Stack window, see Stack page, page 301.

LCD WINDOW

The LCD window—available from the View menu—simulates a 7- or 14-segments
LCD display.

LCD =]

Figure 179: LCD window

Part 7. Reference information 335

C-SPY menus

336

LCD Settings dialog box
Click the Settings button in the LCD window to display the LCD Settings dialog box.

LCD Settings [%]

LCD configuration file

I$TDDLKIT_DIF|$\plugins\lcd\lcd?seg.Ic:d _I

LCD control register address:

IDHSD

Cancel |

Figure 180: LCD Settings dialog box

These are the available settings:

Setting Description

LCD configuration file Selects the LCD display to simulate. Available displays are a 7
segment display and a 14 segment display.

LCD control register address Sets up the address to the LCD control register.

Table 99: LCD window settings

C-SPY menus

In addition to the menus available in the development environment, the Debug menu is
available when C-SPY is running.

Additional menus will be available depending on which C-SPY driver you are using. For
information about driver-specific menus, see the online help system available from the
Help menu for information about driver-specific documentation.

MSP430 IAR Embedded Workbench® IDE

User Guide

R N

N

DEBUG MENU

C-SPY® Debugger reference ___o

The Debug menu provides commands for executing and debugging your application.
Most of the commands are also available as toolbar buttons.

G0 FS
Break:
Reset

Stop Debugging

Step Cwver Fi0
Step Inko F11
Skep Cut SHIFT+F11

Mext Statement
Run ko Cursor
Autostep. ..

Refresh

Set Mext Statement

Macros. ..
Logging

Figure 181: Debug menu

Menu Command

Description

Go F5

Break

Reset

Stop Debugging

Step Over Fl0

Step Into Fll

Step Out SHIFT+FI |

Next Statement

Run to Cursor

Executes from the current statement or instruction until a breakpoint or
program exit is reached.

Stops the application execution.

Resets the target processor.

Stops the debugging session and returns you to the project manager.

Executes the next statement or instruction, without entering C or C++
functions or assembler subroutines.

Executes the next statement or instruction, entering C or C++ functions
or assembler subroutines.

Executes from the current statement up to the statement after the call
to the current function.

If stepping into and out of functions is unnecessarily slow, use this
command to step directly to the next statement.

Executes from the current statement or instruction up to a selected
statement or instruction.

Table 100: Debug menu commands

Part 7. Reference information 337

C-SPY menus

338

Menu Command Description

Autostep Displays the Autostep settings dialog box which lets you customize
and perform autostepping.

Refresh Refreshes the contents of the Memory, Register, Watch, and Locals
windows.

Set Next Statement ~ Moves the program counter directly to where the cursor is, without
executing any source code. Note, however, that this creates an anomaly
in the program flow and might have unexpected effects.

Macros Displays the Macro Configuration dialog box to allow you to list,
register, and edit your macro files and functions.

Logging>Set Log file Displays a dialog box to allow you to log input and output from C-SPY to
a file. You can select the type and the location of the log file. You can
choose what you want to log: errors, warnings, system information, user
messages, or all of these.

Logging>Set Terminal Displays a dialog box to allow you to log terminal input and output from
I/O Log file C-SPY to afile. You can select the destination of the log file.

Table 100: Debug menu commands (Continued)

Autostep settings dialog box

In the Autostep settings dialog box—available from the Debug menu—you can
customize autostepping.

Autostep settings E

I Step Into [Source level] j Start I
Delay [miIIiseconds]:I‘I] Cancel |

Figure 182: Autostep settings dialog box

The drop-down menu lists the available step commands.

The Delay text box lets you specify the delay between each step.

Macro Configuration dialog box

In the Macro Configuration dialog box—available by choosing Debug>Macros—you
can list, register, and edit your macro files and functions.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

Macro functions that have been registered using the dialog box will be deactivated when
you exit the debug session, and will not automatically be registered at the next debug

session.

Macro Configuration

Loak in: I) tutor

x| « & ek E-

1 Debug
[settings
Setupadvanced. mac

SetupSimple. mac

File name: ISetupSimpIe.mac

Files of type: IMacro Filez [*.mac]

Selected Macro Files:

Add

C:hprojectshtutorS etupSimple. mac

— Registered Macro

(o] User € System

Parameters

_canceldlinterrupts]
__cancellnterupt i

- Spstem Macro -
- Spstem Macro -

_clearBreak [id) - Spstem Macro -
__clozeFile [file] - Spstem Macro - —
__dizablelnterrupts Il - Spstem Macro -
__driverType [ztring] - Spstem Macro - LI

Add All |
Remove |
Remave Al |

Fiegister |

Cloze |

Help

Figure 183: Macro Configuration dialog box

Registering macro files

Select the macro files you want to register in the file selection list, and click Add or Add
All to add them to the Selected Macro Files list. Conversely, you can remove files from
the Selected Macro Files list using Remove or Remove All.

Once you have selected the macro files you want to use click Register to register them,
replacing any previously defined macro functions or variables. Registered macro
functions are displayed in the scroll window under Registered Macros. Note that
system macros cannot be removed from the list, they are always registered.

Part 7. Reference information 339

C-SPY menus

340

Listing macro functions

Selecting All displays all macro functions, selecting User displays all user-defined
macros, and selecting System displays all system macros.

Clicking on either Name or File under Registered Macros displays the column
contents sorted by macro names or by file. Clicking a second time sorts the contents in
the reverse order.

Modifying macro files
Double-clicking a user-defined macro function in the Name column automatically
opens the file in which the function is defined, allowing you to modity it, if needed.

Log File dialog box

The Log File dialog box—available by choosing Debug>Logging>Set Log File
—allows you to log output from C-SPY to a file.

r Log File
o Include:
¥ Enable log file
¥ Enmors ¥ “wamings
¥ Info IV User
$PROJ_DIR$ LogFile1.log J

()3 I Cancel |

Figure 184: Log File dialog box

Enable or disable logging to the file with the Enable Log file check box.

The information printed in the file is by default the same as the information listed in the
Log window. To change the information logged, use the Include options:

Option Description

Errors C-SPY has failed to perform an operation.

Warnings A suspected error.

Info Progress information about actions C-SPY has performed.
User Printouts from C-SPY macros, that is, your printouts using the

__message statement.

Table 101: Log file options

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® Debugger reference ___o

Click the browse button, to override the default file type and location of the log file.
Click Save to select the specified file—the default filename extension is log.

Terminal I/O Log File dialog box

The Terminal I/O Log Files dialog box—available by choosing
Debug>Logging—allows you to select a destination log file, and to log terminal I/O
input and output from C-SPY to this file.

Temminal 10 Log Files [%]

Temminal 10 Log File

" Enable Terminal |0 log file
Cancel |
Ic:\TermID.Iog J

Figure 185: Terminal 1/0 Log File dialog box

Click the browse button to open a standard Save As dialog box. Click Save to select the
specified file—the default filename extension is log.

Part 7. Reference information 341

C-SPY menus

MSP430 IAR Embedded Workbench® IDE
342 User Guide

General options

This chapter describes the general options in the IAR Embedded
Workbench® IDE.

For information about how options can be set, see Setting options, page 89.

Target

The Target options specify the device, the size of the floating-point type double,
whether position-independent code should be generated, whether code for the hardware
multiplier unit should be generated, and if the project is an assembler-only project.

Target |

— Device

[MsP430F143

—FI?atlng-polnt [~ Position-independent code
Size of type 'double’
% 32 hits ¥ Hardware multiplier
B4 bits

[Assembler-only project

Figure 186: Target options

DEVICE

Use the drop-down list to select the device for which you will build your application.
The choice of device controls which linker command file and device description file that
will be used.

Part 7. Reference information

343

Target

344

FLOATING-POINT

The compiler represents floating-point values by 32- and 64-bit numbers in standard
IEEE 754 format. The Size of type 'double' option specifies the size of the type
double. Choose between:

32 bits The data type double is represented by the 32-bit floating-point format.
(default)

64 bits The data type double is represented by the 64-bit floating-point format.

For more details about the floating-point format, see the MSP430 IAR C/C++ Compiler
Reference Guide.

POSITION-INDEPENDENT CODE

Select normal or position-independent code generation. Note that position-independent
code will lead to a rather large overhead in code size. For more details about
position-independent code, see MSP430 IAR C/C++ Compiler Reference Guide.

HARDWARE MULTIPLIER

Generates code for the MSP430 hardware multiplier peripheral unit. The option is only
enabled when you have chosen a device containing the hardware multiplier from the
Device drop-down list.

ASSEMBLER-ONLY PROJECT

Use this option if your project only contains assembler source files. The option will
make the necessary settings required for an assembler only project, for instance,
disabling the use of a C or C++ runtime library and the cstartup system. The Run to
option will be disabled.

MSP430 IAR Embedded Workbench® IDE

User Guide

General options __¢

Output

With the Output options you can specify the type of output file—Executable or
Library. You can also specify the destination directories for executable files, object
files, and list files.

Clutput |

— Output file
& Executable
 Library

r— Output directarie:
Executables/libraries:
IDebug\E we

Object files:
|DebugiObi

List files:
|DebughList

Figure 187: Output options

OUTPUT FILE

Use these options to choose the type of output file. Choose between:

Executable As a result of the build process, the XLINK linker will create an application

(default) (an executable output file). When this option is selected, linker options will
be available in the Options dialog box. Before you create the output you
should set the appropriate linker options.

Library As a result of the build process, the XAR library builder will create a library
file. When this option is selected, XAR library builder options will be
available in the Options dialog box, and Linker will disappear from the list
of categories. Before you create the library you can set the XAR options.

OUTPUT DIRECTORIES

Use these options to specify paths to destination directories. Note that incomplete paths
are relative to your project directory. You can specify the paths to the following
destination directories:

Executables/libraries Use this option to override the default directory for executable or
library files. Type the name of the directory where you want to save
executable files for the project.

Part 7. Reference information 345

Library Configuration

346

Object files Use this option to override the default directory for object files. Type
the name of the directory where you want to save object files for the
project.

List files Use this option to override the default directory for list files. Type the

name of the directory where you want to save list files for the project.

Library Configuration

With the Library Configuration options you can specify which library to use.

Library Configuration |

Library: Description:
Customn DLIB j Use a customized C/EC++ runtime library.

Library file:

IEI: projectsimylibrang. rax

Configuration file:
IEI: Sprojectshmylibrane. b

L L

Figure 188: Library Configuration options

For information about the runtime library, library configurations, the runtime
environment they provide, and the possible customizations, see MSP430 IAR C/C++
Compiler Reference Guide.

LIBRARY

In the Library drop-down list you choose which runtime library to use. For information
about available libraries, see the MSP430 IAR C/C++ Compiler Reference Guide.

Note: For C++ projects, you must use one of the DLIB library variants.

The library object file and library configuration file that actually will be used are
displayed in the Library file and Configuration file text boxes, respectively.
LIBRARY FILE

The Library file text box displays the library object file that will be used. A library
object file is automatically chosen depending on your project settings.

MSP430 IAR Embedded Workbench® IDE

User Guide

General options __¢

If you have chosen Custom DLIB or Custom CLIB in the Library drop-down list, you
must specify your own library object file.

CONFIGURATION FILE

The Configuration file text box displays the library configuration file that will be used.
A library configuration file is chosen automatically depending on the project settings. If
you have chosen Custom DLIB in the Library drop-down list, you must specify your
own library configuration file.

Note: A library configuration file is only required for the DLIB library.

Library Options
With the options on the Library Options page you can choose printf and scanf
formatters.

Library Options |

— Printf farmatter
I Large j

Full formatting.

— Scanf formatter
I Large j

Full formatting.

Figure 189: Library Options page

See the MSP430 IAR C/C++ Compiler Reference Guide for more information about the
formatting capabilities.

PRINTF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications. To reduce the memory consumption,
alternative versions are also provided:

e Printf formatters in the IAR DLIB Library are: Full, Large, Small, and Tiny
e Printf formatters in the AR CLIB Library are: Large, Medium, and Small.

Part 7. Reference information 347

Stack/Heap

SCANF FORMATTER

The full formatter version is memory-consuming, and provides facilities that are not
required in many embedded applications. To reduce the memory consumption,
alternative versions are also provided:

e Scanf formatters in the IAR DLIB Library are: Full, Large, and Small
e Scanf formatters in the AR CLIB Library are: Large, and Medium.

Stack/Heap

With the options on the Stack/Heap page you can customize the heap and stack sizes.

Stack/Heap |

[T Overide default

Stack size; Heap size:

Figure 190: Stack/Heap page

OVERRIDE DEFAULT

Use this option to override the default heap and stack size settings.

STACK SIZE

Enter the required stack size in the Stack size text box, using decimal notation.

HEAP SIZE

Enter the required heap size in the Heap size text box, using decimal notation.

MSP430 IAR Embedded Workbench® IDE
348 User Guide

General options __¢

MISRA C

Use the options on the MISRA C page to control how IAR Embedded Workbench
checks the source code for deviations from the MISRA C rules. The settings will be used
for both the compiler and the linker.

If you want the compiler to check different sets of rules, you can override these settings
in the C/C++ Compiler category.

MISRAC |
[V Enable MISRA C I Log MISRA C Settings
Set Active MISRA C Rule:
Mone Fequired | All |

l‘I. [required] All code shall conform ta 150 9839 standard C, with no:ﬂ
[(12. [advizory] Code written in languages other than C should only be

[13. [advizory] Aszembly language functions that are called from C shou
[14. [advizory] Provigions should be made for appropriate run-time chec
[w]5. [required] Only thoze characters and escape sequences which are
[w]E. [required] Yalues of character types shall be restricted to a defined
[w]7. [required] Trigraphz shall not be uzed

[w]8. [required] Multibyte characters and wide string literals shall not be
[w]3. [required] Comments shall not be nested

[110. [advizory] Sections of code should not be 'commented out' LI

Figure 191: MISRA C general options

ENABLE MISRA C

Select this option to enable checking the source code for deviations from the MISRA C
rules during compilation and linking. Only the rules selected in the scroll list will be
checked.

LOG MISRA C SETTINGS

Select this option to generate a MISRA C log during compilation and linking. This is a
list of the rules that are enabled—but not necessarily checked—and a list of rules that
are actually checked.

SET ACTIVE MISRA C RULES

Only the rules you select in the scroll list will be checked during compilation and
linking. Click one of the buttons None, Required, or All to select or deselect several
rules with one click. The Required button selects all 93 rules that are categorized by the
Guidelines for the Use of the C Language in Vehicle Based Software as required and
deselects the rules that are categorized as advisory.

Part 7. Reference information 349

MISRA C

MSP430 IAR Embedded Workbench® IDE
350 User Guide

Compiler options

This chapter describes the compiler options available in the IAR Embedded

Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Language

The Language options enable the use of target-dependent extensions to the C or C++

language.

Language|

— Language

@

 Embedded C++
 Extended Embedded C++
' Automatic [extension based)

™ Require pratotypes

r— Language conformance
& Allow |AR estensions
7 Felaved 1504851
£ Shrict 150/8M51

™ Enable multibyte support

(

Flain 'char' iz
" Signed
& Unsigned

™ Enable |4R migration preprocessor extensions

Figure 192: Compiler language options

LANGUAGE

With the Language options you can specify the language support you need.

For information about Embedded C++ and Extended Embedded C++, see the MSP430

IAR C/C++ Compiler Reference Guide.

C

By default, the MSP430 IAR C/C++ Compiler runs in ISO/ANSI C mode, in which
features specific to Embedded C++ and Extended Embedded C++ cannot be utilized.

Part 7. Reference information 351

Language

352

Embedded C++

In Embedded C++ mode, the compiler treats the source code as Embedded C++. This
means that features specific to Embedded C++, such as classes and overloading, can be
utilized.

Embedded C++ requires that a DLIB library (C/C++ library) is used.

Extended Embedded C++

In Extended Embedded C++ mode, you can take advantage of features like namespaces
or the standard template library in your source code.

Extended Embedded C++ requires that a DLIB library (C/C++ library) is used.

Automatic

If you select Automatic, language support will be decided automatically depending on
the filename extension of the file being compiled:

e Files with the filename extension c will be compiled as C source files
e Files with the filename extension cpp will be compiled as Extended Embedded C++
source files.

This option requires that a DLIB library (C/C++ library) is used.

REQUIRE PROTOTYPES

This option forces the compiler to verify that all functions have proper prototypes. Using
this option means that code containing any of the following will generate an error:

e A function call of a function with no declaration, or with a Kernighan & Ritchie
C declaration

e A function definition of a public function with no previous prototype declaration

e An indirect function call through a function pointer with a type that does not include
a prototype.

LANGUAGE CONFORMANCE

Language extensions must be enabled for the MSP430 IAR C/C++ Compiler to be able
to accept MSP430-specific keywords as extensions to the standard C or C++ language.
In the IAR Embedded Workbench IDE, the option Allow IAR extensions is enabled by
default.

The option Relaxed ISO/ANSI disables IAR extensions, but does not adhere to strict
ISO/ANSI.

Select the option Strict ISO/ANSI to adhere to the strict ISO/ANSI C standard.

MSP430 IAR Embedded Workbench® IDE

User Guide

Compiler options °

For details about language extensions, see the MSP430 IAR C/C++ Compiler Reference
Guide.

PLAIN 'CHAR'IS

Normally, the compiler interprets the char type as unsigned char. Use this option to
make the compiler interpret the char type as signed char instead, for example for
compatibility with another compiler.

Note: The runtime library is compiled with unsigned plain characters. If you select the
radio button Signed, you might get type mismatch warnings from the linker as the
library uses unsigned char.

ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in C or Embedded C++ source code. If
you use this option, multibyte characters in the source code are interpreted according to
the host computer’s default setting for multibyte support.

Multibyte characters are allowed in C and C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.
ENABLE IAR MIGRATION PREPROCESSOR EXTENSIONS

Migration preprocessor extensions extend the preprocessor in order to ease migration of
code from earlier IAR compilers. If you need to migrate code from an earlier IAR C or
C++ compiler, you may want to use this option.

Note: If you use this option, not only will the compiler accept code that is not standard
conformant, but it will also reject some code that does conform to standard.

Important! Do not depend on these extensions in newly written code. Support for them
may be removed in future compiler versions.

Part 7. Reference information 353

Code

354

Code

The Code options specify the use of registers and the stack.

Code |

R4 utilization

[~ Reduce stack usage
& Momal use

. [~ 20-bit contest save ar interupt
' tegvar variables

7 Mot uzed

RS utilization
& Momal use
' tegvar variables
7 Mot uzed

Figure 193: Compiler code options

R4 UTILIZATION
This option controls how register R4 can be used. There are three possible settings:

o Normal use. This setting allows the compiler to use the register in generated code.

e __regvar variables. When this setting is selected, the compiler uses the register for
locating global register variables declared with the extended keyword __regvar.

o Not used. If you select this setting, R4 is locked and can be used for a special
purpose by the application.

R5 UTILIZATION

This option controls how register R5 can be used. There are three possible settings:

o Normal use. This setting allows the compiler to use the register in generated code.

e __regvar variables. When this setting is selected, the compiler uses the register for
locating global register variables declared with the extended keyword __regvar.

o Not used. If you select this setting, R5 is locked and can be used for a special
purpose by the application.

REDUCE STACK USAGE

Use this option to make the compiler minimize the use of stack space at the cost of
somewhat larger and slower code.

MSP430 IAR Embedded Workbench® IDE

User Guide

Compiler options °

20-BIT CONTEXT SAVE ON INTERRUPT

Use this option to make all interrupt functions be treated asa __save_reg_20 declared
function without explicitly using the __save_reg20 keyword.

This is useful if your application requires that all 20 bits of registers are preserved. The
drawback is that the code will be somewhat slower.

Note: This option has no effect when compiling for the MSP430 architecture.

Optimizations
The Optimizations options determine the type and level of optimization for generation
of object code.

Optimizations |

r— Optimization:
&+ Size
" Spes

g INone [Best debug support] j

Enabled transformations:

[CCommon subespression elimination
[CLoop unroling

[CIFunction inlining

[(Code mation

(1 Type-bazed alias analyzis

Figure 194: Compiler optimizations options
OPTIMIZATIONS

Size or speed, and level

The MSP430 IAR C/C++ Compiler supports two optimization models—size and
speed—at different optimization levels.

Select the optimization model using either the Size or Speed radio button. Then choose
the optimization level—None, Low, Medium, or High—from the drop-down list next to
the radio buttons.

By default, a debug project will have a size optimization that is fully debuggable, while
a release project will have a size optimization that generates an absolute minimum of
code.

Part 7. Reference information 355

Output

356

For a list of optimizations performed at each optimization level, see the MSP430 IAR
C/C++ Compiler Reference Guide.

Enabled transformations
The following transformations are available on different level of optimizations:

e Common subexpression elimination
e Loop unrolling

e Function inlining

e Code motion

o Type-based alias analysis.

When a transformation is available, you can enable or disable it by selecting its check
box.

In a debug project, the transformations are by default disabled. In a release project, the
transformations are by default enabled.

For a brief description of the transformations that can be individually disabled, see the
MSP430 IAR C/C++ Compiler Reference Guide.

Output

The Output options determine the output format of the compiled file, including the level
of debugging information in the object code.

Clutput |

Module type

[T Overide default
| Frogram hodule
€ Librany Module

" Object module name:

[V Generate debug information

Figure 195: Compiler output options

MSP430 IAR Embedded Workbench® IDE

User Guide

Compiler options °

MODULE TYPE

By default, the compiler generates program modules. Use this option to make a library
module that will only be included if it is referenced in your application. Select the
Override default check box and choose one of:

Program Module The object file will be treated as a program module rather than as
a library module.

Library Module The object file will be treated as a library module rather than as a

program module.

For information about program and library modules, and working with libraries, see the
XLIB and XAR chapters in the IAR Linker and Library Tools Reference Guide, available
from the Help menu.

OBJECT MODULE NAME

Normally, the internal name of the object module is the name of the source file, without
a directory name or extension. Use this option to set the object module name explicitly.

First select the Object module name check box, then type a name in the entry field.

This option is particularly useful when several modules have the same filename, because
the resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

GENERATE DEBUG INFORMATION

This option causes the compiler to include additional information in the object modules
that is required by C-SPY® and other symbolic debuggers.

The Generate debug information option is selected by default. Deselect this option if
you do not want the compiler to generate debug information.

Note: The included debug information increases the size of the object files.

Part 7. Reference information 357

List

358

List

The List options determine whether a list file is produced, and the information included
in the list file.

List

™ Output list file
| fissemblern memarics
™| Diagnostics

™ Output assembler file
| Ihelude source
¥ | Irelude callframe infarmation

Figure 196: Compiler list file options

Normally, the compiler does not generate a list file. Select any of the following options
to generate a list file or an assembler file. The list file will be saved in the Li st directory,
and its filename will consist of the source filename, plus the filename extension 1st.
You can open the output files directly from the Qutput folder which is available in the
Workspace window.

OUTPUT LIST FILE

Select the Output list file option and choose the type of information to include in the
list file:

Assembler mnemonics Includes assembler mnemonics in the list file.

Diagnostics Includes diagnostic information in the list file.

