CPE/EE 323 Introduction to Embedded Computer Systems Homework I

Problem \#1 (25 points)

Fill in the following table. Show your work as illustrated for (a).

	Decimal	32-bit binary	Hexadecimal number (8 hex digits)	4-byte packed BCD number
(a)	$\mathbf{1 2 , 3 4 8}$	$\mathbf{0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 0 0 . 0 0 1 1 . 0 0 0 0 . 0 0 1 1 . 1 1 0 0}$	$\mathbf{0 0 0 0 _ 3 0 3 C}$	$\mathbf{0 0 . 0 0 . 3 0 . 3} ?$
(b)			DBF3_23AB	
(c)	10,245			
(d)		0111.0011 .0010 .1100 .1001 .0100 .0010 .1100		83.29 .19 .43
(e)				

(a)
$12348 / 16=771\lfloor 12$
$771 / 16=48\lfloor 3$
$48 / 16=3\lfloor 0$
$3 / 16=0\lfloor 3$
$12348_{10}=303 C_{16}=0000 _303 C_{16}=0000 _0000 _0000 _0000 _0011 _0000 _0011 _1100_{2}=00.00 .303$? ("?" marks an illegal BCD digit).

Problem \#2 (25 points)

Consider the following 16-bit hexadecimal numbers (second column). Each of these values can be interpreted as an unsigned 16-bit integer, a signed 16-bit integer represented in 2's complement, or as a sign-and-magnitude integer. Provide the decimal value for each number and interpretation. Show your work as illustrated in (a).

	16-bit hex	Unsigned int	Signed int	Sign-and-magnitude
(a)	A223	$\mathbf{4 1 5 0 7}$	$\mathbf{- 2 4 0 2 9}$	$\mathbf{- 8 7 3 9}$
(b)	$81 C 2$			
(c)	9689			
(d)	A2EB			
(e)	$39 C D$			

(a) unsigned: A $223_{16}=10 * 16^{3}+2 * 16^{2}+2 * 16^{1}+3 * 16^{0}=41507_{10}$ signed: $\mathrm{A} 223_{16}=1010.0010 .0010 .0011_{2}=>$ this is a negative number; two's complement is: $0101.1101 .1101 .1101=5 D_{16}=24029_{10}=>$ A223 $_{16}=-24029$ sign-and-magnite: $-2223_{16}=-8739$

Problem \#3 (25 points)

Consider the following arithmetic operations. Find the results and set the flags C, V, N, and Z accordingly.
(a) 8-bit, two's complement $55_{10}+105_{10}$
(b) 8-bit, two's complement $(-55)_{10}-68_{10}$
(c) 16-bit, two's complement
$-45_{8}-88_{16}$
(d) 16-bit, two's complement
$-\mathrm{AF}_{16}+34_{10}$
(e) 16-bit, two's complement $A F_{16}+99_{10}$

Problem \#4 (25 points)

(a) Convert the following number from decimal to the IEEE 32-bit floating point. 78.03125_{10}
(b) Convert the following number from the binary IEEE floating point to decimal. $60 \mathrm{E} 3 \mathrm{AB} 00_{16}$