OUTPUT ASSEMBLER FILE

Select the Output assembler file option and choose the type of information to include
in the list file:

Include source Includes source code in the assembler file.

Include call frame information Includes compiler-generated information for runtime
model attributes, call frame information, and frame size
information.

MSP430 IAR Embedded Workbench® IDE

User Guide

Compiler options °

Preprocessor

The Preprocessor options allow you to define symbols and include paths for use by the
compiler.

Preprocessor |

™ lgnore standard include directaries $TOOLKIT_DIR$AMNCY

Additional include directories: [one per lineg]

=
=
-

Preinclude file:

Defined symbols: [one per line)

;I ™ Preprocessor output to file
= Freserve commments
= Fererateline ditestives

|

Figure 197: Compiler preprocessor options

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional include directories option adds a path to the list of #include file
paths. The paths required by the product are specified by default depending on your
choice of runtime library.

Type the full file path of your #include files.

Note: Any additional directories specified using this option will be searched before the
standard include directories.

To make your project more portable, use the argument variable $TOOLKIT_DIRS for the
subdirectories of the active product and $PROJ_DIRS for the directory of the current
project. For an overview of the argument variables, see Argument variables summary,
page 279.

Part 7. Reference information 359

Diagnostics

360

PREINCLUDE FILE

Use this option to make the compiler include the specified include file before it starts to
read the source file. This is useful if you want to change something in the source code
for the entire application, for instance if you want to define a new symbol.

DEFINED SYMBOLS

The Defined symbols option is useful for conveniently specifying a value or choice that
would otherwise be specified in the source file.

Type the symbols that you want to define for the project, for example:
TESTVER=1
Note that there should be no space around the equal sign.

The Defined symbols option has the same effect as a #define statement at the top of
the source file.

For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was defined. To
do this you would use include sections such as:

#ifdef TESTVER
; additional code lines for test version only
#endif

You would then define the symbol TESTVER in the Debug target but not in the Release
target.

PREPROCESSOR OUTPUT TO FILE
By default, the compiler does not generate preprocessor output.

Select the Preprocessor output to file option if you want to generate preprocessor
output. You can also choose to preserve comments and/or to generate #1ine directives.

Diagnostics

The Diagnostics options determine how diagnostics are classified and displayed. Use
the diagnostics options to override the default classification of the specified diagnostics.

MSP430 IAR Embedded Workbench® IDE

User Guide

Compiler options °

Note: The diagnostics cannot be suppressed for fatal errors, and fatal errors cannot be
reclassified.

Diagnostics |
[T Enable remarks

Suppress theze diagnostics:

Treat these as remarks:

Treat these as warnings:

Treat these as emars:

™ Treat all wamings as emors

Figure 198: Compiler diagnostics options

ENABLE REMARKS

The least severe diagnostic messages are called remarks. A remark indicates a source
code construct that might cause strange behavior in the generated code.

By default remarks are not issued. Select the Enable remarks option if you want the
compiler to generate remarks.

SUPPRESS THESE DIAGNOSTICS

This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings pe117 and Pel77, type:

Pell7,pPel77

TREAT THESE AS REMARKS

A remark is the least severe type of diagnostic message. It indicates a source code
construct that might cause strange behavior in the generated code. Use this option to
classify diagnostics as remarks.

For example, to classify the warning Pe177 as a remark, type:

pPel77

Part 7. Reference information 361

MISRA C

TREAT THESE AS WARNINGS

A warning indicates an error or omission that is of concern, but which will not cause the
compiler to stop before compilation is completed. Use this option to classify diagnostic
messages as warnings.

For example, to classify the remark Pe826 as a warning, type:

Pe826

TREAT THESE AS ERRORS

An error indicates a violation of the C or C++ language rules, of such severity that object
code will not be generated, and the exit code will be non-zero. Use this option to classify
diagnostic messages as errors.

For example, to classify the warning Pe117 as an error, type:

Pell?7

TREAT ALL WARNINGS AS ERRORS

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, object code is not generated.

MISRA C

Use these options to override the options set on the MISRA C page of the General

Options category.
MISRAC |
V' Overide General MISRA C Settings
Set Active MISRA C Rule:
Mone Fequired All | Festore |

l‘I. [required] All code shall conform ta 150 9899 standard C, with no
[(12. [advizory] Code written in languages other than C should only be uj
[13. [advizory] Aszembly language functions that are called from C shou
[14. [advizory] Provigions should be made for appropriate run-time chec
[w]5. [required] Only thoze characters and escape sequences which are
[w]E. [required] Yalues of character types shall be restricted to a defined
[w]7. [required] Trigraphz shall not be uzed

[w]8. [required] Multibyte characters and wide string literals shall not be
[w]3. [required] Comments shall not be nested

[110. [advizory] Sections of code should not be 'commented out' LI

Figure 199: MISRA C compiler options

MSP430 IAR Embedded Workbench® IDE
362 User Guide

Compiler options °

OVERRIDE GENERAL MISRA C SETTINGS

Select this option if you want the compiler to check a different selection of rules than
the rules selected in the General Options category.

SET ACTIVE MISRA C RULES

Only the rules that have been selected in the scroll list will be checked during
compilation. To select or deselect several rules with one click, click one of the buttons
None, Required, All, or Restore. The Required button selects all 93 rules that are
categorized by the Guidelines for the Use of the C Language in Vehicle Based Software
as required and deselects the rules that are categorized as advisory. The Restore button
restores the MISRA C settings used in the General Options category.

Extra Options

The Extra Options page provides you with a command line interface to the compiler.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Figure 200: Extra Options page for the compiler

USE COMMAND LINE OPTIONS

Additional command line arguments for the compiler (not supported by the GUI) can be
specified here.

Part 7. Reference information 363

Extra Options

MSP430 IAR Embedded Workbench® IDE
364 User Guide

Assembler options

This chapter describes the assembler options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Language

The Language options control the code generation of the assembler.

Language|
V' User symbols are case sensitive
" Enable multibyte suppart

Macro quote characters:

< ~

Figure 201: Assembler language options

USER SYMBOLS ARE CASE SENSITIVE

By default, case sensitivity is on. This means that, for example, LABEL and label refer
to different symbols. You can deselect User symbols are case sensitive to turn case
sensitivity off, in which case LABEL and 1abel will refer to the same symbol.

ENABLE MULTIBYTE SUPPORT

By default, multibyte characters cannot be used in assembler source code. If you use this
option, multibyte characters in the source code are interpreted according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in comments, in string literals, and in character
constants. They are transferred untouched to the generated code.

Part 7. Reference information 365

MACRO QUOTE CHARACTERS

The Macro quote characters option sets the characters used for the left and right quotes
of each macro argument.

By default, the characters are < and >. This option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or >.

From the drop-down list, choose one of four types of brackets to be used as macro quote
characters:

tacro quote characters
< 'I

[
[
{

Figure 202: Choosing macro quote characters

Output

The Output options allow you to generate information to be used by a debugger such
as the JAR C-SPY® Debugger.

Clutput |

[V Generate debug information

Figure 203: Assembler output options

MSP430 IAR Embedded Workbench® IDE
366 User Guide

Assembler options __¢

GENERATE DEBUG INFORMATION

The Generate debug information option must be selected if you want to use a
debugger with your application. By default, this option is selected in a Debug project,
but not in a Release project.

List

The List options are used for making the assembler generate a list file, for selecting the
list file contents, and generating other listing-type output.

List |
I™ Olutput fist fle
¥ | Irelude header | melude cross reference
¥ | Include listing I~ | #defines
I~ | Hincluded text I~ Internial symbiols
™| Wacre definitiors ™| Gl line spacitg

— .
¥ tacio ERpAnEOns r Lines/page: ISD—

™| acre execution itfa
Tab spacing: IS

™| Assembled lines anly
| Fultiine code

Figure 204: Assembler list file options
By default, the assembler does not generate a list file. Selecting Output list file causes
the assembler to generate a listing and send it to the file sourcename.1st.

Note: If you want to save the list file in another directory than the default directory for
list files, use the Output Directories option in the General Options category; see
Output, page 345, for additional information.

INCLUDE HEADER

The header of the assembler list file contains information about the product version, date
and time of assembly, and the command line equivalents of the assembler options that
were used. Use this option to include the list file header in the list file.

Part 7. Reference information 367

368

INCLUDE LISTING

Use the suboptions under Include listing to specify which type of information to
include in the list file:

Option Description

#included text Includes #include files in the list file.

Macro definitions Includes macro definitions in the list file.

Macro expansions Includes macro expansions in the list file.

Macro execution info Prints macro execution information on every call of a macro.
Assembled lines only Excludes lines in false conditional assembler sections from the list file.
Multiline code Lists the code generated by directives on several lines if necessary.

Table 102: Assembler list file options

INCLUDE CROSS-REFERENCE

The Include cross reference option causes the assembler to generate a cross-reference
table at the end of the list file. See the MSP430 IAR Assembler Reference Guide for
details.

LINES/PAGE

The default number of lines per page is 80 for the assembler list file. Use the Lines/page
option to set the number of lines per page, within the range 10 to 150.

TAB SPACING

By default, the assembler sets eight character positions per tab stop. Use the Tab
spacing option to change the number of character positions per tab stop, within the
range 2 to 9.

MSP430 IAR Embedded Workbench® IDE

User Guide

Assembler options __¢

Preprocessor

The Preprocessor options allow you to define include paths and symbols in the
assembler.

Preprocessor l

[Ignore standard include directories [$TOOLKIT_DIR$MNCY

Additional include directories: [one per ling]

Defined symbols: [one per line)

Figure 205: Assembler preprocessor options

IGNORE STANDARD INCLUDE DIRECTORIES

If you select this option, the standard include files will not be used when the project is
built.

ADDITIONAL INCLUDE DIRECTORIES

The Additional include directories option adds paths to the list of #include file paths.
The path required by the product is specified by default.

Type the full path of the directories that you want the assembler to search for #include
files.

To make your project more portable, use the argument variable $TOOLKIT_DIRS for the
subdirectories of the active product and $PROJ_DIRS for the directory of the current
project. For an overview of the argument variables, see Table 67, Argument variables,
page 279.

See the MSP430 IAR Assembler Reference Guide for information about the #include
directive.

Note: By default the assembler also searches for #include files in the paths specified
in the A430_INC environment variable. We do not, however, recommend that you use
environment variables in the IAR Embedded Workbench IDE.

Part 7. Reference information 369

370

DEFINED SYMBOLS

This option provides a convenient way of specifying a value or choice that you would
otherwise have to specify in the source file.

Type the symbols you want to define, one per line.

For example, you might arrange your source to produce either the test or production
version of your application depending on whether the symbol TESTVER was
defined. To do this you would use include sections such as:

#ifdef TESTVER
; additional code lines for test version only
#endif

You would then define the symbol TESTVER in the Debug target but not in the
Release target.

Alternatively, your source might use a variable that you need to change often, for
example FRAMERATE. You would leave the variable undefined in the source and use
this option to specify a value for the project, for example FRAMERATE=3.

To delete a user-defined symbol, select in the Defined symbols list and press the Delete
key.

Diagnostics

Use the Diagnostics options to disable or enable individual warnings or ranges of
warnings.

Diagnostics |

Warning:
' Enable & 4l wamings

" Dizable © Just warning: I
" amings from: I ber I

™ Maw number of emors: |1DD

Figure 206: Assembler diagnostics options

The assembler displays a warning message when it finds an element of the source code
that is legal, but probably the result of a programming error.

MSP430 IAR Embedded Workbench® IDE

User Guide

Assembler options __¢

By default, all warnings are enabled. The Diagnostics options allow you to enable only
some warnings, or to disable all or some warnings.

Use the radio buttons and entry fields to specify which warnings you want to enable or
disable.

For additional information about assembler warnings, see the MSP430 IAR Assembler
Reference Guide.

MAX NUMBER OF ERRORS

By default, the maximum number of errors reported by the assembler is 100. This option
allows you to decrease or increase this number, for example, to see more errors in a
single assembly.

Extra Options
The Extra Options page provides you with a command line interface to the assembler.
Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
C
[

Figure 207: Extra Options page for the assembler

USE COMMAND LINE OPTIONS

Additional command line arguments for the assembler (not supported by the GUI) can
be specified here.

Part 7. Reference information 371

MSP430 IAR Embedded Workbench® IDE
372 User Guide

Custom build options

This chapter describes the Custom Build options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Custom Tool Configuration

To set custom build options in the IAR Embedded Workbench IDE, choose
Project>Options to display the Options dialog box. Then select Custom Build in the
Category list to display the Custom Tool Configuration page:

Custom Tool Configuration |

Filename extensions:

Command line:

Output files [one per line]:

=

Additional input files [one per line]:

L

K1

Figure 208: Custom tool options

In the Filename extensions text box, specify the filename extensions for the types of
files that are to be processed by this custom tool. You can enter several filename
extensions. Use commas, semicolons, or blank spaces as separators.

In the Command line text box, type the command line for executing the external tool.
In the Output files text box, enter the output files from the external tool.

If there are any additional files that are used by the external tool during the building
process, these files should be added in the Additional input files text box. If these
additional input files, so-called dependency files, are modified, the need for a rebuild is
detected.

For an example, see Extending the tool chain, page 93.

Part 7. Reference information 373

MSP430 IAR Embedded Workbench® IDE
374 User Guide

Build actions options

This chapter describes the options for pre-build and post-build actions
available in the IAR Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Build Actions Configuration
To set options for pre-build and post-build actions in the IAR Embedded Workbench
IDE, choose Project>Options to display the Options dialog box. Then select Build
Actions in the Category list to display the Build Actions Configuration page.

These options apply to the whole build configuration, and cannot be set on groups or
files.

Build Actions Configuration

Fre-build command line:

Post-build command line:

Ll

Figure 209: Build actions options

PRE-BUILD COMMAND LINE

Type a command line to be executed directly before a build; a browse button for locating
an extended command line file is available for your convenience. The commands will
not be executed if the configuration is already up-to-date.

Part 7. Reference information 375

POST-BUILD COMMAND LINE

Type a command line to be executed directly after each successful build; a browse button
is available for your convenience. The commands will not be executed if the
configuration was up-to-date. This is useful for copying or post-processing the output
file.

MSP430 IAR Embedded Workbench® IDE
376 User Guide

Linker options

This chapter describes the XLINK options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Note that the XLINK command line options that are used for defining
segments in a linker command file are described in the IAR Linker and Library

Tools Reference Guide.

Output

The Output options are used for specifying the output format and the level of debugging
information included in the output file.

Clutput |
— Output file
™ Overide default Secondary output file:
Iproiect‘l .duw [Maone for the selected format]
— Format

&' Debug information for C-5PY
¥ w/ith untime control madules
¥ with 140 emulation modules
™| Buffered terminal autput
[~ Allow C-5P-specific extra output file
" Other

[utput format: I

Farmat wariart: INone

Lef L L

Module-local spmbols: IIncIude all

Figure 210: XLINK output file options

OUTPUT FILE

Use Output file to specify the name of the XLINK output file. If a name is not specified,
the linker will use the project name with a filename extension. The filename extension
depends on which output format you choose. If you choose Debug information for
C-SPY, the output file will have the filename extension d43.

Note: If you select a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).

Part 7. Reference information

377

Output

378

Override default

Use this option to specify a filename or filename extension other than the default.

FORMAT

The output options determine the format of the output file generated by the IAR XLINK
Linker. The output file is used as input to either a debugger or as input for programming
the target system. The IAR Systems proprietary output format is called UBROF,
Universal Binary Relocatable Object Format.

The default output settings are:

e In a debug project, Debug information for C-SPY, With runtime control
modules, and With I/O emulation modules are selected by default

e In a release project, msp430-txt is selected by default, which is an output format
without debug information suitable for target download.

Note: For debuggers other than C-SPY®, check the user documentation supplied with
that debugger for information about which format/variant should be used.

Debug information for C-SPY

This option creates a UBROF output file, with a d43 filename extension, to be used with
the IAR C-SPY Debugger.

With runtime control modules

This option produces the same output as the Debug information for C-SPY option, but
also includes debugger support for handling program abort, exit, and assertions. Special
C-SPY variants for the corresponding library functions are linked with your application.
For more information about the debugger runtime interface, see the MSP430 IAR
C/C++ Compiler Reference Guide.

With 1/O emulation modules

This option produces the same output as the Debug information for C-SPY and With
runtime control modules options, but also includes debugger support for I/O handling,
which means that stdin and stdout are redirected to the Terminal I/O window, and
that it is possible to access files on the host computer during debugging.

For more information about the debugger runtime interface, see the MSP430 IAR
C/C++ Compiler Reference Guide.

MSP430 IAR Embedded Workbench® IDE

User Guide

Linker options °

Buffered terminal output

During program execution in C-SPY, instead of instantly printing each new character to
the C-SPY Terminal I/O window, this option will buffer the output. This option is useful
when using debugger systems that have slow communication.

Allow C-SPY-specific extra output file
Use this option to enable the options available on the Extra Output page.

If you choose any of the options With runtime control modules or With I/0
emulation modules, the generated output file will contain dummy implementations for
certain library functions, such as putchar, and extra debug information required by
C-SPY to handle those functions. In this case, the options available on the Extra Output
page are disabled, which means you cannot generate an extra output file. The reason is
that the extra output file would still contain the dummy functions, but would lack the
required extra debug information, and would therefore normally be useless.

However, for some debugger systems, two output files from the same build process are
required—one with the required debug information, and one that you can burn to your
hardware before debugging. This is useful when you want to debug code that is located
in non-volatile memory. In this case, you must choose the Allow C-SPY-specific extra
output file option to make it possible to generate an extra output file.

Other

Use this option to generate output other than those generated by the options Debug
information for C-SPY, With runtime control modules, and With I/O emulation
modules.

Use the Output format drop-down list to select the appropriate output. If applicable,
use Format variant to select variants available for some of the output formats. The
alternatives depend on the output format chosen.

When you specify the Other>Output format option as either debug (ubrof), or ubrof,
a UBROF output file with the filename extension dbg will be created. The generated
output file will not contain debugging information for simulating facilities such as stop
at program exit, long jump instructions, and terminal I/O. If you need support for these
facilities during debugging, use the Debug information for C-SPY, With runtime
control modules, and With I/O emulation modules options, respectively.

For more information, see the IAR Linker and Library Tools Reference Guide.

Part 7. Reference information 379

Extra Output

380

Module-local symbols

Use this option to specify whether local (non-public) symbols in the input modules
should be included or not by the IAR XLINK Linker. If suppressed, the local symbols
will not appear in the listing cross-reference and they will not be passed on to the output
file.

You can choose to ignore just the compiler-generated local symbols, such as jump or
constant labels. Usually these are only of interest when debugging at assembler level.

Note: Local symbols are only included in files if they were compiled or assembled with
the appropriate option to specify this.

Extra Output

The Extra Output options are used for generating an extra output file and for specifying
its format.

Note: If you have chosen any of the options With runtime control modules or With
I/0 emulation modules available on the Output page, you must also choose the option
Allow C-SPY-specific extra output file to enable the Extra Output options.

Extra Dutput |

V' Generate extra output file

— Output file
™ Overide default

Iproiect‘l LR

— Format
Olutput format;: I j
Format wariant: INone j

Figure 211: XLINK extra output file options

Use the Generate extra output file option to generate an additional output file from the
build process.

Use the Override default option to override the default file name. If a name is not
specified, the linker will use the project name and a filename extension which depends
on the output format you choose.

Note: If youselect a format that generates two output files, the file type that you specify
will only affect the primary output file (first format).

MSP430 IAR Embedded Workbench® IDE

User Guide

Linker options °

Use the Output format drop-down list to select the appropriate output. If applicable,
use Format variant to select variants available for some of the output formats. The
alternatives depend on the output format you have chosen.

When you specify the Output format option as either debug (ubrof), or ubrof, a
UBROF output file with the filename extension dbg will be created.

#define

You can define symbols with the #define option.

Hdefine |

Defined symbols: [one per line]

Figure 212: XLINK defined symbols options

DEFINE SYMBOL

Use Define symbol to define absolute symbols at link time. This is especially useful for
configuration purposes.

Type the symbols that you want to define for the project, for example:
TESTVER=1
Note that there should be no space around the equal sign.

Any number of symbols can be defined in a linker command file. The symbol(s) defined
in this manner will be located in a special module called ?ABS_ENTRY_MOD, which is
generated by the linker.

XLINK will display an error message if you attempt to redefine an existing symbol.

Part 7. Reference information 381

Diagnostics

382

Diagnostics

The Diagnostics options determine the error and warning messages generated by the
TAR XLINK Linker.

Diagnostics

™ Always generate output Range checks

. % Generate emors

™ Segment cverlap warrings)
. Generate warrings

™ Mo global type checking ' Disabled

—warnings/E mor
™ Suppress all wamings
Suppress theze diagnostics:

Treat these as warnings:

Treat these as emors:

Figure 213: XLINK diagnostics options

ALWAYS GENERATE OUTPUT

Use Always generate output to generate an output file even if a non-fatal error was
encountered during the linking process, such as a missing global entry or a duplicate
declaration. Normally, XLINK will not generate an output file if an error is encountered.

Note: XLINK always aborts on fatal errors, even when this option is used.

The Always generate output option allows missing entries to be patched in later in the
absolute output image.

SEGMENT OVERLAP WARNINGS

Use Segment overlap warnings to reduce segment overlap errors to warnings, making
it possible to produce cross-reference maps, etc.

NO GLOBAL TYPE CHECKING

Use No global type checking to disable type checking at link time. While a well-written
application should not need this option, there may be occasions where it is helpful.

By default, XLINK performs link-time type checking between modules by comparing
the external references to an entry with the PUBLIC entry (if the information exists in the
object modules involved). A warning is generated if there are mismatches.

MSP430 IAR Embedded Workbench® IDE

User Guide

Linker options °

RANGE CHECKS

Use Range checks to specify the address range check. The following table shows the
range check options in the IAR Embedded Workbench IDE:

Option Description

Generate errors An error message is generated
Generate warnings Range errors are treated as warnings
Disabled Disables the address range checking

Table 103: XLINK range check options

If an address is relocated outside address range of the target CPU —code, external data,
or internal data address—an error message is generated. This usually indicates an error
in an assembler language module or in the segment placement.

WARNINGS/ERRORS

By default, the IAR XLINK Linker generates a warning when it detects that something
may be wrong, although the generated code might still be correct. The
Warnings/Errors options allow you to suppress or enable all warnings, and to change
the severity classification of errors and warnings.

Refer to the IAR Linker and Library Tools Reference Guide for information about the
different warning and error messages.

Use the following options to control the generation of warning and error messages:

Suppress all warnings

Use this option to suppress all warnings.

Suppress these diagnostics
This option suppresses the output of diagnostics for the tags that you specify.

For example, to suppress the warnings w117 and w177, type wll7,wl77.

Treat these as warnings

Use this option to specify errors that should be treated as warnings instead. For example,
to make error 106 become treated as a warning, type e106.

Treat these as errors

Use this option to specify warnings that should be treated as errors instead. For example,
to make warning 26 become treated as an error, type w26.

Part 7. Reference information 383

List

384

List

The List options determine the generation of an XLINK cross-reference listing.

List |
V¥ Generate linker listing

¥ Segment map File format———————
Symbols—————————— & Text
£ Hone HTML

" Symbol listing

Lines/ : ISU
& Module map) e

™ Module summary

™ Include suppressed entries

™ Static averlay map

Figure 214: XLINK list file options

GENERATE LINKER LISTING

Causes the linker to generate a listing and send it to the file projectname.map.

Segment map

Use Segment map to include a segment map in the XLINK listing file. The segment
map will contain a list of all the segments in dump order.

Symbols

The following options are available:

Option Description

None Symbols will be excluded from the linker listing.

Symbol listing An abbreviated list of every entry (global symbol) in every module. This
entry map is useful for quickly finding the address of a routine or data
element.

Module map A list of all segments, local symbols, and entries (public symbols) for

every module in the application.

Table 104: XLINK list file options

MSP430 IAR Embedded Workbench® IDE

User Guide

Linker options °

Module summary

Use the Module summary option to generate a summary of the contributions to the total
memory use from each module.

Only modules with a contribution to memory use are listed.

Include suppressed entries

Use this option to include all segment parts in a linked module in the list file, not just the
segment parts that were included in the output. This makes it possible to determine
exactly which entries that were not needed.

Static overlay map

If the compiler uses static overlay, this option includes a listing of the static overlay
system in the list file. Read more about static overlay maps in the IAR Linker and
Library Tools Reference Guide.

File format

The following options are available:

Option Description
Text Plain text file
HTML HTML format, with hyperlinks

Table 105: XLINK list file format options

Lines/page

Sets the number of lines per page for the XLINK listings to 1ines, which must be in
the range 10 to 150.

Part 7. Reference information 385

Config

386

Config

With the Config options you can specify the path and name of the linker command file,
override the default program entry, and specify the library search path.

Config |
Linker command file
™ Overide default
I$TDDLKIT_DIH$\EDNFIG\Ink.ch J
™ Overide default program entry
& Entrylabel I_program_start
| Defined by application
Search paths: [one per ling)
|$TDDLKIT_DIF|$\LIB\ ﬂ
R aw binary image
’7File: Symbol: Segment: Align:

Figure 215: XLINK config options

LINKER COMMAND FILE

A default linker command file is selected automatically for the chosen Target settings
in the General Options category. You can override this by selecting the Override
default option, and then specifying an alternative file.

The argument variables $TOOLKIT_ DIRS or $PROJ_DIRS can be used here too, to
specify a project-specific or predefined linker command file.

OVERRIDE DEFAULT PROGRAM ENTRY

By default, the program entry is the label __program_start. The linker will make sure
that a module containing the program entry label is included, and that the segment part
containing the label is not discarded.

The default program handling can be overridden by selecting Override default
program entry.

Selecting the option Entry label will make it possible to specify a label other than
__program_start to use for the program entry.

Selecting the option Defined by application will disable the use of a start label. The
linker will, as always, include all program modules, and enough library modules to
satisty all symbol references, keeping all segment parts that are marked with the root
attribute or that are referenced, directly or indirectly, from such a segment part.

MSP430 IAR Embedded Workbench® IDE

User Guide

Linker options °

SEARCH PATHS

The Search paths option specifies the names of the directories which XLINK will
search if it fails to find the object files to be linked in the current working directory. Add
the full paths of any further directories that you want XLINK to search.

The paths required by the product are specified by default, depending on your choice of
runtime library. If the box is left empty, XLINK searches for object files only in the
current working directory.

Type the full file path of your #include files. To make your project more portable, use
the argument variable $TOOLKIT_DIR$ for the subdirectories of the active product and
$PROJ_DIRS for the directory of the current project. For an overview of the argument
variables, see Argument variables summary, page 279.

RAW BINARY IMAGE

Use the Raw binary image options to link pure binary files in addition to the ordinary
input files. Use the text boxes to specify the following parameters:

File The pure binary file you want to link.

Symbol The symbol defined by the segment part where the binary data is placed.
Segment The segment where the binary data will be placed.

Align The alignment of the segment part where the binary data is placed.

The entire contents of the file are placed in the segment you specify, which means it can
only contain pure binary data, for example, the raw-binary output format. The segment
part where the contents of the specified file is placed, is only included if the specified
symbol is required by your application. Use the -g linker option if you want to force a
reference to the symbol. Read more about single output files and the -g option in the
IAR Linker and Library Tools Reference Guide.

Part 7. Reference information 387

Processing

388

Processing

With the Processing options you can specify details about how the code is generated.

Processing |

¥ Fill unused code memory

Fill pattern: IDxFF

¥ Generate checksum

Size: m

7 Agithretic: surm
' CRCIE (0x11021)
" CRC32 (0:4C11DB7)

" Crc polynomial: IUK‘I‘ID2‘I
Complement: IAs iz - l
Bit order; IMSB first vl

Alignment: |2 Initial walue: |00

Figure 216: XLINK processing options

FILL UNUSED CODE MEMORY

Use Fill unused code memory to fill all gaps between segment parts introduced by the
linker with the value you enter. The linker can introduce gaps either because of
alignment restriction, or at the end of ranges given in segment placement options.

The default behavior, when this option is not used, is that these gaps are not given a value
in the output file.

Fill pattern

Use this option to specify size, in hexadecimal notation, of the filler to be used in gaps
between segment parts.

Generate checksum

Use Generate checksum to checksum all generated raw data bytes. This option can
only be used if the Fill unused code memory option has been specified.

Size

Size specifies the number of bytes in the checksum, which can be 1, 2, or 4.

MSP430 IAR Embedded Workbench® IDE

User Guide

Linker options °

Algorithms

One of the following algorithms can be used:

Algorithms Description

Arithmetic sum Simple arithmetic sum

CRCI6 CRCI 6, generating polynomial Ox 11021 (default)
CRC32 CRC32, generating polynomial 0x104C11DB7

Crc polynomial CRC with a generating polynomial of the value you enter

Table 106: XLINK checksum algorithms

Complement

Use the Complement drop-down list to specify the one’s complement or two’s
complement.

Bit order

By default it is the most significant 1, 2, or 4 bytes (MSB) of the result that will be
output, in the natural byte order for the processor. Choose LSB from the Bit order
drop-down list if you want the least significant bytes to be output.

Alignment

Use this option to specify an optional alignment for the checksum. If you do not specify
an alignment explicitly, an alignment of 2 is used.

Initial value

Use this option to specify the initial value of the checksum. This is useful if the
microcontroller you are using has its own checksum calculation and you want that
calculation to correspond to the calculation performed by XLINK.

THE CHECKSUM CALCULATION

The CRC checksum is calculated as if the following code was called for each bit in the
input, starting with a CRC of 0:

unsigned long
crc(int bit, unsigned long oldcrc)
{
unsigned long newcrc = (oldcrc << 1) *~ bit;
if (oldcrc & 0x80000000)
newcrc "= POLY;
return newcrc;

Part 7. Reference information 389

Extra Options

390

POLY is the generating polynomial. The checksum is the result of the final call to this
routine. If the complement is specified, the checksum is the one’s or two’s complement
of the result.

The linker will place the checksum byte(s) at the __checksum label in the CHECKSUM
segment. This segment must be placed using the segment placement options like any
other segment.

For additional information about segment control, see the IAR Linker and Library Tools
Reference Guide.

Extra Options

The Extra Options page provides you with a command line interface to the linker.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Figure 217: Extra Options page for the linker

USE COMMAND LINE OPTIONS

Additional command line arguments for the linker (not supported by the GUI) can be
specified here.

MSP430 IAR Embedded Workbench® IDE

User Guide

Library builder options

This chapter describes the XAR Library builder options available in the IAR
Embedded Workbench® IDE.

For information about how to set options, see Setting options, page 89.

Output

XAR options are not available by default. Before you can set XAR options in the AR
Embedded Workbench IDE, you must add the XAR Library Builder tool to the list of

categories. Choose Project>Options to display the Options dialog box, and select the
General Options category. On the Output page, select the Library option.

If you select the Library option, Library Builder appears as a category in the Options
dialog box. As a result of the build process, the XAR Library Builder will create a
library output file. Before you create the library you can set the XAR options.

Part 7. Reference information

391

To set XAR options, select Library Builder from the category list to display the XAR
options.

Options for node “projectl - Debug" E
Category: Factory Settings |

General Options

C/EC++ compiler Output |
Azzembler -
Custom Build Output file

™ Overide default

Iproiect‘l THE

: Library Builder

()3 I Cancel |

Figure 218: XAR output options

To restore all settings to the default factory settings, click the Factory Settings button.

The Output file option overrides the default name of the output file. Enter a new name
in the Override default text box.

MSP430 IAR Embedded Workbench® IDE
392 User Guide

Debugger options

This chapter describes the C-SPY® options available in the IAR Embedded
Workbench® IDE.

For information about how to set options, see Setting options, page 89.

In addition, options specific to the C-SPY FET debugger are described in the
chapter C-SPY® FET-specific debugging.

Setup

To set C-SPY options in the AR Embedded Workbench IDE, choose Project>Options
to display the Options dialog box. Then select Debugger in the Category list. The
Setup page contains the generic C-SPY options.

Setup |
Driver———————————— ¥ Funto
I Simulator j Imain
— Setup macro

™ Use macra file
| L

— Device description file

™ Overide default

| L

Figure 219: Generic C-SPY options
To restore all settings to the default factory settings, click the Factory Settings button.
The Setup options specify the C-SPY driver, the setup macro file, and device

description file to be used, and which default source code location to run to.

DRIVER

Selects the appropriate driver for use with C-SPY, the Simulator driver or the FET
Debugger driver.

Part 7. Reference information 393

Setup

394

Contact your distributor or IAR Systems representative, or visit the IAR Systems web
site at www.iar.com for the most recent information about the available C-SPY drivers.

RUN TO

Use this option to specify a location you want C-SPY to run to when you start the
debugger and after a reset.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for example function names.

If you leave the check-box empty, the program counter will contain the regular hardware
reset address at each reset.
SETUP MACROS

To register the contents of a setup macro file in the C-SPY startup sequence, select Use
macro file and enter the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

DEVICE DESCRIPTION FILE

Use this option to load a device description file that contains device-specific
information.

For details about the device description file, see Device description file, page 113.

Device description files for each MSP430 device are provided in the directory
430\config and have the filename extension ddf.

MSP430 IAR Embedded Workbench® IDE

User Guide

Debugger options ___4

Extra Options

The Extra Options page provides you with a command line interface to the C-SPY
debugger.

r

(Cammatdlife:

Figure 220: Extra Options page for the C-SPY debugger

USE COMMAND LINE OPTIONS

Additional command line arguments for the C-SPY debugger (not supported by the
GUI) can be specified here.

Part 7. Reference information 395

Plugins

Plugins
On the Plugins page you can specify C-SPY plugin modules to be loaded and made
available during debug sessions. Plugin modules can be provided by IAR Systems, as
well as by third-party suppliers. Contact your software distributor or IAR representative,
or visit the IAR Systems web site, for information about available modules.

Flugins |

Select pluging to load:

Code Coverage

[(1SEGGER emb05

Description: |[Enables code coverage in the debugger.

Lacatian: |E:\Program FilesiAF SystemshEmbedded ‘Workbench 4.0 f

Originator: |IAF| Systems
Wersior: |4.B.2.D

Figure 221: C-SPY plugin options
By default, Select plugins to load lists the plugin modules delivered with the product

installation.

If you have any C-SPY plugin modules delivered by any third-party vendor, these will
also appear in the list.

The common\plugins directory is intended for generic plugin modules. The
430\plugins directory is intended for target-specific plugin modules.

MSP430 IAR Embedded Workbench® IDE
396 User Guide

C-SPY® macros reference

This chaptersection gives reference information about the C-SPY macros. First
a syntax description of the macro language is provided. Then, the available
setup macro functions and the pre-defined system macros are summarized.
Finally, each system macro is described in detail.

The macro language

The syntax of the macro language is very similar to the C language. There are macro
statements, which are similar to C statements. You can define macro functions, with or
without parameters and return value. You can use built-in system macros, similar to C
library functions. Finally, you can define global and local macro variables. You can
collect your macro functions in a macro file (filename extension mac).

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has the following form:

macroName (parameterList)

{

macroBody

}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.
PREDEFINED SYSTEM MACRO FUNCTIONS

The macro language also includes a wide set of predefined system macro functions
(built-in functions), similar to C library functions. For detailed information about each
system macro, see .

Part 7. Reference information

397

The macro language

398

MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application space. It
can then be used in a C-SPY expression. For detailed information about C-SPY
expressions, see the chapter C-SPY expressions, page 123.For details about C-SPY
expressions, see the MSP430 IAR Embedded Workbench® IDE User Guide.

The syntax for defining one or more macro variables is:
__var nameList;
where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

Expression What it means
myvar = 3.5; myvar is now type float, value 3.5.
myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 107: Examples of C-SPY macro variables

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

Macro strings

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello! ", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFindor __subString. The result can be a new macro string. You can
concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example str[3]. You can get
the length of a string using sizeof (str). Note that a macro string is not
NULL-terminated.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® macros reference __¢

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char []) to a macro string. For example, assume
the following definition of a C string in your application:

char const *cstr = "Hello";

Then examine the following examples:

__var str; /* A macro variable */

str = cstr /* str is now just a pointer to char */

sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = _ toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */

str[l] /* 101, the ASCII code for 'e' */

str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 400.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions
expression;

For detailed information about C-SPY expressions, see C-SPY expressions, page
123.For details about C-SPY expressions, see the MSP430 IAR Embedded Workbench®
IDE User Guide.

Conditional statements
if (expression)

statement

if (expression)
statement
else
statement

Loop statements

for (init_expression; cond_expression; update_expression)
statement

while (expression)
statement

Part 7. Reference information 399

The macro language

400

do
statement
while (expression);

Return statements
return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks
Statements can be grouped in blocks.

{
statementl
statement2

SstatementN

FORMATTED OUTPUT

C-SPY provides different methods for producing formatted output:

__message argList; Prints the output to the Debug Log window.
__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

where argListis a comma-separated list of C-SPY expressions or strings, and £ileis
the result of the __openFile system macro, see __openFile, page 407.

Examples

Use the __message statement, as in the following example:

varl = 42;
var2 = 37;
__message "This line prints the values ", varl, " and ", var2,

" in the Log window.";
This should produce the following message in the Log window:

This line prints the values 42 and 37 in the Log window.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® macros reference __¢

Use __ fmessage to write the output to the designated file, for example:
__fmessage myfile, "Result is ", res, "!\n";

Finally, use __smessage to produce strings, for example:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer".

Specifying display format of arguments

It is possible to override the default display format of a scalar argument (number or
pointer) in argList by suffixing it with a : followed by a format specifier. Available
specifiers are $b for binary, %o for octal, $d for decimal, $x for hexadecimal and %c for
character. These match the formats available in the Watch and Locals windows, but
number prefixes and quotes around strings and characters are not printed. Another
example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

This might produce:
The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%C;

would produce:
65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

‘When printing a value of type char*, use the $x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

Part 7. Reference information 401

Setup macro functions summary

Setup macro functions summary

The following table summarizes the available setup macro functions:

Macro Description

execUserPreload Called after communication with the target system is established
but before downloading the target application.
Implement this macro to initialize memory locations and/or
registers which are vital for loading data properly.

execUserSetup Called once after the target application is downloaded.
Implement this macro to set up the memory map, breakpoints,
interrupts, register macro files, etc.

execUserReset Called each time the reset command is issued.
Implement this macro to set up and restore data.

execUserExit Called once when the debug session ends.
Implement this macro to save status data etc.

Table 108: C-SPY setup macros

Note: If you define interrupts or breakpoints in a macro file that is executed at system
start (using execUserSetup) we strongly recommend that you also make sure that they
are removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see Simulating an interrupt, page 57.For an example, see the
tutorials in the MSP430 IAR Embedded Workbench® IDE User Guide.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

C-SPY system macros summary

The following table summarizes the pre-defined system macros:

Macro Description

__cancelAllInterrupts Cancels all ordered interrupts
__cancelInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

__closeFile Closes a file that was opened by __openFile
__disableInterrupts Disables generation of interrupts
__driverType Verifies the driver type
__enableInterrupts Enables generation of interrupts

Table 109: Summary of system macros

MSP430 IAR Embedded Workbench® IDE
402 User Guide

C-SPY® macros reference __¢

Macro Description

__evaluate Interprets the input string as an expression and
evaluates it.

__openFile Opens a file for I/O operations

__orderInterrupt Generates an interrupt

__popSimulatorInterruptExecu

t

ingStack

__readFile

__readFileByte

__readMemoryByte

__readMemory8

__readMemoryl6

__readMemory32

__registerMacroFile

_resetFile

__setAdvancedTriggerBreak

_ _setCodeBreak

__setConditionalBreak

__setDataBreak

__setRangeBreak

__setSimBreak

__sourcePosition

__strFind

__subString

_ _toLower

__toString

__toUpper

__writeFile

__writeFileByte

__writeMemoryByte

Informs the interrupt simulation system that an
interrupt handler has finished executing

Reads from the specified file

Reads one byte from the specified file

Reads one byte from the specified memory location
Reads one byte from the specified memory location
Reads two bytes from the specified memory location
Reads four bytes from the specified memory location
Registers macros from the specified file

Rewinds a file opened by __openFile

Sets an advanced trigger breakpoint

Sets a code breakpoint

Sets a conditional breakpoint

Sets a data breakpoint

Sets a range breakpoint

Sets a simulation breakpoint

Returns the file name and source location if current
execution location corresponds to a source location

Searches a given string for the occurrence of another
string

Extracts a substring from another string

Returns a copy of the parameter string where all the
characters have been converted to lower case

Prints strings

Returns a copy of the parameter string where all the
characters have been converted to upper case

Writes to the specified file
Writes one byte to the specified file

Writes one byte to the specified memory location

Table 109: Summary of system macros (Continued)

Part 7. Reference information 403

Description of C-SPY system macros

Macro Description

__writeMemorys8 Writes one byte to the specified memory location

__writeMemoryl6 Writes a two-byte word to the specified memory
location

__writeMemory32 Writes a four-byte word to the specified memory
location

Table 109: Summary of system macros (Continued)

Description of C-SPY system macros

HistoryThis section gives reference information about each of the C-SPY system

macros.
__cancelAlllnterrupts
Syntax __cancelAllInterrupts()
Return value int 0
Description Cancels all ordered interrupts.
Applicability This system macro is only available in IAR C-SPY Simulator.
__cancellnterrupt
Syntax __cancelInterrupt (interrupt_id)
Parameter
interrupt_id The value returned by the corresponding
__orderInterrupt macro call (unsigned long)
Return value
Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 110: __cancellnterrupt return values
Description Cancels the specified interrupt.

Applicability This system macro is only available in IAR C-SPY Simulator.

MSP430 IAR Embedded Workbench® IDE
404 User Guide

__clearBreak

Syntax

Parameter

Return value
Description

See also

__closeFile

Syntax

Parameter

Return value

Description

__disablelnterrupts

Syntax

Return value

Description

Applicability

C-SPY® macros reference __¢

__clearBreak (break_id)

break_id The value returned by any of the set breakpoint macros
int 0
Clears a user-defined breakpoint.

Defining breakpoints, page 129.For details about the breakpoint system, see the
MSP430 IAR Embedded Workbench® IDE User Guide.

__closeFile(filehandle)

filehandle The macro variable used as filehandle by the __openFile macro

int 0

Closes a file previously opened by __openFile.

__disableInterrupts()

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 111: __disablelnterrupts return values
Disables the generation of interrupts.

This system macro is only available in IAR C-SPY Simulator.

Part 7. Reference information 405

Description of C-SPY system macros

406

__driverType

__enablelnterrupts

Syntax

Parameter

Return value

Description

Example

Syntax

Return value

Description

Applicability

__driverType(driver_id)

driver_id A string corresponding to the driver you want to check for; one of
the following:
"sim" corresponds to the simulator driver
"fet" corresponds to the FET debugger driver

Result Value
Successful 1
Unsuccessful 0

Table 112: __driverType return values

Checks to see if the current AR C-SPY Debugger driver is identical to the driver type
of the driver_ id parameter.

__driverType("sim")

If a simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__enableInterrupts()

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 113: __enablelnterrupts return values
Enables the generation of interrupts.

This system macro is only available in IAR C-SPY Simulator.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® macros reference __¢

__evaluate
Syntax __evaluate(string, valuePtr)
Parameter
string Expression string
valuePtr Pointer to macro variable storing the result
Return value
Result Value
Successful int 0
Unsuccessful int 1

Table 114: __evaluate return values

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to be valuePtr.

Example The following example assumes that the variable i is defined and has the value 5:
__evaluate("i + 3", &myVar)

The macro variable myVar is assigned the value 8.

__openFile
Syntax __openFile(file, access)
Parameters
file The filename as a string
access The access type (string); one of the following:
"t ASCII read
W ASCII write
Return value
Result Value
Successful The file handle
Unsuccessful An invalid file handle, which tests as False

Table 115: __openFile return values

Part 7. Reference information 407

Description of C-SPY system macros

408

__orderinterrupt

Description

Example

See also

Syntax

Parameters

Return value

Description

Applicability

Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (* . pew or * . prj) is located. The argument to __openFile
can specify a location relative to this directory. In addition, you can use argument
variables such as $PROJ_DIR$ and $TOOLKIT_DIRS in the path argument.

__var filehandle; /* The macro variable to contain */
/* the file handle */
filehandle = __openFile("Debug\\Exe\\test.tst", "r");
if (filehandle)
{
/* successful opening */
}

Argument variables summary, page 279.

__orderInterrupt (specification, first_activation,
repeat_interval, variance, infinite_hold time,
hold time, probability)

specification The interrupt (string). The specification can either be the full
specification used in the device description file (ddf) or only the
name. In the latter case the interrupt system will automatically get
the description from the device description file.

first_activation The first activation time in cycles (integer)

repeat_interval The periodicity in cycles (integer)

variance The timing variation range in percent (integer between 0 and 100)
infinite_hold_time | if infinite, otherwise 0.

hold_time The hold time (integer)

probability The probability in percent (integer between 0 and 100)

The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.
Generates an interrupt.

This system macro is only available in IAR C-SPY Simulator.

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® macros reference __¢

Example The following example generates a repeating interrupt using an infinite hold time first
activated after 4000 cycles:

__orderInterrupt("USARTORX_VECTOR", 4000, 2000, 0, 1, 0, 100);

__popSimulatorinterruptExecutingStack

Syntax __popSimulatorInterruptExecutingStack (void)
Return value This macro has no return value.
Description Informs the interrupt simulation system that an interrupt handler has finished executing,

as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

Applicability This system macro is only available in IAR C-SPY Simulator.
__readFile
Syntax __readFile(file, valuePtr)
Parameters
file A file handle
valuePtr A pointer to a variable

Return value

Result Value
Successful 0
Unsuccessful Non-zero error number

Table 116: __readFile return values

Description Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Example __var number;
if (__readFile(myFile, &number) == 0)
{

Part 7. Reference information 409

Description of C-SPY system macros

// Do something with number

__readFileByte
Syntax __readFileByte(file)
Parameter
file A file handle
Return value -1 upon error or end-of-file, otherwise a value between 0 and 255.
Description Reads one byte from the file file.
Example __var byte;
while ((byte = __readFileByte(myFile)) != -1)
{
// Do something with byte
}
__readMemoryByte
Syntax __readMemoryByte (address, zone)
Parameters
address The memory address (integer)
zone The memory zone name (string); for a list of available zones,
see Memory addressing, page |35
Return value The macro returns the value from memory.
Description Reads one byte from a given memory location.
Example __readMemoryByte (0x0108, "Memory") ;
__readMemory8
Syntax __readMemory8 (address, zone)

MSP430 IAR Embedded Workbench® IDE
410 User Guide

C-SPY® macros reference __¢

Parameters
address The memory address (integer)
zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 135
Return value The macro returns the value from memory.
Description Reads one byte from a given memory location.
Example __readMemory8 (0x0108, "Memory") ;
__readMemoryl 6
Syntax __readMemoryl6 (address, zone)
Parameters
address The memory address (integer)
zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 135
Return value The macro returns the value from memory.
Description Reads a two-byte word from a given memory location.
Example __readMemoryl6 (0x0108, "Memory") ;
__readMemory32
Syntax __readMemory32 (address, zone)
Parameters
address The memory address (integer)
zone The memory zone name (string); for a list of available
zones, see Memory addressing, page 135
Return value The macro returns the value from memory.
Description Reads a four-byte word from a given memory location.
Example __readMemory32(0x0108, "Memory");

Part 7. Reference information 411

Description of C-SPY system macros

__registerMacroFile

Syntax

Parameter

Return value

Description

Example

See also

__resetFile

Syntax

Parameter

Return value

Description

__registerMacroFile(filename)

filename A file containing the macros to be registered (string)
int 0

Registers macros from a setup macro file. With this function you can register multiple
macro files during C-SPY startup.

__registerMacroFile("c:\\testdir\\macro.mac") ;

Registering and executing using setup macros and setup files, page 147.For details about
the macro system, see the MSP430 IAR Embedded Workbench® IDE User Guide.

__resetFile(filehandle)

filehandle The macro variable used as filehandle by the __openFile
macro

int 0

Rewinds a file previously opened by __openFile.

__setAdvancedTriggerBreak

Syntax

Parameters

__setAdvancedTriggerBreak (type, condition, access, action, mask
cond_value)

All parameters are strings.

type The breakpoint type; either "Address", "Data", or "Register".

condition The breakpoint condition operator, either "==", ">=", "<=",or " =",

MSP430 IAR Embedded Workbench® IDE

412 User Guide

Return value

Description
Applicability

Example

See also

C-SPY® macros reference __¢

access The memory access type. One of the following:
"Read"
"Write"
"ReadWrite"
"Fetch"
"FetchHold"
"NoFetch"
"NoFetchRead"
"NoFetchNoDMA"
"DMA "
"NoDMA"
"WriteNoDMA"
"NoFetchReadNoDMA"
"ReadNoDMA"
"ReadDMA"
"WriteDMA"

action The action type: "Break", "Trigger", or "BreakTrigger".
mask A 16-bit value that the breakpoint address or value will be masked with.

cond_value An extra conditional data value.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 117: __setAdvancedTriggerBreak return values
Sets an advanced trigger breakpoint.
This macro can only be used with the FET Debugger version of C-SPY.

__var brk;
brk = __setAdvancedTriggerBreak ("Register", ">=", "Write",
"Trigger", "0x0000", "0x4000");

__clearBreak (brk) ;
Defining breakpoints, page 129 and Advanced trigger breakpoints, page 213. For details

about the breakpoint system, see the MSP430 IAR Embedded Workbench® IDE User
Guide.

Part 7. Reference information 413

Description of C-SPY system macros

414

__setCodeBreak

Syntax

Parameters

Return value

Description

Examples

See also

__setCodeBreak(location, count, condition, cond_type, action)

location A string with a location description. This can be either:
A source location on the form { filename}.line.col (for
example {D:\\src\\prog.c}.12.9)
An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0x42)
An expression whose value designates a location (for example main)

count The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

condition The breakpoint condition (string)
cond_type The condition type; either “CHANGED” or “TRUE” (string)
action An expression, typically a call to a macro, which is evaluated when

the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 118: __setCodeBreak return values

Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

__setCodeBreak ("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode() ") ;

The following example sets a code breakpoint on the label main in your assembler
source:

__setCodeBreak ("#main", 0, "1", "TRUE", "");

Defining breakpoints, page 129.For details about the breakpoint system, see the
MSP430 IAR Embedded Workbench® IDE User Guide.

MSP430 IAR Embedded Workbench® IDE

User Guide

__setConditionalBreak

Syntax

Parameters

Return value

Description

C-SPY® macros reference __¢

__setConditionalBreak(location, type, operator, access, action,

mask, cond _value, cond_ operator,
cond_access, cond_mask)

All parameters are strings.

location

type
operator

access

action

mask
cond_value
cond_operator
cond_access

cond_mask

The breakpoint location. This can be either:
A source location on the form " { filename} . 1ine.col" (for example
"{D:\\src\\prog.c}.12.9")

An absolute location on the form " zone: hexaddress" or simply
"hexaddress" (for example "Memory: 0x42")

An expression whose value designates a location (for example
"my_global_variable").

A register (for example "R10")

The breakpoint type; either "Address", "Data", or "Register".
The breakpoint operator, either "==", ">=", "<=",or "!=".

The memory access type: "Read", "Write", "ReadWrite", or
"Fetch".

The action type: "Break", "Trigger", or "BreakTrigger".

A 16-bit value that the breakpoint address or value will be masked with.
An extra conditional data value.

The condition operator, either "==", ">=", "<=",or "!=",

The access type of the condition: "Read" or "Write".

The mask value of the condition.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 119: __setConditionalBreak return values

Sets a conditional breakpoint.

Part 7. Reference information

415

Description of C-SPY system macros

Applicability

Example

See also

__setDataBreak

Syntax

Parameters

This macro can only be used with the FET Debugger version of C-SPY.

__var brk;

brk = __setConditionalBreak("R10", "Register", "0x5000", ">=",
"Write", "Trigger", "0x0000", "0x4000", "<=", "Write",
“0x00FF") ;

__clearBreak (brk) ;

Defining breakpoints, page 129 and Conditional breakpoints, page 210. For details
about the breakpoint system, see the MSP430 IAR Embedded Workbench® IDE User
Guide.

__setDataBreak(location, count, condition, cond_type, access,
action)

Jocation A string with a location description. This can be either:
A source location on the form { filename}.line. col (for
example {D:\\src\\prog.c}.12.9),although this is not
very useful for data breakpoints

An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0x42)

An expression whose value designates a location (for example
my_global_variable).

count The number of times that a breakpoint condition must be fulfilled
before a break occurs (integer)

condition The breakpoint condition (string)
cond_type The condition type; either “"CHANGED” or “TRUE” (string)
access The memory access type: "R" for read, "W" for write, or "RW"

for read/write

action An expression, typically a call to a macro, which is evaluated when
the breakpoint is detected

MSP430 IAR Embedded Workbench® IDE

416 User Guide

Return value

Description

Applicability

Example

See also

__setRangeBreak

Syntax

Parameters

C-SPY® macros reference __¢

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 120: __setDataBreak return values

Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

This system macro is only available in IAR C-SPY Simulator.

__var brk;
brk = __setDataBreak ("Memory:0x4710", 3, "d>6", "TRUE",
"W", "ActionData()");

__clearBreak (brk) ;

Defining breakpoints, page 129.For details about the breakpoint system, see the
MSP430 IAR Embedded Workbench® IDE User Guide.

__setRangeBreak (start_loc, end _loc, end _cond, type, access,
action, action_when)

All parameters are strings.

start_loc The start location. This can be either:
A source location on the form " { filename} .1ine.col" (for example
"{D:\\src\\prog.c}.12.9")

An absolute location on the form " zone: hexaddress" or simply
"hexaddress" (for example "Memory: 0x42")

An expression whose value designates a location (for example
"my_global_variable").

end_loc The end location. This can be either the same as for start_JIoc above or
the length of the range.

end_cond The type of end condition, either "Location", "Length", or
"Automatic".

Part 7. Reference information 417

Description of C-SPY system macros

418

Return value

Description
Applicability

Example

See also

type The breakpoint type; either "Address" or "Data".

access The memory access type: "Read", "Write", "ReadWrite", or
"Fetch".

action The action type: "Break", "Trigger", or "BreakTrigger".

action_when Specifies if the action should happen at an access inside or outside of the
specified range, either "Inside" or "Outside".

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 121: __setRangeBreak return values
Sets a range breakpoint.

This macro can only be used with the FET Debugger version of C-SPY.

__var brk;
brk = __setRangeBreak ("Memory:0x1240", "Memory:0x1360",
"Location", "Address", "Fetch", "Trigger", "Inside");

__clearBreak (brk) ;

Defining breakpoints, page 129 and Range breakpoints, page 207. For details about the
breakpoint system, see the MSP430 IAR Embedded Workbench® IDE User Guide.

MSP430 IAR Embedded Workbench® IDE

User Guide

___setSimBreak

Syntax

Parameters

Return value

Description

Applicability

C-SPY® macros reference __¢

__setSimBreak(location, access, action)

location A string with a location description. This can be either:
A source location on the form { filename}.line.col (for
example {D:\\src\\prog.c}.12.9), although this is not
very useful for simulation breakpoints.
An absolute location on the form zone: hexaddress or simply
hexaddress (for example Memory : 0OXE01E).
An expression whose value designates a location (for example
my_global_variable).

access The memory access type: "R" for read or "W" for write

action An expression, typically a call to a macro function, which is
evaluated when the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 122: __setSimBreak return values

Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

This system macro is only available in the IAR C-SPY Simulator.

Part 7. Reference information 419

Description of C-SPY system macros

420

__sourcePosition

Syntax

Parameters

Return value

Description

___strFind

Syntax

Parameters

Return value
Description

Example

See also

__subString

Syntax

__sourcePosition(linePtr, colPtr)

linePtr Pointer to the variable storing the line number
colPtr Pointer to the variable storing the column number
Result Value

Successful Filename string

Unsuccessful Empty (" ") string

Table 123: __sourcePosition return values
If the current execution location corresponds to a source location, this macro returns the

filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind(macroString, pattern, position)

macroString The macro string to search in
pattern The string pattern to search for
position The position where to start the search. The first position is 0

The position where the pattern was found or -1 if the string is not found.

This macro searches a given string for the occurrence of another string.

1]
w

__strFind("Compiler", "pile", 0)
__strFind("Compiler", "foo", 0) = -1

Macro strings, page 398.

_subString (macroString, position, length)

MSP430 IAR Embedded Workbench® IDE

User Guide

C-SPY® macros reference __¢

Parameters
macroString The macro string from which to extract a substring
position The start position of the substring. The first position is 0.
length The length of the substring

Return value A substring extracted from the given macro string.

Description This macro extracts a substring from another string.

Example __subString("Compiler", 0, 2)
The resulting macro string contains Co.
__subString("Compiler", 3, 4)
The resulting macro string contains pile.

See also Macro strings, page 398.

__toLower

Syntax __toLower (macroString)

Parameter macroString is any macro string.

Return value The converted macro string.

Description This macro returns a copy of the parameter string where all the characters have been
converted to lower case.

Example __toLower ("IAR")
The resulting macro string contains iar.
__toLower ("Mix42")
The resulting macro string contains mix42.

See also Macro strings, page 398.

Part 7. Reference information 421

Description of C-SPY system macros

__toString

Syntax

Parameter

Return value
Description

Example

See also

__toUpper

Syntax
Parameter
Return value

Description

Example

See also

__writeFile

Syntax

__toString(C_string, maxlength)

string Any null-terminated C string

maxlength The maximum length of the returned macro string

Macro string.
This macro is used for converting C strings (char* or char []) into macro strings.

Assuming your application contains the following definition:
char const * hptr = "Hello World!";

the following macro call:

__toString (hptr, 5)

would return the macro string containing Hello.

Macro strings, page 398.

__toUpper (macroString)

macroString is any macro string.

The converted string.

This macro returns a copy of the parameter macroString where all the characters have

been converted to upper case.

__toUpper ("string")

The resulting macro string contains STRING.

Macro strings, page 398.

__writeFile(file, value)

MSP430 IAR Embedded Workbench® IDE

422 User Guide

Parameters

Return value

Description

__writeFileByte

Syntax

Parameters

Return value

Description

__writeMemoryByte

Syntax

Parameters

Return value
Description

Example

C-SPY® macros reference __¢

file A file handle
value An integer
int 0

Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __ fmessage statement can do the same thing. The __writeFile macrois
provided for symmetry with __readrile.

__writeFileByte(file, value)

file A file handle
value An integer in the range 0-255
int 0

Writes one byte to the file £file.

__writeMemoryByte(value, address, zone)

value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for a list of available zones,

see Memory addressing, page |35
int 0
Writes one byte to a given memory location.

__writeMemoryByte (0x2F, 0x1F, "Memory");

Part 7. Reference information

423

Description of C-SPY system macros

__writeMemory8
Syntax __writeMemory8(value, address, zone)
Parameters
value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for a list of available zones,
see Memory addressing, page |35
Return value int 0
Description Writes one byte to a given memory location.
Example __writeMemory8 (0x2F, 0x8020, "Memory") ;
__writeMemoryl 6
Syntax __writeMemoryl6 (value, address, zone)
Parameters
value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for a list of available zones,
see Memory addressing, page 135
Return value int 0
Description Writes two bytes to a given memory location.
Example __writeMemoryl6 (0x2FFF, 0x8020, "Memory");
__writeMemory32
Syntax __writeMemory32 (value, address, zone)
Parameters
value The value to be written (integer)
address The memory address (integer)

MSP430 IAR Embedded Workbench® IDE
424 User Guide

C-SPY® macros reference __¢

zone The memory zone name (string); for a list of available zones,
see Memory addressing, page |35

Return value int 0
Description Writes four bytes to a given memory location.
Example

__writeMemory32 (0x5555FFFF, 0x8020, "Memory");

Part 7. Reference information 425

Description of C-SPY system macros

MSP430 IAR Embedded Workbench® IDE
426 User Guide

Glossary
A

Absolute location

A specific memory address for an object specified in the
source code, as opposed to the object being assigned a location
by the JAR XLINK Linker.

Absolute segments
Segments that have fixed locations in memory before linking.

Address expression
An expression which has an address as its value.

Application

The program developed by the user of the IAR Systems toolkit
and which will be run as an embedded application on a target
processor.

Architecture

A term used by computer designers to designate the structure
of complex information-processing systems. It includes the
kinds of instructions and data used, the memory organization
and addressing, and the methods by which the system is
implemented. The two main architecture types used in
processor design are Harvard architecture and von Neumann
architecture.

Assembler directives

The set of commands that control how the assembler operates.

Assembler options
Parameters you can specify to change the default behavior of
the assembler.

Assembler language

A machine-specific set of mnemonics used to specify
operations to the target processor and input or output registers
or data areas. Assembler language might sometimes be
preferred over C/Embedded C++ to save memory or to
enhance the execution speed of the application.

Glossary °

Auto variables

The term refers to the fact that each time the function in which
the variable is declared is called, a new instance of the variable
is created automatically. This can be compared with the
behavior of local variables in systems using static overlay,
where a local variable only exists in one instance, even if the
function is called recursively. Also called local variables.
Compare Register variables.

Backtrace

Information that allows the IAR C-SPY® Debugger to show,
without any runtime penalty, the complete stack of function
calls wherever the program counter is, provided that the code
comes from compiled C functions.

Bank
See Memory bank.

Bank switching

Switching between different sets of memory banks. This
software technique is used to increase a computer's usable
memory by allowing different pieces of memory to occupy the
same address space.

Banked code
Code that is distributed over several banks of memory. Each
function must reside in only one bank.

Banked data
Data that is distributed over several banks of memory. Each
data object must fit inside one memory bank.

Banked memory
Has multiple storage locations for the same address. See also
Memory bank.

Bank-switching routines
Code that selects a memory bank.

425

426

Batch files

A text file containing operating system commands which are
executed by the command line interpreter. In Unix, this is
called a “shell script” because it is the Unix shell which
includes the command line interpreter. Batch files can be used
as a simple way to combine existing commands into new
commands.

Bitfield
A group of bits considered as a unit.

Breakpoint

1. Code breakpoint. A point in a program that, when reached,
triggers some special behavior useful to the process of
debugging. Generally, breakpoints are used for stopping
program execution or dumping the values of some or all of the
program variables. Breakpoints can be part of the program
itself, or they can be set by the programmer as part of an
interactive session with a debugging tool for scrutinizing the
program's execution.

2. Data breakpoint. A point in memory that, when accessed,
triggers some special behavior useful to the process of
debugging. Generally, data breakpoints are used to stop
program execution when an address location is accessed either
by a read operation or a write operation.

3. Immediate breakpoint. A point in memory that, when
accessed, trigger some special behavior useful in the process of
debugging. Immediate breakpoints are generally used for
halting the program execution in the middle of a memory
access instruction (before or after the actual memory access
depending on the access type) while performing some
user-specified action. The execution is then resumed. This
feature is only available in the simulator version of C-SPY.

C

Calling convention

A calling convention describes the way one function in a
program calls another function. This includes how register
parameters are handled, how the return value is returned, and
which registers that will be preserved by the called function.
The compiler handles this automatically for all C and C++

MSP430 IAR Embedded Workbench® IDE
User Guide

functions. All code written in assembler language must
conform to the rules in the calling convention in order to be
callable from C or C++, or to be able to call C and C++
functions. The C calling convention and the C++ calling
conventions are not necessarily the same.

Cheap

As in cheap memory access. A cheap memory access either
requires few cycles to perform, or few bytes of code to
implement. A cheap memory access is said to have a low cost.
See Memory access cost.

Checksum

A computed value which depends on the contents of a block of
data and which is stored along with the data in order to detect
corruption of the data. Compare CRC (cyclic redundancy
checking).

Code banking
See Banked code.

Code model

The code model controls how code is generated for an
application. Typically, the code model controls behavior such
as how functions are called and in which code segment
functions will be located. All object files of an application
must be compiled using the same code model.

Code pointers

A code pointer is a function pointer. As many microcontrollers
allow several different methods of calling a function,
compilers for embedded systems usually provide the users
with the ability to use all these methods.

Do not confuse code pointers with data pointers.

Compilation unit
See Translation unit.

Compiler function directives

The compiler function directives are generated by the compiler
to pass information about functions and function calls to the
TIAR XLINK Linker. To view these directives, you must create
an assembler list file. These directives are primarily intended
for compilers that support static overlay, a feature which is
useful in smaller microcontrollers.

Compiler options
Parameters you can specify to change the default behavior of
the compiler.

Cost
See Memory access cost.

CRC (cyclic redundancy checking)

A number derived from, and stored with, a block of data in
order to detect corruption. A CRC is based on polynomials and
is a more advanced way of detecting errors than a simple
arithmetic checksum. Compare Checksum.

C-SPY options
Parameters you can specify to change the default behavior of
the IAR C-SPY Debugger.

Cstartup
Code that sets up the system before the application starts
executing.

C-style preprocessor

A preprocessor is either a stand-alone application or an
integrated part of a compiler, that performs preprocessing of
the input stream before actual compilation takes place. A
C-style preprocessor follows the rules set up in the ANSI
specification of the C language and implements commands
like #define, #if, and #include, which are used to handle textual
macro substitution, conditional compilation, and inclusion of
other files.

D

Data banking
See Banked data.

Glossary °

Data model

The data model specifies the default memory type. This means
that the data model typically controls one or more of the
following: The method used and the code generated to access
static and global variables, dynamically allocated data, and the
runtime stack. It also controls the default pointer type and in
which data segments static and global variables will be
located. A project can only use one data model at a time, and
the same model must be used by all user modules and all
library modules in the project.

Data pointers

Many microcontrollers have different addressing modes in
order to access different memory types or address spaces.
Compilers for embedded systems usually have a set of
different data pointer types so they can access the available
memory efficiently.

Data representation
How different data types are laid out in memory and what
value ranges they represent.

Declaration

A specification to the compiler that an object, a variable or
function, exists. The object itself must be defined in exactly
one translation unit (source file). An object must either be
declared or defined before it is used. Normally an object that is
used in many files is defined in one source file. A declaration
is normally placed in a header file that is included by the files
that use the object.

For example:

/* Variable "a" exists somewhere. Function
"b" takes two int parameters and returns an
int. */

extern int a;
int b(int, int);

Definition

The variable or function itself. Only one definition can exist
for each variable or function in an application. See also
Tentative definition.

427

For example:

int a;
int b(int x, int y)
{

return x + y;

}

Derivative
One of two or more processor variants in a series or family of
microprocessors or microcontrollers.

Device description file

A file used by the IAR C-SPY Debugger that contains various
device-specific information such as I/O registers (SFR)
definitions, interrupt vectors, and control register definitions.

Device driver
Software that provides a high-level programming interface to
a particular peripheral device.

Digital signal processor (DSP)

A device that is similar to a microprocessor, except that the
internal CPU has been optimized for use in applications
involving discrete-time signal processing. In addition to
standard microprocessor instructions, digital signal processors
usually support a set of complex instructions to perform
common signal-processing computations quickly.

Disassembly window

A C-SPY window that shows the memory contents
disassembled as machine instructions, interspersed with the
corresponding C source code (if available).

Dynamic initialization

Variables in a program written in C are initialized during the
initial phase of execution, before the main function is called.
These variables are always initialized with a static value,
which is determined either at compile-time or at link-time.
This is called static initialization. In Embedded C++, variables
might require initialization to be performed by executing code,
for example, running the constructor of global objects, or
performing dynamic memory allocation.

MSP430 IAR Embedded Workbench® IDE
User Guide

Dynamic memory allocation

There are two main strategies for storing variables: statically at
link-time, or dynamically at runtime. Dynamic memory
allocation is often performed from the heap and it is the size of
the heap that determines how much memory that can be used
for dynamic objects and variables. The advantage of dynamic
memory allocation is that several variables or objects that are
not active at the same time can be stored in the same memory,
thus reducing the memory need of an application. See also
Heap memory.

Dynamic object

An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory
that is dynamically allocated. Compare Static object.

E

EEPROM

Electrically Erasable, Programmable Read-Only Memory. A
type of ROM that can be erased electronically, and then be
re-programmed.

EPROM

Erasable, Programmable Read-Only Memory. A type of ROM
that can be erased by exposing it to ultraviolet light, and then
be re-programmed.

Embedded C++

A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that
performance and portability are particularly important in
embedded systems development was considered when
defining the language.

Embedded system

A combination of hardware and software, designed for a
specific purpose. Embedded systems are often part of a larger
system or product.

Emulator

An emulator is a hardware device that performs emulation of
one or more derivatives of a processor family. An emulator can
often be used instead of the actual microcontroller and
connects directly to the printed circuit board—where the
microcontroller would have been connected—via a connecting
device. An emulator always behaves exactly as the processor it
emulates, and is used when debugging requires all systems
actuators, or when debugging device drivers.

Enumeration

A type which includes in its definition an exhaustive list of
possible values for variables of that type. Common examples
include Boolean, which takes values from the list [true, false],
and day-of-week which takes values [Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, Saturday].
Enumerated types are a feature of typed languages, including
C and Ada.

Characters, (fixed-size) integers, and even floating-point types
might be (but are not usually) considered to be (large)
enumerated types.

Exceptions

An exception is an interrupt initiated by the processor
hardware, or hardware that is tightly coupled with the
processor, for instance, a memory management unit (MMU).
The exception signals a violation of the rules of the
architecture (access to protected memory), or an extreme error
condition (division by zero).

Do not confuse this use of the word exception with the term
exception used in the C++ language (but not in Embedded
C++).

Expensive

As in expensive memory access. An expensive memory access
either requires many cycles to perform, or many bytes of code
to implement. An expensive memory access is said to have a
high cost. See Memory access cost.

Extended keywords

Non-standard keywords in C and C++. These usually control
the definition and declaration of objects (that is, data and
functions). See also Keywords.

Glossary °

F

Format specifiers

Used to specify the format of strings sent by library functions
such as printf. In the following example, the function call
contains one format string with one format specifier, %c, that
prints the value of a as a single ASCII character:

)

printf("a = %c", a);

G

General options

Parameters you can specify to change the default behavior of
all tools that are included in the IAR Embedded Workbench
IDE.

Generic pointers

Pointers that have the ability to point to all different memory
types in, for example, a microcontroller based on the Harvard
architecture.

H

Harvard architecture

A microcontroller based on the Harvard architecture has
separate data and instruction buses. This allows execution to
occur in parallel. As an instruction is being fetched, the current
instruction is executing on the data bus. Once the current
instruction is complete, the next instruction is ready to go. This
theoretically allows for much faster execution than a von
Neumann architecture, but there is some added silicon
complexity. Compare von Neumann architecture.

Heap memory

The heap is a pool of memory in a system that is reserved for
dynamic memory allocation. An application can request parts
of the heap for its own use; once memory has been allocated
from the heap it remains valid until it is explicitly released
back to the heap by the application. This type of memory is

429

useful when the number of objects is not known until the
application executes. Note that this type of memory is risky to
use in systems with a limited amount of memory or systems
that are expected to run for a very long time.

Heap size
Total size of memory that can be dynamically allocated.

Host

The computer that communicates with the target processor.
The term is used to distinguish the computer on which the
debugger is running from the microcontroller the embedded
application you develop runs on.

IDE (integrated development environment)
A programming environment with all necessary tools
integrated into one single application.

Include file
A text file which is included into a source file. This is often
performed by the preprocessor.

Inline assembler
Assembler language code that is inserted directly between C
statements.

Inlining

An optimization that replaces function calls with the body of
the called function. This optimization increases the execution
speed and can even reduce the size of the generated code.

Instruction mnemonics

A word or acronym used in assembler language to represent a
machine instruction. Different processors have different
instruction sets and therefore use a different set of mnemonics
to represent them, such as, ADD, BR (branch), BLT (branch if
less than), MOVE, LDR (load register).

Interrupt vector
A small piece of code that will be executed, or a pointer that
points to code that will be executed when an interrupt occurs.

MSP430 IAR Embedded Workbench® IDE
User Guide

Interrupt vector table

A table containing interrupt vectors, indexed by interrupt type.
This table contains the processor's mapping between interrupts
and interrupt service routines and must be initialized by the
programmer.

Interrupts

In embedded systems, the use of interrupts is a method of
detecting external events immediately, for example a timer
overflow or the pressing of a button.

Interrupts are asynchronous events that suspend normal
processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by both
hardware (I/0O, timer, machine check) and software
(supervisor, system call or trap instruction). Compare Trap.

Intrinsic
An adjective describing native compiler objects, properties,
events, and methods.

Intrinsic functions

1. Function calls that are directly expanded into specific
sequences of machine code. 2. Functions called by the
compiler for internal purposes (that is, floating point
arithmetic etc.).

K

Key bindings
Key shortcuts for menu commands used in the AR Embedded
Workbench IDE.

Keywords

A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they
cannot be used as identifiers (in other words, user-defined
objects such as variables or procedures). See also Extended
keywords.

L

L-value

A value that can be found on the left side of an assignment and
thus be changed. This includes plain variables and
de-referenced pointers. Expressions like (x + 10) cannot be
assigned a new value and are therefore not L-values.

Language extensions
Target-specific extensions to the C language.

Library
See Runtime library.

Linker command file

A file used by the IAR XLINK Linker. It contains command
line options which specify the locations where the memory
segments can be placed, thereby assuring that your application
fits on the target chip.

Because many of the chip-specific details are specified in the
linker command file and not in the source code, the linker
command file also helps to make the code portable.

In particular, the linker specifies the placement of segments,
the stack size, and the heap size.

Local variable
See Auto variables.

Location counter
See Program location counter (PLC).

Logical address
See Virtual address (logical address).

Glossary °

M

MAC (Multiply and accumulate)

A special instruction, or on-chip device, that performs a
multiplication together with an addition. This is very useful
when performing signal processing where many filters and

transforms have the form:
N

Y= E Cit Kiaj

=0

The accumulator of the MAC usually has a higher precision
(more bits) than normal registers. See also Digital signal
processor (DSP).

Macro

1. Assembler macros are user-defined sets of assembler lines
that can be expanded later in the source file by referring to the
given macro name. Parameters will be substituted if referred

to.

2. C macro. A text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of each
macro is then substituted for any occurrences of the macro
name in the rest of the translation unit.

3. C-SPY macros are programs that you can write to enhance
the functionality of the IAR C-SPY Debugger. A typical
application of C-SPY macros is to associate them with
breakpoints; when such a breakpoint is hit, the macro is run
and can for example be used to simulate peripheral devices, to
evaluate complex conditions, or to output a trace.

The C-SPY macro language is like a simple dialect of C, but is
less strict with types.

Mailbox

A mailbox in an RTOS is a point of communication between
two or more tasks. One task can send messages to another task
by placing the message in the mailbox of the other task.
Mailboxes are also known as message queues or message
ports.

431

432

Memory access cost

The cost of a memory access can be in clock cycles, or in the
number of bytes of code needed to perform the access. A
memory which requires large instructions or many instructions
is said to have a higher access cost than a memory which can
be accessed with few, or small instructions.

Memory area
A region of the memory.

Memory bank

The smallest unit of continuous memory in banked memory.
One memory bank at a time is visible in a microcontroller’s
physical address space.

Memory map
A map of the different memory areas available to the
microcontroller.

Memory model

Specifies the memory hierarchy and how much memory the
system can handle. Your application must use only one
memory model at a time, and the same model must be used by
all user modules and all library modules.

Microcontroller

A microprocessor on a single integrated circuit intended to
operate as an embedded system. As well as a CPU, a
microcontroller typically includes small amounts of RAM,
PROM, timers, and 1/O ports.

Microprocessor

A CPU contained on one (or a small number of) integrated
circuits. A single-chip microprocessor can include other
components such as memory, memory management, caches,
floating-point unit, I/O ports and timers. Such devices are also
known as microcontrollers.

Module

The basic unit of linking. A module contains definitions for
symbols (exports) and references to external symbols
(imports). When compiling C/C++, each translation unit
produces one module. In assembler, each source file can
produce more than one module.

MSP430 IAR Embedded Workbench® IDE
User Guide

N

Nested interrupts
A system where an interrupt can be interrupted by another
interrupt is said to have nested interrupts.

Non-banked memory
Has a single storage location for each memory address in a
microcontroller’s physical address space.

Non-initialized memory
Memory that can contain any value at reset, or in the case of a
soft reset, can remember the value it had before the reset.

Non-volatile storage

Memory devices such as battery-backed RAM, ROM,
magnetic tape and magnetic disks that can retain data when
electric power is shut off. Compare Volatile storage.

NOP

No operation. This is an instruction that does not perform
anything, but is used to create a delay. In pipelined
architectures, the NOP instruction can be used for
synchronizing the pipeline. See also Pipeline.

o

Operator

A symbol used as a function, with infix syntax if it has two
arguments (+, for example) or prefix syntax if it has only one
(for instance, bitwise negation, ~). Many languages use
operators for built-in functions such as arithmetic and logic.

Operator precedence

Each operator has a precedence number assigned to it that
determines the order in which the operator and its operands are
evaluated. The highest precedence operators are evaluated
first. Use parentheses to group operators and operands to
control the order in which the expressions are evaluated.

P

Parameter passing
See Calling convention.

Peripheral
A hardware component other than the processor, for example
memory or an I/O device.

Pipeline

A structure that consists of a sequence of stages through which
a computation flows. New operations can be initiated at the
start of the pipeline even though other operations are already
in progress through the pipeline.

Pointer
An object that contains an address to another object of a
specified type.

#pragma

During compilation of a C/C++ program, the #pragma
preprocessing directive causes the compiler to behave in an
implementation-defined manner. This can include, for
example, producing output on the console, changing the
declaration of a subsequent object, changing the optimization
level, or enabling/disabling language extensions.

Pre-emptive multitasking

An RTOS task is allowed to run until a higher priority process
is activated. The higher priority task might become active as
the result of an interrupt. The term preemptive indicates that
although a task is allotted to run a given length of time (a
timeslice), it might lose the processor at any time. Each time
an interrupt occurs, the task scheduler looks for the highest
priority task that is active and switches to that task. If the
located task is different from the task that was executing before
the interrupt, the previous task is suspended at the point of
interruption.

Compare Round Robin.

Preprocessing directives
A set of directives that are executed before the parsing of the
actual code is started.

Glossary °

Preprocessor
See C-style preprocessor.

Processor variant
The different chip setups that the compiler supports. See
Derivative.

Program counter (PC)
A special processor register that is used to address instructions.
Compare Program location counter (PLC).

Program location counter (PLC)

Used in the IAR Assembler to denote the code address of the
current instruction. The PLC is represented by a special
symbol (typically $) that can be used in arithmetic expressions.
Also called simply location counter (LC).

PROM
Programmable Read-Only Memory. A type of ROM that can
be programmed only once.

Project
The user application development project.

Project options
General options that apply to an entire project, for example the
target processor that the application will run on.

Q

Qualifiers
See Type qualifiers.

R

R-value
A value that can be found on the right side of an assignment.
This is just a plain value. See also L-value.

433

Real-time operating system (RTOS)

An operating system which guarantees the latency between an
interrupt being triggered and the interrupt handler starting, as
well as how tasks are scheduled. An RTOS is typically much
smaller than a normal desktop operating system. Compare
Real-time system.

Real-time system
A computer system whose processes are time-sensitive.
Compare Real-time operating system (RTOS).

Register constant

A register constant is a value that is loaded into a dedicated
processor register when the system is initialized. The compiler
can then generate code that assumes that the constants are
present in the dedicated registers.

Register

A small on-chip memory unit, usually just one or a few bytes
in size, which is particularly efficient to access and therefore
often reserved to function as a temporary storage area during
program execution.

Register locking

Register locking means that the compiler can be instructed that
some processor registers shall not be used during normal code
generation. This is useful in a number of situations. For
example, some parts of a system might be written in assembler
language to gain speed. These parts might be given dedicated
processor registers. Or the register might be used by an
operating system, or by other third-party software.

Register variables

Typically, register variables are local variables that have been
placed in registers instead of on the (stack) frame of the
function. Register variables are much more efficient than other
variables because they do not require memory accesses, so the
compiler can use shorter/faster instructions when working
with them. See also Auto variables.

Relocatable segments
Segments that have no fixed location in memory before
linking.

MSP430 IAR Embedded Workbench® IDE
User Guide

Reset

A reset is a restart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft
reset). A hard reset can usually not be distinguished from the
power-on condition, which a soft reset can be.

ROM-monitor

A piece of embedded software that has been designed
specifically for use as a debugging tool. It resides in the ROM
of the evaluation board chip and communicates with a
debugger via a serial port or network connection. The
ROM-monitor provides a set of primitive commands to view
and modify memory locations and registers, create and remove
breakpoints, and execute your application. The debugger
combines these primitives to fulfill higher-level requests like
program download and single-step.

Round Robin

Task scheduling in an operating system, where all tasks have
the same priority level and are executed in turn, one after the
other. Compare Pre-emptive multitasking.

RTOS
See Real-time operating system (RTOS).

Runtime library
A collection of useful routines, stored as an object file, that can
be linked into any application.

Runtime model attributes

A mechanism that is designed to prevent modules that are not
compatible to be linked into an application. A runtime attribute
is a pair constituted of a named key and its corresponding
value.

Two modules can only be linked together if they have the same
value for each key that they both define.

S

Saturated mathematics

Most, if not all, C and C++ implementations use mod—2N
2-complement-based mathematics where an overflow wraps
the value in the value domain, that is, (127 + 1) =-128.
Saturated mathematics, on the other hand, does not allow
wrapping in the value domain, for instance, (127 + 1) = 127, if
127 is the upper limit. Saturated mathematics is often used in
signal processing, where an overflow condition would have
been fatal if value wrapping had been allowed.

Scheduler

The part of an RTOS that performs task-switching. It is also
responsible for selecting which task that should be allowed to
run. There are many different scheduling algorithms, but most
of them are either based on static scheduling (performed at
compile-time), or on dynamic scheduling (where the actual
choice of which task to run next is taken at runtime, depending
on the state of the system at the time of the task-switch). Most
real-time systems use static scheduling, because it makes it
possible to prove that the system will not violate the real-time
requirements.

Scope

The section of an application where a function or a variable can
be referenced by name. The scope of an item can be limited to
file, function, or block.

Segment
A chunk of data or code that should be mapped to a physical
location in memory. The segment can either be placed in RAM

(read-and-writeable memory) or in ROM (read-only memory).

Segment map
A set of segments and their locations.

Semaphore

A semaphore is a type of flag that is used for guaranteeing
exclusive access to resources. The resource can be a hardware
port, a configuration memory, or a set of variables. If several
different tasks have to access the same resource, the parts of
the code (the critical sections) that access the resource have to
be made exclusive for every task. This is done by obtaining the

Glossary °

semaphore that protects that resource, thus blocking all other
tasks from it. If another task wishes to use the resource, it also
has to obtain the semaphore. If the semaphore is already in use,
the second task has to wait until the semaphore is released.
After the semaphore is released, the second task is allowed to
execute and can obtain the semaphore for its own exclusive
access.

Severity level

The level of seriousness of the diagnostic response from the
assembler, compiler, or debugger, when it notices that
something is wrong. Typical severity levels are remarks,
warnings, errors, and fatal errors. A remark just points to a
possible problem, while a fatal error means that the
programming tool exits without finishing.

Short addressing

Many microcontrollers have special addressing modes for
efficient access to internal RAM and memory mapped I/O.
Short addressing is therefore provided as an extended feature
by many compilers for embedded systems. See also Data
pointers.

Side effect

An expression in C or C++ is said to have a side-effect if it
changes the state of the system. Examples are assignments to
avariable, or using a variable with the post-increment operator.
The C and C++ standards state that a variable that is subject to
a side-effect should not be used more that once in an
expression. As an example, this statement violates that rule:

*d++ = *d;

Signal

Signals provide event-based communication between tasks. A
task can wait for one or more signals from other tasks. Once a
task receives a signal it waits for, execution continues. A task
in an RTOS that waits for a signal does not use any processing
time, which allows other tasks to execute.

435

Simulator

A debugging tool that runs on the host and behaves as similar
to the target processor as possible. A simulator is used to debug
the application when the hardware is unavailable, or not
needed for proper debugging. A simulator is usually not
connected to any physical peripheral devices. A simulated
processor is often slower, or even much slower, than the real
hardware.

Single stepping
Executing one instruction or one C statement at a time in the
debugger.

Skeleton code
An incomplete code framework that allows the user to
specialize the code.

Special function register (SFR)
A register that is used to read and write to the hardware
components of the microcontroller.

Stack frames

Data structures containing data objects as preserved registers,
local variables, and other data objects that need to be stored
temporary for a particular scope (usually a function).

Earlier compilers usually had a fixed size and layout on a stack
frame throughout a complete function, while modern
compilers might have a very dynamic layout and size that can
change anywhere and anytime in a function.

Stack segments

The segment or segments that reserve space for the stack(s).
Most processors use the same stack for calls and parameters,
but some have separate stacks.

Statically allocated memory

This kind of memory is allocated once and for all at link-time,
and remains valid all through the execution of the application.
Variables that are either global or declared static are allocated
this way.

MSP430 IAR Embedded Workbench® IDE
User Guide

Static object

An object whose memory is allocated at link-time and is
created during system startup (or at first use). Compare
Dynamic object.

Static overlay

Instead of using a dynamic allocation scheme for parameters
and auto variables, the linker allocates space for parameters
and auto variables at link time. This generates a worst-case
scenario of stack usage, but might be preferable for small chips
with expensive stack access or no stack access at all.

Structure value

A collecting names for structs and unions. A struct is a
collection of data object placed sequentially in memory
(possibly with pad bytes between them). A union is a
collection of data sharing the same memory location.

Symbol
A name that represents a register, an absolute value, or a
memory address (relative or absolute).

Symbolic location
A location that uses a symbolic name because the exact
address is unknown.

T

Target

1. An architecture. 2. A piece of hardware. The particular
embedded system you are developing the application for. The
term is usually used to distinguish the system from the host
system.

Task (thread)

A task is an execution thread in a system. Systems that contain
many tasks that execute in parallel are called multitasking
systems. Because a processor only executes one instruction
stream at the time, most systems implement some sort of
task-switch mechanism (often called context switch) so that all
tasks get their share of processing time. The process of
determining which task that should be allowed to run next is
called scheduling. Two common scheduling methods are
Pre-emptive multitasking and Round Robin.

Tentative definition
A variable that can be defined in multiple files, provided that
the definition is identical and that it is an absolute variable.

Terminal /O
A simulated terminal window in the IAR C-SPY Debugger.

Timeslice

The (longest) time an RTOS allows a task to run without
running the task-scheduling algorithm. It is possible that a task
will be allowed to execute during several consecutive
timeslices before being switched out. It is also possible that a
task will not be allowed to use its entire time slice, for example
if, in a preemptive system, a higher priority task is activated by
an interrupt.

Timer
A peripheral that counts independent of the program
execution.

Translation unit

A source file together with all the header files and source files
included via the preprocessor directive #include, with the
exception of the lines skipped by conditional preprocessor
directives such as #if and #ifdef.

Trap

A trap is an interrupt initiated by inserting a special instruction
into the instruction stream. Many systems use traps to call
operating system functions. Another name for trap is software
interrupt.

Type qualifiers

In standard C/C++, const or volatile. IAR compilers usually
add target-specific type qualifiers for memory and other type
attributes.

U

UBROF (Universal Binary Relocatable Object
Format)

File format produced by the IAR Systems programming tools.

Glossary °

A\

Virtual address (logical address)

An address that needs to be translated by the compiler, linker
or the runtime system into a physical memory address before
it is used. The virtual address is the address seen by the
application, which can be different from the address seen by
other parts of the system.

Virtual space

An IAR Embedded Workbench Editor feature which allows
you to place the insertion point outside of the area where there
are actual characters.

Volatile storage

Data stored in a volatile storage device is not retained when the
power to the device is turned off. In order to preserve data
during a power-down cycle, you should store it in non-volatile
storage. This should not be confused with the C keyword
volatile. Compare Non-volatile storage.

von Neumann architecture

A computer architecture where both instructions and data are
transferred over a common data channel. Compare Harvard
architecture.

W

Woatchpoints

Watchpoints keep track of the values of C variables or
expressions in the C-SPY Watch window as the application is
being executed.

X

XAR options
The set of commands that control how the IAR XAR Library
Builder operates.

XLIB options
The set of commands that control how the IAR XLIB Librarian
operates.

437

438

XLINK options
Parameters you can specify to change the default behavior of
the IAR XLINK Linker.

Z

Zero-overhead loop

A loop in which the loop condition, including branching back
to the beginning of the loop, does not take any time at all. This
is usually implemented as a special hardware feature of the
processor and is not available in all architectures.

Zone

Different processors have widely differing memory
architectures. Zone is the term C-SPY uses for a named
memory area. For example, on processors with separately
addressable code and data memory there would be at least two
zones. A processor with an intricate banked memory scheme
might have several zones.

MSP430 IAR Embedded Workbench® IDE
User Guide

A

absolute location, definitionof 425
absolute segments, definitionof 425
Access Type (Breakpoints dialog box) 172,174
Action (Breakpoints dialog box). 172, 174, 257
Additional include directories (assembler option). 369
Additional include directories (compiler option) 359
address expression, definitionof.................... 425
address range check, specifying in XLINK. 383
advanced trigger breakpoints, setting 213
Allow C-SPY-specific output file (XLINK option). 379
Allow erase/write access to locked flash memory
(FET debuggeroption)covuiinenenen .. 199
Always generate output (XLINK option) 382
application
built outside the IDE 113
definitionof 425
EEStNG v ottt 92,151
architecture, definitionof 425
argument variables i 304
in #include filepaths 359, 369, 387
SUMMATY &+ o v vt vt et et e e et e e e eeeenn 279
asm (filename extension) 18
assembler
command line version 73
documentation 20
ontheHelpmenu 309
features 11
assembler comments, text style ineditor. 97
assembler directives il 68
definitionof 425
textstyleineditor, 97
assembler labels, viewing 128
assembler language, definitionof 425
assembler list files
compiler call frame information, including 358
conditional information, specifying............... 368
cross-references, generating. 368

Index

format L 51
GENETALING .« . oottt et e 367
header, including, 367
lines per page, specifying. 368
tab spacing, specifying. 368
Assembler mnemonics (compiler option) 358
assembler optionsl 365
definitionof L L L., 425
Additional include directories 369
Cross-reference 368
Defined symbols, 370
Diagnostics 370
Enable multibyte support. 365
Generate debuginfo........... 367
Includeheader.......... 367
Include listing oo, 368
Language........ i 365
Lines/pageoovii i 368
LaSt. oo 367
Macro quote charactersc.c.o.o.... 366
Max number of errors, 371
OULPUL &« o ettt e 366
Preprocessor. oo 369
Tabspacingouiuiiiin .. 368
User symbols are case sensitive 365
assembler output, including debug information 366
assembler Preprocessor.oouvveuennennenn . 369
Assembler Reference Guide (Help menu). 309
assembler symbols
defining 370
using in C-SPY expressions. 124
assembler variables, viewing. 128
assert, in built applications 81
assumptions, programming eXperience XXXV
Attach to running target (C-SPY Download option). 199
Auto indent (editor option) 292
auto variables, definitionof. 425
AUto Window 324
COMEXEMENU . . o\ v ettt et et et e e e eeeeeenes 324

—e

439

440

Automatic (compiler option). 352
Autostep settings dialog box (Debug menu) 338
a43 (filename extension).iiitn... 18

backtrace information

definitionof 425

generated by compiler, 121
bank switching, definitionof. 425
banked code, definitionof. 425
banked data, definitionof 425
banked memory, definitionof 425
bank-switching routines, definitionof. 425
BatchBuild. i 91
Batch Build Configuration dialog box (Project menu) . . . 285
Batch Build dialog box (Project menu). 284
batch files

definitionof 426

specifying in Embedded Workbench IDE 78, 305
bin, common (subdirectory) 17
bin, 430 (subdirectory) 16
bitfield, definitionof. 426
blocks, in C-SPY macrosc.oo.... 400
bold style, inthisguide. x1
bookmarks

adding 101

showingineditor.............o, 292
Break (button)., 121, 315
breakpoint condition, example 131
Breakpoint Usage dialog box (Simulator menu). . . . 175, 216

USIIE &« vttt ettt e e e e e 133
breakpointst 120

advanced triggers (FET Debugger) 213

code,examplec.oiiiii 414

conditional

in FET Debugger 209
USING o oottt 217
conditional, example, 63

MSP430 IAR Embedded Workbench® IDE
User Guide

connectinga C-SPYmacro 149
CONSUIMETS . . .t ev ettt ettt e e e e e 134
data ... 171
example. 413,416-418
definitionof L L L., 426
immediate 173
example. 63
in Memory window, 137
inthe simulator 170
listingall i 133
range,usingin FET 206
setting
inmemory window 130
USINg SYStEM MACIOS .« .« . v v e e e e e eaene 132
using the dialogbox 130
SELLMES. ¢ vttt e 282
single-stepping if not available. 111
system, descriptionof, 129
toggling 130
VIEWING « oot 132
Breakpoints dialog box
Advanced Triggerc. ... 213
Code .o 256
Conditional i, 209
Data. 171
Immediate i, 173
Log oo 258
Range....... ... 206
Breakpoints window (Viewmenu) 255
Buffered terminal output (XLINK option) 379
-build (iarbuild command line option) 92
Build Actions Configuration (Build Actions options). . . .375
build configuration
CIEALINE « o v vt ettt et e e e e 82
definitionof 81
Build window (Viewmenu) 261
building
commandsfor il 91
from the command line 92

OPLIONS .« vttt et 296

the Process . . . oot 89
C comments, text styleineditor 97
C compiler. See compiler
C function information, in C-SPY................... 121
C keywords, text style ineditor. 97
C symbols, using in C-SPY expressions 123
C variables, using in C-SPY expressions 123
¢ (filename extension).iiiirinnan.n.. 18
call chain, displaying in C-SPY 121
Call stack information. 121
Call Stack windowc.cvvnu.n.. 121, 326

CONEEXEMENU & . o\ vt vt e ee e et e eeeeenes 327

example 62
calling convention, definitionof 426
__cancelAlllnterrupts (C-SPY system macro) 404
__cancelInterrupt (C-SPY system macro). 404
category, in Options dialogbox. 90, 283
cfg (filename extension) 18,295
characters, in assembler macro quotes 366
cheap memory access, definitionof 426
Check for word access on odd address (C-SPY option) .. 160
Check In Files, dialogbox 246
Check Out Files, dialogbox 247
checksum

definitionof 426

generating in XLINK. 388
-clean (iarbuild command line option) 92
__clearBreak (C-SPY systemmacro) 405
CLIB. ..t 11

documentationiian.n. XXXix, 21
Close Workspace (Filemenu). 266
__closeFile (C-SPY systemmacro) 405
code

banked, definitionof 425

skeleton, definitionof 436

Index °

EESHNE v ov vttt e 92
code coverage
CommMAnds .« .« ov i 330
COMEXEMENU « . e vovvvt ettt et et e e eeeeeenes 330
USINE @ oottt e 154
VIEWING « oot 155
Code Coverage windowcoouiuien.n. 329
code generation
assembler. 365
compiler, features. ool 10
code INteErityottt 86
code memory, fillingunused. 388
code model, definitionof 426
Code page (compiler options). 354
code pointers, definitionof 426
code templates, usingineditor, 99
command line options,
specitying in Embedded Workbench IDE. 78, 305
command prompt icon, in this guide. x1
Common Fonts (IDE Options dialog box) 288
common (directory)c.oueuiriinnnenan.. 17
compiler
command line version 4,73
documentation 11, 20
features 10
compiler call frame information
including in assembler listfile 358
compiler diagnostics. 358
SUPPIESSING © o v v vttt 361
compiler function directives, definitionof 427
compiler list files
assembler mnemonics, including 358
example 32
GENETALING .« . v o vttt e 358
source code, including, 358
compiler OptioNSo vt 351
definitionof L i 427
setting in Embedded Workbench, example 29
Additional include directories 359
Assembler mnemonics. 358

441

442

Automatic L 352
Code ... 354
Defined symbols 360
Diagnosticscoiiiii i 360
Diagnostics (inlistfile) 358
Disable language extensions 352
Embedded C++o 352
Enable multibyte support. 353
Enableremarks L ... 361
Extended Embedded C++ 352
Generate debug information. 357
Ignore standard include directories 359, 369
Include compiler call frame information 358
Includesource, 358
Languaget 351
Language conformance 352
LSt oot 358
MISRA C. oottt e e 362
Module type.o 357
Objectmodulename 357
Optimizations.oovtntn e 355
OULPUL . o et 356
Output assembler file. 358
Outputlistfile 358
Plain ‘char’is.........o .. 353
Preincludefile 360
Preprocessor. i, 359
Preprocessor outputtofile 360
Reduce stackusage 354
Relaxed ISO/ANSI i 352
Require prototypes. 352
R4 utilization. L. 354
RSutilization. 354
Strict ISO/ANSI. 352
Suppress these diagnostics. 361
Treat all warnings as €rrors 362
Treatthese as €rrors oo v en e e 362
Treat these asremarks 361
Treat these as warningsc........ 362

MSP430 IAR Embedded Workbench® IDE
User Guide

20-bit context save on interrupt 355
compiler output

debug information, including. 357
modulename 357
COMPIlEr PrePrOCeSSOT. « . v v vt vttt eeeeeen 359
Compiler Reference Guide (Help menu). 309
compiler symbols, defining. 360
computer style, typographic convention x1
conditional breakpoints
SELLNG .« ottt 209
conditional breakpoints, example 63
conditional statements, in C-SPY macros............. 399
Conditions (Breakpoints dialog) 173, 258
Config options (XLINK)., 386
Configuration file (general option) 347
Configurations for project dialog box (Project menu). . . . 280
Configure Auto Indent (IDE Options dialog box). 292
Configure Tools (Toolsmenu) 303
Configure Viewers dialog box (Tools menu)........... 307
config, common (subdirectory). 17
config, 430 (subdirectory)., 16
Connection (C-SPY FET option) 200
context menus
Call Stack window, 327
Disassembly window 317
Editorwindow i 249
Editor windowtab 249
Memory window 319
Messages windowc.ciuin... 261-264
Source Browser window 254
Source Code Control 243
Watchwindow 322
Workspace window 241, 255
conventions, typographic x1
COpyright. . ..o ii
cost. See memory access cost
cpp (filename extension).vuvenenenan.. 18
CPU registers, definitions 111
CPU variant, definitionof. 428

CRC, definitionof. 427
Create New Project dialog box (Project menu). 282
Cross-reference (assembler option). 368
cross-references, inmap files 35
Cstartup, definitionof. 427
current position, in C-SPY Disassembly window 316
cursor, in C-SPY Disassembly window. 316
$CUR_DIRS (argument variable) 279
CUR_LINES (argument variable).................. 279
custombuild 93
USING « ettt e 93
custom tool configuration. 93
Custom Tool Configuration (Custom Build options). 373
C++ comments, text styleineditor................... 97
C++ keywords, text styleineditor 97
CH+tutorial 53
C-SPY
characteristics
FET Debugger., 191
debugger SyStems.t 8
OVEIVIEBW . . ettt et i eee 108
ENVIroNment OVerViewvuvuennenenen.. 109
IDE reference information. 313
OVEIVIEW . ottt ettt e et e e et 5
plugin modules, loading. 112
SELNG UP « o v ov ettt e 110
Simulator. 159
starting the debugger 112
C-SPY Download options
Attach torunning target. 199
C-SPY drivers
Simulator 159
C-SPY eXpressionsovuvenenennnnnenen.n. 123
evaluating. 126
inC-SPYmacros.ooiiiiinon.. 399
Quick Watch,using o ... 126
Tooltip watch, using., 126
Watch window, using.c.covnon... 126
C-SPYmacroscouviiiiinnnnan.. 143,397

Index °

blocks. 400
conditional statements 399
C-SPY expressionsc.c.oeeenenenennnn.. 399
dialogbox 338
USING . o ettt e 146
examples 144
checking status of register. 148
checking the statusof WDT 148
creatingalogmacro 149
execUserExit L ... 402
execUserSetup, example 59, 65
CXECULING v v v vttt et e 145
connecting to a breakpoint 149
using Quick Watch 148
using setup macro and setup file. 147
functions 124, 397
loop statementsc.iniiiia... 399
MAacro Statementsouuiunennennnnn.. 399
setup macro file
definitionof oL L. 145
EXECULINZ. v v vttt ettt e 147
setup macro function
definitionof 145
execUserPreload 402
execUserReset., 402
execUserSetupvtiininni 402
SUMMATY .« v v v ve et ee e e e e e e e e e 402
USINE « ot ettt et e 143
variables. 124, 398
_closeFile. 405
_driverType . ..o 406
_evaluate ... 407
_openFile..... i 407
_orderInterrupt. L. 408-409
_readFileByte......... 409
__readFileByte (systemmacro) 410
_readMemoryByte........ L. 410
__registerMacroFile. 412
_resetFile. 412

443

444

_setCodeBreak.
_setDataBreak oL
_setSimBreak.o
__sourcePosition oo
_strFind ..o
_subString
_tohower
_tOSHING .o
_toUpper ...
_writeFile. L L
_writeFileByte.
__writeMemoryByte oL
_writeMemoryl6......... i
_writeMemory32
_writeMemory8
C-SPY menus
Emulator (FET)
C-SPY optionscovuirinninunenen .. 283,
Check for word access on odd address.
definitionof L.
Device descriptionfile.
Driver.oi
Plugins. i
Runto i 111,
SetUP « vt 160,
Setup macros oovv i
Simulator Setup
C-SPY windows

Code COverage.ovveenenenennnnnn.. 154,
Disassembly. i
FindinTrace

MSP430 IAR Embedded Workbench® IDE
User Guide

USING . o ettt e 136
Profiling. o 330
Register 321
example. 44
USING . o ettt e 138
Stack ... 332
Terminal /O 328
example. 46
Tracecove 162
Trace Expressionsc.coiiia... 164
Watch.o 322
C-style preprocessor, definitionof 427
C/C++ syntax styles, options 295
data breakpoints i 171
data model, definitionof.......... 427
data pointers, definitionof 427
data representation, definitionof. 427
dbg (filename extension).o, 18
dbgt (filename extension)co ... 18
ddf (filename extension) 18,112
Debug info with terminal I/O (XLINK option). 328
debug information

generating inassembler, .. 367

in compiler, generating 357
Debug information for C-SPY (XLINK option) 378
Debug Log window (View menu). 264
Debugmenuiuiiniiiin 337
Debug protocol (C-SPY FET option) 200
debugger concepts, definitionsof 107
debugger drivers

FET ..o 192

simulator 159
debugger sysStem OVerviewueuven.n. 108
Debugger (IDE Options dialogbox) 297
debugging projects

externally built applications. 113

in disassembly mode, example. 43
declaration, definitionof. 427
default installation path., 15
#define options (XLINK) 381
#define statement, in compiler 360
Define symbol (XLINK option) 381
Defined symbols (assembler option). 370
Defined symbols (compiler option). 360
definition, definitionof 427
demo application, running with C-SPY FET........... 195
dep (filename extension)., 18
derivative, definitionof 428
description (interrupt property).c.c.oo.... 182
design considerations (FET)

boot-strap loader L ... 229

devicesignalS. 229

external pOWer 230
development environment, introduction 73
Device description file (C-SPY option). 394
device descriptionfiles 16, 112

definitionof 113, 428

MEMOLY ZONES .+« e v v vveeee e eeeeeeenen 114, 135

modifying 115

TEZISIEr ZOMC. « « v v v v v e e e e e e 114, 135

specifying interrupts 408
device driver, definitionof 428
Device (target option)covviniienen .. 343
diagnostics

compiler

includinginlistfile......................... 358
SUPPIESSING .« o v o vttt et 361

XLINK, suppressingueuveninenenen... 383
Diagnostics (assembler options) 370
Diagnostics (compiler option). 360
Diagnostics (XLINK option) 382
dialog boxes

Advanced Triggercoiiiiiininan... 213

Autostep settings (Debugmenu) 338

Batch Build Configuration (Project menu). 285

Index °

Batch Build (Projectmenu) 284
Breakpoint Usage (Simulator menu) 175, 216
Check In Files (Projectmenu) 246
Check Out Files (Projectmenu). 247
Code breakpoints (Breakpoints window) 256
Common fonts (IDE Options dialog box) 288
Conditional breakpoints. 209
Configurations for project (Project menu) 280
Configure Auto Indent (IDE Options dialog box)292
Configure Viewers (Toolsmenu) 307
Create New Project (Projectmenu) 282
Data breakpoints (Breakpoints window) 171
Debugger (IDE Options dialogbox) 297
Edit Filename Extensions (Tools menu). 306
Edit Interrupt (Interrupt Setup dialog box). 182
Edit Memory Access (Memory Access

Setup dialog box). 170
Editor Colors and Fonts (IDE Options dialog box) . ..295
Editor Setup Files (IDE Options dialog) 294
Editor (IDE Options dialogbox) 291
Embedded Workbench Startup (Help menu) 311
Enter Location (Breakpoints dialog box)........... 260
External Editor (IDE Options dialog box) 287
Filename Extensions Overrides (Tools menu) 306
Filename Extensions (Tools menu) 305
Fill Memory window)., 320
Find in Files (Editmenu)....................... 271
Find in Trace (Editmenu) 166
Find (Editmenu) 270
Immediate breakpoints (Breakpoints window). 173
Incremental Search (Editmenu). 273
Interrupt Setup (Simulator menu) 180
Key Bindings (IDE Options dialog box) 289
LCD settings (LCD window) 336
Log breakpoints (Breakpoints window) 258
Log File (Debugmenu) 340
Macro Configuration (Debug menu) 338
Memory Access Setup (Simulator menu). 168
Messages (IDE Options dialogbox) 290
New Configuration (Project menu) 281

445

446

Options (Projectmenu) 283

Range breakpoints L. 206
Register Filter (IDE Options dialog box)........... 298
Replace (Editmenu) 270
Select SCC Provider (Projectmenu) 245
Sequencer Control (Emulator menu) 223
Set Log file (Debug menu). 338
Source Code Control (IDE Options dialog box). 300
Stack (IDE Options dialog box). 301
Template (Editmenu) 274
Terminal I/O Log File (Debug menu). 341
Terminal I/O (IDE Options dialog box) 299
digital signal processor, definitionof 428
directories
common\bin....... L L L il 17
common\config 17
common\doC 17
common\pluging i 18
COMMONNSIC . .+ e v vttt e e e e e e e e 18
compiler include files. 369
SEHNES. .« v v vttt e 19
430\bin. ..o 16
430\config . ..o 16
430NdOC .« v vt 16
430NAIIVEIS . « v v ee et e 16
430\FET_examplescooouieneon... 16
430MNC. .« o e vttt 16
430\ ..o 17
430\plugins 17
A30NSIC . v vt e e e 17
A30NULOT .o vttt e 17
directory Structure.v vttt 15
Disable language extensions (compiler option). 352
Disable memory cache (C-SPY FET option) 200
__disableInterrupts (C-SPY system macro) 405
disassembly mode debugging, example 43
Disassembly window 315
CONEEXEMENUL . . o\ ve vttt et e e e et e e eaenen 317
definitionof L. 428

MSP430 IAR Embedded Workbench® IDE
User Guide

disclaimer.ottt ii
DLIB. ..ot 11
documentation Xxxix, 21
Specifying 346
DLIB library functions, reference information 96
dni (filename extension) 18-19
do (macro statement), 399
dockable windows. i 75
document CONVeNntions.uvurernnenennnn.. x1
documentation i 15
assembler. 11
compiler. 11
MISRA C. ..o e e 21
online.ottt 16-17
otherguides.......... XXXiX
OVEIVIEW vttt ettt ettt et e eeens XXXVi
Product.ot 20
runtime libraries. 21
thisguide...........oo i XXXV
XLIB ottt 13
XLINK. . e 12
doc, common (subdirectory)c.in... 17
doc, 430 (subdirectory) ovvi i 16
drag-and-drop
of files in Workspace window 83
textineditorwindow 97
Driver (C-SPY option), .. 393
drivers, 430 (subdirectory) i, 16
__driverType (C-SPY systemmacro) 406
DSP. See digital signal processor
Dynamic Data Exchange (DDE). 102
calling external editor 287
dynamic initialization, definitionof 428
dynamic memory allocation, definitionof 428
dynamic object, definitionof 428
d43 (filename exXtension).ouueeninean.. 18

E

Edit Filename Extensions dialog box (Tools menu) 306
Edit Interrupt dialog box (Simulator menu) 182
Edit Memory Access dialogbox.................... 170
Editmenu......... i 267
editing source files 95
edition, user guide. ii
editor
codetemplatesovuiniinininininan... 99
commands 97
customizing the environment. 101
external 102
features i 5
indentation. i 98
keyboard commands 251
matching parentheses and brackets 99
OPLIONS .« vttt et e e e e 291
shortcut to functions. 101, 249
splittercontrols, 248
status bar, using in it 99
USING « vttt e e e 95
Editor Colors and Fonts (IDE Options dialog box). 295
Editor Setup Files (IDE Options dialog) 294
editor setup files, options 294
Editor window i 248
CONEEXE MENU .+« v ee ettt e e et e e e e 249
tab, cCoNteXt MeNU.ovuven .. 249
Editor (IDE Options dialogbox). 291
EEC++ syntax (compiler option) 352
EEPROM, definitionof. 428
Embedded C++
definitionof 428
syntax, enabling in compiler 352
Embedded C++ Technical Committee XXXiX
Embedded C++ (compileroption) 352
embedded system, definitionof 428
Embedded Workbench
editor 95

Index °

exiting from......... L i 75
layout. . ..ot 75
mainwindow 74,238
reference information. 237
TUNMINGZ. « o e v e ettt e e e e e e e 74
version number, displaying 309
Embedded Workbench Startup dialog box (Help menu) . . 311
Embedded Workbench User Guide (Help menu) 309
Emulatormenu............ 201
emulator (C-SPY version)
definitionof i 429
third-partyo 4
Enable MISRA C (general option) 349
Enable multibyte support (assembler option) 365
Enable multibyte support (compiler option) 353
Enable remarks (compiler option). 361
Enable Virtual Space (editor option). 292
enabled transformations, in compiler 356
__enablelnterrupts (C-SPY system macro). 406
Enter Location (Breakpoints dialog box) 260
enumeration, definitionof. 429
EOL character (editor option). 291
EPROM, definitionof., 428
Erase main and Information memory
(FET debuggeroption)c.covuinennnnn... 199
Erase main memory (FET debugger option) 199
error messages
compiler. 362
XLINK. .o 383
__evaluate (C-SPY systemmacro) 407
ewd (filename extension) 18
ewp (filename extension)coeuenn.. 18
eww (filename extension) 18,75
$EW_DIRS (argument variable). 279
examples
assembler
mixing Cand assembler 49
running project with C-SPYFET 196
viewing listfile L. 51
breakpoints i 42

447

448

EXECUtING UPLO « o vttt et 42

setting
using dialog box. ool 63
USINE MACTO .« v v v e ettt e e 65
C example, running with C-SPY FET 195
calling convention, examining 49
compiling. 31
conditional breakpoint triggering state storage. 217
C-SPYmacros............cooiiiiiniann.. 144
C/C++ and assembler, mixing 50
ddffile,using. 61
debuggingaprogram................c.ion... 37
disassembly mode debugging. 43
function calls, displayingin C-SPY 62
interrupts
tMer. 186
USING MACTO. .« o\ vttt et eeene 65
linking
acompiler program. 34
viewing themapfile 35
macros
checking status of register. 148
checking statusof WDT 148
creatingalogmacro 149
for interrupts and breakpoints 65
using Quick Watch 148
Memory window, using 44
MEMOTY, MONItOTING. « « v v v v et e et e eeeeeennn. 44
performing tasks without stopping execution. 131
project
addingfiles.......... i i 28
CIEAING . o v ettt e e e 25-26
reaching program exitc...oueueun.n. 46
registers, Monitoringoeuvuenenn.. 44
Scan for Changed Files (editor option), using 33
setting project Optionsoeuvennn.. 29
state Storage, USING.vvvenen e 216
SEEPPING .« o v vttt et e e e 38
Terminal I/O, displaying 46

MSP430 IAR Embedded Workbench® IDE
User Guide

tracing incorrect function arguments 131
using libraries 67
variables
setting awatchpoint................ 41
watchinginC-SPY 40
viewing compiler listfiles 32
workspace, creating anew 25
exceptions, definitionof 429
execUserExit (C-SPY setup macro) 402
execUserPreload (C-SPY setup macro). 402
execUserReset (C-SPY setupmacro) 402
execUserSetup (C-SPY setup macro) 402
example 59, 65
Executable (output directory) 345
executing a program up to a breakpoint 42
execution history, tracing 127
execution time, reducing. oL 151
$EXE_DIRS (argument variable) 279
Exit(Filemenu) iiiiioan.. 75
exit, of user application. 121
expensive memory access, definitionof 429
expressions. See C-SPY expressions
Extended Embedded C++, enabling in compiler. 352
extended keywords, definitionof 429

extended linker command line file. See linker command file
extensions. See filename extensions or language extensions

External Editor (IDE Options dialog box). 287
external editor, using. i 102
Extra Options
forassembler........................ 371, 390, 395
forcompiler............ i 363
Extra Output (XLINK options) 380

F

factory settings

features
assembler. L. L L i 11
compiler. 10
editor 5
source code control L L L. 4
XLIB . oottt e e e e 13
FET Debugger
design considerations. 229
functionality
StAte SOTAZE .« o v v v vt 216
SEEPPING. « « v v vt e 225
FET Debugger driver, features 9
FET_examples, 430 (subdirectory)................... 16
file extensions. See filename extensions
Filemenu 265
file types
device descriptioniiiiiiiiin... 16
specifying in Embedded Workbench. 112
documentation, 16
header L Ll 16
include........ L 16
Library i 17
linker command file templates. 16
INACTO . « ¢ v e ettt et e et e e e e e e 111, 394
10T P 384
projecttemplatesl 16
readme.t 16-17
special function registers description files 16
syntax coloring configuration. 16
filename exXtensions. ot 18
ASTIL ettt e e e e e 18
A4 18
ottt e e 18
g 18,295
1650 S 18
dbg. o 18
dbgt .o 18
ddf ... 18, 112
4 1<) 18

Index °

Ani .o 18-19
dA3. 18
EWA L 18
WD ettt e 18
BWW o ettt e e 18, 75
It 19
AP 19
e e e e 19
0 T 19
1 3 P 19
ISt et e 19
IMNAC v ettt ettt e 19,111, 144
TAD c ettt e e e e 19-20
pbd. . 19
Pbi . 19
Pl et 19
A3 e 19
3 19
register definitions for C-SPY................. 114
S 19
WSAt . o 19
XCl o 19
XID o 19
Filename Extensions dialog box (Tools menu) 305

Filename Extensions Overrides dialog box (Tools menu) . 306
files

adding toa projectoviin i 28
checkinginandout 87
compiling, example ool 31
editing 95
Navigating among.vvtet et 83
readmehtm L L 20
$FILE_DIRS (argument variable)................... 279
$FILE_FNAMES$ (argument variable) 279
$FILE_PATHS (argument variable) 279
Fill dialog boX.o v 320
USIE « v e ettt et e e e 137
Fill pattern (XLINK option) 388
Fill unused code memory (XLINK option)............ 388

449

450

Find dialog box (Editmenu).......................
Find in Files dialog box (Edit menu).
Find in Files window (View menu).
Find in Trace (dialog box).,
Find in Trace (window).
Find (button).
first activation time (interrupt property)

definitionof
floating windows
Floating-point (targetoption)
fmt (filename extension)
for (macrostatement)
Forced Interrupt window (Simulator menu)
format specifiers, definitionof
Format (XLINK option)coiinin..
formats

assembler listfile...........
compiler listfile..........
C-SPYinput.couniinininiiiii ..
standard IEEE (floating-point).
XLINK output
default, overriding. 379,
Specifying
function calls, displaying in C-SPY
function level profiling
Function Trace (C-SPY window)
function trace, definitionof.
functions
C-SPY running to when starting 111,
intrinsic, definition of.
shortcut to in editor windows. 101,

G

general options e
definitionof L L L
specifying,example
Library Configuration
Library Optionso

MSP430 IAR Embedded Workbench® IDE
User Guide

OULPUL .« .« e et 345

Stack/Heap optionscouvninan.. 348

Target. .. .oov 343
Generate checksum (XLINK option) 388
Generate debug info (assembler option) 367
Generate debug information (compiler option). 357
Generate extra output file (XLINK option). 380
Generate linker listing (XLINK option) 384
generating extraoutputfile............... 379
generic pointers, definitionof 429
Getting started, using the C-SPY FET 194
gloSSarY. .« vt 425
Go to function (editor button) 101, 249
Goto(button)ot 239
Go(button) 315
Go(Debugmenu)...........c.iiiiiiiiii.. 120
groups, definitionof L. 81
h (filename extension).civin.... 19
hardware breakpoints in FET debugger 204
Hardware multiplier (target option) 344
Harvard architecture, definitionof 429
headerfiles i, 16

QUICK ACCESS 10 . « v vttt 101
heap memory, definitionof........... 429
Heap size (general option)von.n. 348
heap size, definitionof 430
Helpmenu i, 309

Assembler Reference Guide. 309

Compiler Reference Guide. 309

Embedded Workbench User Guide 309

IAR MISRA C Reference Guide 309

Linker and Library Tools Reference Guide 309

Productupdates 309
highlighting, inC-SPY 120

hold time (interrupt property)c.ooueueen... 183
definitionof L L. 178
host, definitionof 430
i (filename extension)outiiniinnrann.. 19
TAR Assembler Reference Guide 20
TAR Compiler Reference Guide 20
IAR Linker and Library Tools Reference Guide 21
IAR MISRA C Reference Guide (Help menu) 309
TIAR Systems website., 21
iarbuild, building from the command line.............. 92
TarldePm.exe. 74
icons in this guide
command prompt.ottt x1
lightbulb. x1
BOOIS . . ot x1
IDE. . 3-4
definitionof 430
IEEE format, floating-point values 344
if else (macro statement).0... ... 399
if (macrostatement)cuuiiren.n.. 399
Ignore standard include directories (compiler option)359, 369
illegal memory accesses, checking for 167
immediate breakpoints, 173
inc (filename extension)ii.... 19
Include compiler call frame
information (compiler option). 358
includefiles. i 16
assembler, specifyingpath...................... 369
compiler, specifying path. 359, 369
definitionof L. 430
XLINK, specifyingpath. 387
Include header (assembler option) 367
Include listing (assembler option). 368
Include source (compiler option) 358
Include suppressed entries (XLINK option) 385
Incremental Search dialog box (Editmenu) 273

Index °

inc, 430 (subdirectory) i 16
Indent Size (editoroption) 291
indentation, ineditor., 98
information, product. i 20
inherited settings, overriding. 90
ini (filename extension)c..ouiurnn.. 19
inline assembler, definitionof. 430
inlining, definitionof 430
input
redirecting to Terminal I/O window 328
special characters in Terminal I/O window 328
input formats, C-SPY 8
insertion point, shortcut key for moving 97
installation path, default 15
installed files. il 15
documentation 16-17
executable L i 17
include. 16
Lbraryoooii e 17
instruction mnemonics, definitionof. 430
Integrated Development Environment (IDE). 3-4
definitionof L 430
Intel-extended, C-SPY input format 8, 109
Internet, IAR Systems web site. 21
Interrupt Log window (Simulator menu). 185
Interrupt Setup dialog box (Simulator menu) 180
interrupt system, using device description file 180
interrupt vector table, definitionof 430
interrupt vector, definitionof 430
interrupts
adapting C-SPY system for target hardware 180
definitionof 430
in device descriptionfile 114
nested, definitionof 432
OPLIONS .« v v vt ettt e e e et 182
simulated, definitionof 177
timer,example L i 186
USING SYSLEM MACTOS . . o v v vv v v e ee e ee e 184
intrinsic functions, definitionof 430

451

452

intrinsic, definitionof
ISO/ANSI C
compiler adheringto
library compliance with.
italic style, inthisguide

K

Key bindings (IDE Options dialog box)
key bindings, definitionof
key summary, editor oo
keywords, definitionof L oL

L

labels (assembler), viewing.
Language conformance (compiler option)
language extensions

definitionof L ol

disabling incompiler................
language facilities, incompiler.
Language (assembler options).
Language (compiler options)
layout, of Embedded Workbench
LCD Settings dialog box (LCD window)
LCDwindow i
librarian. See XLIB
libraries, creating a projectfor
libraries, runtime.
library builder. See XAR
Library Configuration (general options)
Library file (general option)
libraryfiles i
library functions

configurable.

reference information. L
library modules

example

specifyingincompiler

MSP430 IAR Embedded Workbench® IDE
User Guide

USINE oottt 67
Library Options (general options). 347
Library (general option)c.covuiunen... 346
library, definitionof 434
lib, 430 (subdirectory).cov i 17
lightbulb icon, in this guide. x1
#line directives, generating

incompiler. i 360
Lines/page (assembler option) 368
Lines/page (XLINK option) 385

Linker and Library Tools Reference Guide (Help menu) . 309
linker command file

definitionof L L. 431
path, specifying i 387
specifyingin XLINKo oo ot 386
templates 16
Linker command file (XLINK option) 386
linker. See XLINK
list files
assembler. L Ll 51
compiler runtime information, including. 358
conditional information, specifying 368
cross-references, generating 368
header, including. 367
lines per page, specifying 368
tab spacing, specifying 368
compiler
assembler mnemonics, including 358
example. 32
GENETALNG . . . oottt 358
source code, including 358
option for specifying destination 346
XLINK
GENETALNG . . . o\ vttt 384
including segmentmap 384
specifying lines perpage. 385
List (assembler options), 367
List (compiler options)t .. 358
List (XLINK options)o oviii e 384

$LIST_DIRS (argument variable)................... 279
Live Watchwindow 324
CONEXEMENU .« o v v v et e e et eeeeeeeeeeenn 325-326
Ims.log, licence management system log file 310
local variables. See auto variables
Localswindowo, 323
CONEXEMENU &« + o v v v et e e e et e et e e eeeeeanenn 324
location counter, definitionof 433
-log (iarbuild command line option) 92
Log File dialog box (Debug menu). 340
Log MISRA C settings (general option) 349
logical address, definitionof....................... 437
loop statements, in C-SPY macros 399
Ist (filename extension).c..ouuin... 19
L-value, definitionof 431
mac (filename extension) 19, 111, 144
Macro Configuration dialog box (Debug menu) 338
macro files, specifying 111, 394
Macro quote characters (assembler option). 366
MACTO SLAtEMENLS . . o\ vt o ettt ie e e eeenns 399
macros
definitionof 431
EXECULING & oottt ettt e e 145
] 153 1 PP 397
USIIE &« vttt ettt e e e e e 143
MAC, definitionof i 431
mailbox (RTOS), definitionof 431
main function, C-SPY running to when starting 111, 394
main.s99 (assembler tutorial file) 67
-make (iarbuild command line option) 92
MAanNaging ProjeCtS. . . o v v v vttt et eeeaen 4
mapfiles........ ... i 384
example 35
VIEWING oottt e 35
map (filename extension) 19-20
Max number of errors (assembler option). 371

Index °

memory
fillingunused. 388
fillingwithvalue 137
MONIEOTING « « « v ettt ettt e e e 136
example. 44
memory access checking., 167, 169
memory access cost, definitionof................... 432
Memory Access Setup dialog box (Simulator menu) 168
memory accesses, illegal. 167
memory area, definitionof 432
memory bank, definitionof. 432
J001S 0010 728 112 o PP 168
definitionof L L L. 432
memory model, definitionof. 432
memory usage, summary of, .. 385
Memory window. 318
COMEXEMENU . . . oo ittt et e e e e 319
OPETALIONS « . v vttt ettt e e 318
USINE @ oottt et e e 136
MEMOTY ZONES. « « ¢t et vt e eeee et e e e e e 135
in device descriptionfile 114
menubar...... 238
C-SPY-specific.oovininii i 314
menus
Debug ... 337
Edit ..o 267
Emulator (FET) 201
File. . ..o 265
Help.o 309
Project 277
Simulator. 160
TOOIS .« v 286
ViW. .« oot 275
Windowo 308
Messages window, amount of output 290
Messages (IDE Options dialogbox) 290
microcontroller, definitionof 432
microprocessor, definitionof 432
migration, from earlier AR compilers xxxix, 353

453

454

MISRA C, documentationc.uuu... 21

MISRA C (compiler options)c.c.vuvuenn... 362
MISRA C (general options)c.cvuvun... 349
module map, inmapfiles 35
module name, specifying in compiler................ 357
Module summary (XLINK option) 385
Module type (compileroption) 357
MODULE (assembler directive) 68
modules

definitionof L. 432

including local symbols ininput 380

MaiNtainIngottt 67
Module-local symbols (XLINK option) 380
Motorola, C-SPY input format 8, 109
Multiply and accumulate, definitionof 431
multitasking, definitionof. 433
Navigate Backward (button) 239
NDEBUG, preprocessor symbol. 81
nested interrupts, definitionof 432
New Configuration dialog box. (Project menu). 281
Next Bookmark (button) 239
Next Statement (button) 315
No global type checking (XLINK option). 382
non-banked memory, definitionof 432
non-initialized memory, definitionof 432
non-volatile storage, definitionof................... 432
NOP, definitionof 432
object files, specifying output directory 346
Object module name (compiler option). 357
OBJ_DIRS (argument variable) 279
online documentation

guides. 16-17, 309

help ... 309

MSP430 IAR Embedded Workbench® IDE
User Guide

onlinehelp i 21
Open Workspace (Filemenu) 266
__openFile (C-SPY system macro). 407
operator precedence, definitionof. 432
operators, definitionof 432
optimizationlevels 355
optimizationmodels i, 355
Optimizations page (compiler options). 355
Optimizations (compiler option). 355
optimizations, effects on variables 125
options
typographic convention x1
assembler. L i 365
CustomBuild. 373,375
Custom Tool Configuration 373
C-SPY . 283, 393
editor 291
general 29, 343
setup files foreditor. 294
XAR 391
XLINK. .o 377
Options dialog box (Projectmenu) 283
USINE . oottt e 90
output
assembler
including debug information. 366
compiler
including debug information.................. 357
Preprocessor, generatingo et 360
formats. 378
debug (ubrof) 378
from C-SPY, redirecting toafile 113
generatingextrafile.............. 379
XLINK
GENETALNG . . . o\ vttt 382
specifying filename. 377
specifying filename on extra output 380
Output assembler file (compiler option) 358
Output file (XLINK option) 377

Output format (XLINK option). 379, 381
Output list file (compiler option) 358
Output (assembler option). 366
Output (compiler options).o .. 356
Output (general options) 345
Output (XARoptions)ooviieninan... 391
Output (XLINK options).oovuvnn ... 377

Override general MISRA C settings (compiler option). . . 363

P

parameters, typographic convention x1
parentheses and brackets, matching (in editor) 99
part number, of user guide ii
paths
assembler include files. 369
compiler include files. 359
relative, in Embedded Workbench 83, 251
sourcefiles. i 251
XLINK include files 387
pbd (filename extension).coouvuinn... 19
pbi (filename extension) 19
peripheral units
definitions i 111
device-specific. i i 114
peripherals, definitionof. 433
pew (filename extension)ooueueun... 19
pipeline, definitionof 433
Plain ‘char’ is (compiler option) 353
plugin modules (C-SPY), loading. 112
Plugins (C-SPY options).o, 396
plugins, common (subdirectory) 18
plugins, 430 (subdirectory) 17
pointers, definitionof 433
Position-independent code (target option). 344
#pragma directive, definitionof 433
precedence, definitionof. 432
preemptive multitasking, definitionof 433
Preinclude file (compiler option) 360

Index °

preprocessor
definition of. See C-style preprocessor
preprocessor directives

definitionof L L L. 433
textstyleineditor oL 97
Preprocessor output to file (compiler option) 360
Preprocessor (assembler option) 369
preprocessor (compiler options) 359
prerequisites, programming experience. XXXV
Printf formatter (general option). 347
prj (filename extension)c.c.cuino.... 19
probability (interrupt property)c.o.o... 183
definitionof L L L. 178
Processing options (XLINK) 388
processor variant, definitionof 433
product information, obtaining detailed 310
product overview
assembler. L Ll 11
compiler. 10
C-SPY Debugger.coiiiiiiiinnnan.. 5
directory Structureoueuinienenennn 15
documentationt 20
file types .. ovve e 18
IAR Embedded WorkbenchIDE 3
XAR 13
XLIB . oottt e 13
XLINK. .« 12
Product updates (Helpmenu) 309
profiling information. 151
Profiling (window) i 330
USIE .« oottt et e 151
program counter, definitionof. 433
program execution, inC-SPY 117
program location counter, definitionof............... 433
Pprogramming eXperience. «o vt ettt et XXXV
Project Make, options. 296
Projectmenu. i 277
projectmodel 79
project options, definitionof. 433

455

456

Project page (IDE Options dialog box)............... 296
projects
addingfilesto i, 82,271
example. 28
build configuration, creating 82
building 91
inbatches 91
compiling, example 31
CIEAING .« .ottt et 26, 82
example. 68
definitionof 80, 433
excluding groups and files 82
files
checkinginandout.......................... 87
MOVINE « « vttt et e e 83
for debugging externally built applications 113
roupS, CIEAtING . . o vt vttt et 82
MANAZING . . . ottt e 4,79
OTANIZALION . . . o\ vttt ettt 79
TEMOVING IteMS .« . .o vttt et e e 83
SEttiNg OPHioNS « .« vttt 89
source code control oL 86
teSHNG ..ot 92
version control systems 0., 86
workspace, creating, i 82
$PROJ_DIRS (argument variable) 279
$PROJ_FNAMES$ (argument variable) 279
$PROJ_PATHS (argument variable) 279
PROM, definitionof, 433
PUBLIC (assembler directive) 68

Q

qualifiers, definition of. See type qualifiers

Quick Watch
executing C-SPYmacros. 148
USIIE &« vttt ettt e e e e 126
Quick Watch window (Viewmenu) 325

MSP430 IAR Embedded Workbench® IDE
User Guide

R

Range breakpoints dialog box (Editmenu)............ 206
Range checks (XLINK option)oouvun... 383
Raw binary image (XLINK option) 387
__readFile (C-SPY systemmacro) 409
__readFileByte (C-SPY systemmacro) 410
reading guidelines. XXXV
readmefiles......... L. 16-17
readmehtm 20
__readMemoryByte (C-SPY system macro)........... 410
__readMemory16 (C-SPY system macro) 411
__readMemory32 (C-SPY system macro) 411
__readMemory8 (C-SPY system macro) 410
real-time operating system, definitionof. 434
real-time system, definitionof 434
Reduce stack usage (compiler option). 354
reference information
C-SPYIDE 313
GUIAES. v vt 20
IAR Embedded Workbench 237
typographic convention x1
register constant, definitionof. 434
Register Filter (IDE Options dialog box) 298
TEEISTET GIOUPS « . v vttt et e et ee et 138
application-specific, defining. 139
predefined, enabling., 138
register locking, definitionof 434
register variables, definitionof 434
Register window 321
EXAMPIE . . oot 44
USING «ove ettt e e 138
TEISIEL ZONE .« . v v ettt e e e 114
registered trademarks il ii
__registerMacroFile (C-SPY system macro). 412
registers
definitionof 434
in device descriptionfile 114
relativepaths. L o i 83, 251

Relaxed ISO/ANSI (compiler option). 352
Telease NOLES . . . v v v vttt 17
relocatable segments, definitionof 434
remarks
compiler diagnostics 361
Remove trailing blanks (editor option) 292
repeat interval (interrupt property) 182
definitionof L L. 178
Replace dialog box (Editmenu) 270
Replace (button)co i 239
Require prototypes (compiler option) 352
Reset(button) 315
Reset (Debug menu), example 46
__resetFile (C-SPY system macro). 412
reset, definitionof. 434
restoring default factory settings..................... 91
Retain unchanged memory (FET debugger option). 199
return (macro statement)., 400
ROM-monitor, definitionof 109, 434
TOOt dITECIOTY . . vttt et e e 15
Round Robin, definitionof 434
RTOS awareness (C-SPY plugin module). 112
RTOS, definition of. i, 434
Runto Cursor (button) 315
Run to Cursor, description 120
Runto (C-SPYoption), 111, 394
runtime libraries i 11
definitionof L. 434
documentation i 21

runtime model attributes

definitionof 434
inmapfiles i 35
R-value, definitionof 433
R4 utilization (compiler option) 354
r43 (filename extension)ovuuenrennn.. 19
RS utilization (compiler option) 354

Index °

S

saturated mathematics, definitionof 435
Save All (Filemenu). 266
Save As(Filemenu)o, 266
Save Workspace (Filemenu). 266
Save (Filemenu)................ ..o i, 266
Scan for Changed Files (editor option) 292
USIG &« oottt et e 33
Scanf formatter (general option). 348
SCC. See source code control systems
scheduler (RTOS), definitionof 435
scope, definitionof, 435
scrolling, shortcutkey for......... 97
Search paths (XLINK option). 387
searching in editor windows 101
Segment map (XLINK option) 384
segment map, definitionof 435
Segment overlap warnings (XLINK option) 382
segment parts, including all in list file. 385
segments
definitionof 435
overlap errors, reducing 382
range checks, controlling 383
sectioninmapfiles 36
Select SCC Provider (dialog box). 245
selecting text, shortcutkey for 97
semaphores, definitionof 435
Sequencer Control window (Emulator menu).......... 223
Set active MISRA C rules (compiler option) 363
Set active MISRA C rules (general option). 349
Set Log file dialog box (Debug menu) 338
__setCodeBreak (C-SPY system macro). 414
__setDataBreak (C-SPY system macro) 416
__setSimBreak (C-SPY system macro) 418
settings (directory)ouiiiii i 19
Setup macros (C-SPY option). 394

457

458

setup macros, in C-SPY. See C-SPY macros

Setup (C-SPY FET options) 198, 200
Setup (C-SPY options)coovvuienen .. 160, 393
severity level, definitionof 435
SFR

definitionof 436

headerfiles. i i 16
sfr (filename extension) 19
shifts.s43 (assembler tutorial file). 68
short addressing, definitionof. 435
shortcut Keys.oone 97
Show Bookmarks (editor option) 292
Show Line Number (editor option) 292
Show right margin (editor option). 291
side-effect, definitionof 435
signals, definitionof 435
simulating interrupts, enabling/disabling 181
simulator

definitionof 436

features 9
Simulatormenu.t 160
Simulator Setup (C-SPY options). 160
SiZe OptiMIZation.t et 355
Size (Breakpoints dialog) 172,257
SIZEOf ..o 123
skeleton code, definitionof. 436
Source Browser window context menu. 254
Source Browser window (View menu) 253
Source Browser, using 85
source code

including in compiler listfile.................... 358

templates 99
Source Code Control contextmenu. 243
source code control SyStems 86
Source Code Control (IDE Options dialog box) 300
source code control, features. 4
source filepaths 83, 251

source files
addingtoaproject

MSP430 IAR Embedded Workbench® IDE
User Guide

editing . ..o vt 95
managing in Projectso.vrereuennenann 81
__sourcePosition (C-SPY system macro) 419
special function registers (SFR)
definitionof L L. 436
descriptionfiles 16, 114
headerfiles. 16
using as assembler symbols 124
speed optimizationc.c.iiii... 355
src, common (subdirectory) 18
src, 430 (subdirectory) 17
stack frames, definitionof. 436
stack segments, definitionof. 436
Stack size (general option) 348
Stackwindow il 332
USINE @ oottt et e e 140
Stack (IDE Options dialogbox) 301
Stack/Heap (general options) 348
State Storage Control (Emulator menu) 218
State Storage window (Emulatormenu) 220
state Storage, USING oot ve v e 216
static objects, definitionof 436
Static overlay map (XLINK option) 385
static overlay, definitionof 436
statically allocated memory, definitionof 436
StAtUS bar.o 240
stdin and stdout
redirecting to C-SPY window 122
redirectingtofile 122
StepInto(button) ...t 315
eXample 40
Step Into, description, 118
Step Out (button)vuvininenenenan .. 315
Step Out, description. 119
Step Over (bUtton)ooveienenenenennnn.. 315
Step Over, description. 119
step points, definitionof, 118
SEEPPING .« o v vt vttt e 118
definitionof i 436

example 38

using C-SPYFET 225
Stop Debugging (button). 315
__strFind (C-SPY system macro) 420
Strict ISO/ANSI (compiler option) 352
strings, text styleineditor. L. 97
structure value, definitionof 436
__subString (C-SPY system macro) 420
support, technical i 22
Suppress all warnings (XLINK option). 383
Suppress download (FET debugger option) 199
Suppress these diagnostics (compiler option) 361
Suppress these diagnostics (XLINK option)........... 383
symbolic location, definitionof 436
symbols

See also user symbols

defining inassembler. 370

defining in compiler. 360

definingin XLINK. 381

definitionof L 436

ininputmodules 380

using in C-SPY expressions. 123
syntax coloring

configurationfiles 16

Neditoroou i 97
Syntax Highlighting (editor option) 291
syntax highlighting, in editor window. 97
System breakpoints on (C-SPY FET option) 201
SYSEEIM MACTOS. .« . ot v vv v ettt e e e 397
s43 (filename extension)vvit e, 19
Tab Key Function (editor option) 291
Tab Size (editor option).cvvivenenenn... 291
Tab spacing (assembler option). 368
Target options

Deviceoiii 343

Floating-pointvuiinininenan .. 344

Index °

Hardware multiplier. 344

Position-independentcode. 344

Specifying 343
target system, definitionof 108
Target VCC (C-SPY FET option)ovvven.n. 200
Target (general Options)c.cvuiuinnenn. 343
target, definitionof L oL 436
$TARGET_BNAMES (argument variable). 279
$TARGET_BPATHS (argument variable). 279
$TARGET_DIRS (argument variable) 279
$TARGET_FNAMES$ (argument variable) 279
$TARGET_PATHS (argument variable) 279
task, definitionof 436
technical support. i 22
Template dialog box (Editmenu) 274
tentative definition, definitionof. 437
terminal I/O

definitionof L L. 437

simulating 378
Terminal I/O Log File dialog box (Debug menu) 341
Terminal /O window 122, 328

exampleofusing il 46
Terminal I/O (IDE Options dialog box) 299
terminology. 425
testing, of code 92
thread, definitionof. 436
timer interrupt, example 186
timer, definitionof 437
timeslice, definitionof 437
Toggle Bookmark (button) 239
Toggle Breakpoint (button). 239
toggle breakpoint, example. 42, 64
__toLower (C-SPY systemmacro) 421
tool chain

extending........... ... 93

specifying 26
Tool Output window (Viewmenu) 263
toolbar. . .. e 239

debug.o 314

459

460

Traceovviin 163
$TOOLKIT_DIRS (argument variable) 279
toolsicon,inthisguide.............. x1
Toolsmenucoouininin i 286
tools, user-configured L L. 303
__toString (C-SPY systemmacro) 421
__toUpper (C-SPY system macro) 422
Trace

toolbar 163

WINdOW 162
Trace Expressions (window). 164
trace, definitionof. 127
trademarks ii
transformations, enabled in compiler 356
translation unit, definitionof. 437
trap, definitionof L . 437
Treat all warnings as errors (compiler option). 362
Treat these as errors (compiler option) 362
Treat these as errors (XLINK option) 383
Treat these as remarks (compiler option) 361
Treat these as warnings (compiler option). 362
Treat these as warnings (XLINK option) 383
tutor, 430 (subdirectory) 17
type qualifiers, definitionof 437
type-checking i 10, 12

disabling at link time 382
typographic conventions, x1
UBROF. . .. 8,12

definitionof 437
Universal Binary Relocatable Object Format. See UBROF
Use Code Templates (editor option) 294
Use Custom Keyword File (editor option) 294
Use virtual breakpoints (C-SPY FET option) 201
user application, definitionof 108
User symbols are case sensitive (assembler option) 365

MSP430 IAR Embedded Workbench® IDE
User Guide

A\

variables
AULO & vttt e e e 425
effects of optimizations 125
information, limitationon 125
USING iN arguments.vvvenenenenenenen... 304
using in C-SPY expressions. 123
watching inC-SPY 126
example. 40
variance (interrupt property)ouvuvrnenen. .. 182
definitionof 178
Verify download (FET debugger option). 199
version control Systems. 86
version number, of Embedded Workbench 309
VIEW MENU . . vttt et e e e e ie et 275
virtual address, definitionof 437
virtual space, definitionof 437
volatile storage, definitionof 437
von Neumann architecture, definitionof.............. 437
warnings
compiler. 362
XLINK. .« ot e 383
Warnings/Errors (XLINK option) 383
Watchwindowo, 322
CONEXEMENU « .« o\ v v e et et et et e eeeeeen 322
USINE . oee ettt e e 126
watchpoints
definitionof 437
SELHNG .« ottt 40
web sites, recommended., XXXIX
web site, IAR Systems oL 21
while (macro statement), 399
Window menu.out i 308
windows
See also C-SPY windows

Breakpoints i 255
Build ... 261
DebugLog. ..o 264
Editor. 248
FindinFiles......... 262
Forced Interrupt. 183
Interrupt Logo 185
organizingonthescreen 75
QuickWatch 325
Source Browser L oL 253
Tool Outputo 263
Workspace 240
With I/O emulation modules (XLINK option) 378
USING « ettt e 122
With runtime control modules (XLINK option) 378
Workspace window. o i 240
CONEXEMENU &« o v v v et e e et e eeeeeeeee e 241,255
drag-and-dropof files 83
example 27
workspaces
CIEALING . .ottt ettt 26, 82
USIIE &« ottt ettt e e e e e 82
__writeFile (C-SPY systemmacro) 422
__writeFileByte (C-SPY system macro).............. 422
__writeMemoryByte (C-SPY system macro) 423
__writeMemory16 (C-SPY system macro)............ 424
__writeMemory32 (C-SPY system macro)............ 424
__writeMemory8 (C-SPY system macro)............. 423
wsdt (filename extension). 19
WWW.AALCOMI. « ottt vttt et e e e e e e e eeens 21
XAR .o 67
documentation 21
OVEIVIEW ...ttt 13
XAR options
definitionof 437
OUtPUL . oot 391

Index °

xcl (filename extension)couuiui.n.. 19
xlb (filename extension) 19
XLIB. oottt 67
documentation 21
features 13
options, definitionof 437
OVEIVIEW ...ttt 13
XLINK
command line version 73
diagnostics, SUppressing. 383
documentation 21
example 34
OVEIVIEW ...ttt 12
XLINK list files
GENETALING .« . v ottt et 384
including segmentmap 384
specifying lines perpage, 385
XLINK Options.cvvvinie i 3717, 388
definitionof L L. 438
factory settings.t 392
Allow C-SPY-specific outputfile................. 379
Always generate outputot 382
Buffered terminal output 379
Config ...ovvie 386
Debug information for C-SPY 378
Definesymbol 381
Diagnostics 382
ExtraOutputot 380
Fill patterno, 388
Fill unused code memory. 388
Format...... i 378
Generate checksum, 388
Generate extra output file. 380
Generate linker listing 384
Include suppressed entries 385
Lines/pageooiinii i 385
Linker commandfile 386
List. . 384
Module summary.t 385

461

462

Module-local symbols 380
No global type checking 382
OULPUL . oottt e 377
Outputfile ...t 377
Outputformat o vo... 379, 381
Rangechecks........... i .. 383
Raw binary image 387
Searchpaths......... i i, 387
SegMeNt mMapP - « o v o vttt 384
Segment overlap warnings 382
Staticoverlaymap i 385
Suppress all warnings 383
Suppress these diagnostics. 383
Treattheseaserrors. 383
Treat these as warningsc.c.o.... 383
Warnings/Errors. 383
With I/0 emulation modules 378
With runtime control modules 378
XLINK output
overriding default format. 379, 381
XLINK symbols, defining. 381
zero-overhead loop, definitionof 438
zone
definitionof L 438
inC-SPY 135

... 198
#define options (XLINK) 381
#define statement, in compiler 360
#line directives, generating in compiler 360
#pragma directive, definitionof 433
$CUR_DIRS (argument variable) 279
CUR_LINES (argument variable).................. 279
$EW_DIRS (argument variable). 279

MSP430 IAR Embedded Workbench® IDE
User Guide

EXE_DIRS (argument variable) 279

$FILE_DIRS (argument variable). 279
$FILE_FNAMES$ (argument variable) 279
$FILE_PATHS (argument variable) 279
$LIST_DIRS (argument variable). 279
$OBJ_DIRS (argument variable) 279
$PROJ_DIRS (argument variable) 279
$PROJ_FNAMES$ (argument variable) 279
$PROJ_PATHS (argument variable) 279
$TARGET_BNAMES (argument variable). 279
$TARGET_BPATHS (argument variable). 279
$TARGET_DIRS (argument variable) 279
$TARGET_FNAMES$ (argument variable) 279
$TARGET_PATHS (argument variable) 279
$TOOLKIT_DIRS (argument variable) 279
__cancelAlllnterrupts (C-SPY system macro) 404
__cancellnterrupt (C-SPY system macro). 404
__clearBreak (C-SPY systemmacro) 405
__closeFile (C-SPY systemmacro) 405
__disablelnterrupts (C-SPY system macro) 405
__driverType (C-SPY systemmacro) 406
__enablelnterrupts (C-SPY system macro). 406
__evaluate (C-SPY systemmacro) 407
__fmessage (C-SPY macro statement) 400
__message (C-SPY macro statement). 400
__openFile (C-SPY systemmacro). 407
__orderInterrupt (C-SPY system macro). 408-409
__readFile (C-SPY systemmacro) 409
__readFileByte (C-SPY systemmacro) 410
__readMemoryByte (C-SPY system macro)........... 410
__readMemory16 (C-SPY system macro) 411
__readMemory32 (C-SPY system macro) 411
__readMemory8 (C-SPY system macro) 410
__registerMacroFile (C-SPY system macro). 412
__resetFile (C-SPY system macro). 412
__setCodeBreak (C-SPY system macro). 414
__setDataBreak (C-SPY system macro) 416
__setSimBreak (C-SPY system macro) 418
__smessage (C-SPY macro statement) 400

Index °

__sourcePosition (C-SPY system macro) 419
__strFind (C-SPY system macro) 420
__subString (C-SPY system macro) 420
__toLower (C-SPY system macro) 421
__toString (C-SPY systemmacro) 421
__toUpper (C-SPY system macro) 422
__writeFile (C-SPY system macro) 422
__writeFileByte (C-SPY system macro).............. 422
__writeMemoryByte (C-SPY system macro) 423
__writeMemory16 (C-SPY system macro)............ 424
__writeMemory32 (C-SPY system macro)............ 424
__writeMemory8 (C-SPY system macro). 423

Numerics

20-bit context save on interrupt (compiler option) 355
430 (dITeCtOrY) « vt ettt e e e e 16

463

	Brief contents
	Contents
	Tables
	Figures
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Part 1. Product overview
	Part 2. Tutorials
	Part 3. Project management and building
	Part 4. Debugging
	Glossary

	Other documentation
	Document conventions

	Part 1. Product overview
	Product introduction
	The IAR Embedded Workbench IDE
	An extensible and modular environment
	Features
	Project management
	Source code control
	Window management
	The text editor

	Documentation

	IAR C-SPY Debugger
	General C-SPY Debugger features
	Source and disassembly level debugging
	Single-stepping on a function call level
	Code and data breakpoints
	Monitoring variables and expressions
	Container awareness
	Call stack information
	Powerful macro system
	Additional general C-SPY Debugger features

	RTOS awareness
	Documentation

	IAR C-SPY Debugger systems
	IAR C-SPY Simulator
	Features

	IAR C-SPY FET Debugger
	Features

	IAR C/C++ Compiler
	Features
	Code generation
	Language facilities
	Type checking

	Runtime environment
	Documentation

	IAR Assembler
	Features
	Documentation

	IAR XLINK Linker
	Features
	Documentation

	IAR XAR Library Builder and IAR XLIB Librarian
	Features
	Documentation

	Installed files
	Directory structure
	Root directory
	The 430 directory
	The 430\bin directory
	The 430\config directory
	The 430\doc directory
	The 430\drivers directory
	The 430\FET_examples directory
	The 430\inc directory
	The 430\lib directory
	The 430\plugins directory
	The 430\src directory
	The 430\tutor directory

	The common directory
	The common\bin directory
	The common\config directory
	The common\doc directory
	The common\plugins directory
	The common\src directory

	File types
	Documentation
	The user and reference guides
	MSP430 IAR Embedded Workbench® IDE User Guide
	MSP430 IAR C/C++ Compiler Reference Guide
	MSP430 IAR Assembler Reference Guide
	IAR Linker and Library Tools Reference Guide
	DLIB Library Reference information
	CLIB Library Reference Guide
	IAR Embedded Workbench® MISRA C Reference Guide

	Online help
	IAR on the web

	Part 2. Tutorials
	Creating an application project
	Setting up a new project
	Creating a Workspace window
	Creating the new project
	Adding files to the project
	Setting project options

	Compiling and linking the application
	Compiling the source files
	Viewing the list file
	Linking the application
	Output format
	Linker command file
	Linker map file

	Viewing the map file

	Debugging using the IAR C-SPY® Debugger
	Debugging the application
	Starting the debugger
	Organizing the windows
	Inspecting source statements
	Inspecting variables
	Using the Auto window
	Setting a watchpoint

	Setting and monitoring breakpoints
	Executing up to a breakpoint

	Debugging in disassembly mode
	Monitoring registers
	Monitoring memory
	Viewing terminal I/O
	Reaching program exit

	Mixing C and assembler modules
	Examining the calling convention
	Adding an assembler module to the project
	Setting up the project
	Viewing the assembler list file

	Using C++
	Creating a C++ application
	Compiling and linking the C++ application
	Setting a breakpoint and executing to it
	Looking at the function calls

	Printing the Fibonacci numbers

	Simulating an interrupt
	Adding an interrupt handler
	The application-a brief description
	Writing an interrupt handler
	Setting up the project

	Setting up the simulation environment
	Defining a C-SPY setup macro file
	Specifying C-SPY options
	Building the project
	Starting the simulator
	Specifying a simulated interrupt
	Setting an immediate breakpoint

	Simulating the interrupt
	Executing the application

	Using macros for interrupts and breakpoints

	Working with library modules
	Using libraries
	The Main.s43 program
	The library routines
	Creating a new project
	Creating a library project
	Using the library in your application project

	Part 3. Project management and building
	The development environment
	The IAR Embedded Workbench IDE
	Running the IAR Embedded Workbench IDE
	Double-clicking the workspace filename

	Exiting

	Customizing the environment
	Organizing the windows on the screen
	Using docked versus floating windows
	Organizing windows

	Customizing the IDE
	Communicating with external tools
	Adding command line commands

	Managing projects
	The project model
	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files

	Creating and managing workspaces
	Drag and drop
	Source file paths

	Navigating project files
	Viewing the workspace
	Displaying browse information

	Source code control
	Interacting with source code control systems
	Setting up an SCC project in the SCC client application
	Connecting projects in IAR Embedded Workbench
	Viewing the SCC states
	Configuring the source code control system

	Building
	Building your application
	Setting options
	Using the Options dialog box

	Building a project
	Building multiple configurations in a batch
	Correcting errors found during build
	Building from the command line

	Extending the tool chain
	Tools that can be added to the tool chain
	Adding an external tool

	Editing
	Using the IAR Embedded Workbench editor
	Editing a file
	Accessing reference information for DLIB library functions
	Using and customizing editor commands and shortcut keys
	Splitting the editor window into panes
	Dragging and dropping of text
	Syntax coloring
	Automatic text indentation
	Matching brackets and parentheses
	Displaying status information

	Using and adding code templates
	Enabling code templates
	Inserting a code template in your source code
	Adding your own code templates

	Navigating in and between files
	Searching

	Customizing the editor environment
	Using an external editor

	Part 4. Debugging
	The IAR C-SPY® Debugger
	Debugger concepts
	IAR C-SPY Debugger and target systems
	Debugger
	Target system
	User application
	IAR C-SPY Debugger systems
	ROM-monitor program
	Third-party debuggers

	The C-SPY environment
	An integrated environment

	Setting up the IAR C-SPY Debugger
	Choosing a debug driver
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules
	The IAR C-SPY RTOS awareness plugin modules

	Starting the IAR C-SPY Debugger
	Executable files built outside of the Embedded Workbench
	Redirecting debugger output to a file

	Adapting C-SPY to target hardware
	Device description file
	Memory zones
	Registers
	Interrupts
	Modifying a device description file

	Executing your application
	Source and disassembly mode debugging
	Executing
	Step
	Go
	Run to Cursor
	Highlighting
	Using breakpoints to stop
	Using the Break button to stop
	Stop at program exit

	Call stack information
	Terminal input and output
	Directing stdin and stdout to a file

	Working with variables and expressions
	C-SPY expressions
	C symbols
	Using sizeof

	Assembler symbols
	Macro functions
	Macro variables

	Limitations on variable information
	Effects of optimizations

	Viewing variables and expressions
	Working with the windows
	Using the Quick Watch window

	Using the trace system
	The Trace window and its browse mode
	Searching in the trace data

	Viewing assembler variables

	Using breakpoints
	The breakpoint system
	Defining breakpoints
	Toggling a simple code breakpoint
	Setting a breakpoint in the Memory window
	Defining breakpoints using the dialog box
	Tracing incorrect function arguments
	Performing a task with or without stopping execution

	Defining breakpoints using system macros
	Defining breakpoints at C-SPY startup using a setup macro file

	Viewing all breakpoints
	Using the Breakpoint Usage dialog box
	Breakpoint consumers

	Monitoring memory and registers
	Memory addressing
	Using the Memory window
	Memory window operations
	Memory Fill
	Setting a breakpoint in the Memory window

	Working with registers
	Register groups
	Enabling predefined register groups
	Defining application-specific groups

	Using the Stack window
	Graphical stack display
	Detecting stack overflows
	Viewing the stack contents

	Using the C-SPY® macro system
	The macro system
	The macro language
	Example

	The macro file
	Setup macro file

	Setup macro functions

	Using C-SPY macros
	Using the Macro Configuration dialog box
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint

	Analyzing your application
	Function-level profiling
	Using the profiler
	Profiling information is displayed in the window.
	Viewing the figures
	Producing reports

	Code coverage
	Using Code Coverage
	Viewing the figures
	What parts of the code are displayed?
	Producing reports

	Part 5. IAR C-SPY Simulator
	Simulator-specific debugging
	Simulator Setup
	Simulator-specific menus
	Using the trace system in the simulator
	Trace window
	Trace toolbar
	Function Trace window
	Trace Expressions window
	Find In Trace window
	Find in Trace dialog box

	Memory access checking
	Memory Access setup dialog box
	Use ranges based on
	Use manual ranges
	Memory access checking
	Buttons

	Edit Memory Access dialog box
	Memory range
	Access type

	Using breakpoints
	Data breakpoints
	Data breakpoints dialog box

	Immediate breakpoints
	Immediate breakpoints dialog box

	Breakpoint Usage dialog box

	Simulating interrupts
	The C-SPY interrupt simulation system
	Using the interrupt simulation system
	Target-adapting the interrupt simulation system
	Interrupt Setup dialog box
	Edit Interrupt dialog box
	Forced interrupt window
	C-SPY system macros for interrupts
	Defining simulated interrupts at C-SPY startup using a setup file
	Interrupt simulation in a multi-task system

	Interrupt Log window

	Simulating a simple interrupt

	Part 6. IAR C-SPY® FET debugger
	Introduction to the IAR C-SPY® FET Debugger
	The FET C-SPY Debugger
	Differences between the C-SPY drivers

	Hardware installation
	MSP-FET430X110
	MSP-FET430Pxx0
	IAR J-Link or TI USB FET interface module

	Firmware upgrade
	Getting started
	Running a demo application
	C Example
	Assembler example

	C-SPY® FET-specific debugging
	Options for debugging using the C-SPY FET debugger
	Setup
	Download control
	Attach to running target
	Disable memory cache
	Connection
	Debug protocol
	Target VCC

	Breakpoints
	Use virtual breakpoints
	System breakpoints on

	Emulator menu
	Using breakpoints
	Available breakpoints
	Hardware and virtual breakpoints
	System breakpoints

	Customizing the use of breakpoints
	Periodically monitoring data
	Using breakpoints when programming flash memory

	Range breakpoints
	Start value
	Range delimiter
	Type
	Access type
	Action
	Action when

	Conditional breakpoints
	Break At location
	Type
	Operator
	Access
	Mask
	Condition
	Action

	Advanced trigger breakpoints
	Break At location
	Type
	Operator
	Mask
	Value
	Access type
	Action

	Breakpoint Usage dialog box

	Using state storage
	State Storage Control window
	Enable state storage
	Buffer wrap around
	Reset
	Trigger action
	Storage action on
	State storage triggers

	State Storage Window
	Update
	Automatic update
	Automatic restart
	Append data

	Using the sequencer
	Sequencer Control window

	Stepping
	C-SPY FET communication
	Releasing JTAG
	Parallel port designators
	Troubleshooting

	Design considerations for in-circuit programming
	Bootstrap loader
	Device signals
	External power
	Signal connections for in-system programming
	MSP-FET430X110
	MSP-FET430Pxx0 (‘P120, ‘P140, ‘P410, ‘P440)

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	A

	Index
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

	Part 7. Reference information
	IAR Embedded Workbench® IDE reference
	Windows
	IAR Embedded Workbench IDE window
	Menu bar
	Toolbar
	Status bar

	Workspace window
	Workspace window context menu
	Source Code Control menu
	Source code control states

	Editor window
	Split commands
	Go to function
	Editor window tab context menu
	Editor window context menu
	Source file paths
	Editor key summary

	Source Browser window
	Source Browser window context menu

	Breakpoints window
	Breakpoints window context menu

	Build window
	Find in Files window
	Tool Output window
	Debug Log window

	Menus
	File menu
	Edit menu
	View menu
	Project menu
	Argument variables summary

	Tools menu
	Tools menu commands
	Specifying command line commands or batch files

	Window menu
	Window menu commands

	Help menu

	C-SPY® Debugger reference
	C-SPY windows
	Editing in C-SPY windows
	IAR C-SPY Debugger main window
	Menu bar
	Debug toolbar

	Disassembly window
	Disassembly window operations
	Disassembly context menu

	Memory window
	Memory window operations
	Memory window context menu
	Data coverage display
	Fill dialog box

	Register window
	Watch window
	Watch window context menu

	Locals window
	Locals window context menu

	Auto window
	Auto window context menu

	Live Watch window
	Live Watch window context menu

	Quick Watch window
	Quick Watch window context menu

	Call Stack window
	Call Stack window context menu

	Terminal I/O window
	Code Coverage window
	Code coverage commands

	Profiling window
	Profiling commands
	Profiling columns

	Stack window
	The stack drop-down menu
	The graphical stack bar
	The Stack window columns
	The Stack window context menu

	LCD window
	LCD Settings dialog box

	C-SPY menus
	Debug menu

	General options
	Target
	Output
	Library Configuration
	Library Options
	Stack/Heap
	MISRA C

	Compiler options
	Language
	C
	Embedded C++
	Extended Embedded C++
	Automatic

	Code
	Optimizations
	Output
	List
	Preprocessor
	Diagnostics
	MISRA C
	Extra Options

	Assembler options
	Language
	Output
	List
	Preprocessor
	Diagnostics
	Extra Options

	Custom build options
	Build actions options
	Linker options
	Output
	Override default
	Debug information for C-SPY
	With runtime control modules
	With I/O emulation modules
	Buffered terminal output
	Allow C-SPY-specific extra output file
	Other
	Module-local symbols

	Extra Output
	#define
	Diagnostics
	Suppress all warnings
	Suppress these diagnostics
	Treat these as warnings
	Treat these as errors

	List
	Segment map
	Symbols
	Module summary
	Include suppressed entries
	Static overlay map
	File format
	Lines/page

	Config
	Processing
	Fill pattern
	Generate checksum

	Extra Options

	Library builder options
	Debugger options
	Setup
	Extra Options
	Plugins

	C-SPY® macros reference
	The macro language
	Macro functions
	Predefined system macro functions
	Macro variables
	Macro strings

	Macro statements
	Expressions
	Conditional statements
	Loop statements
	Return statements
	Blocks

	Formatted output

	Setup macro functions summary
	C-SPY system macros summary
	Description of C-SPY system macros

