CPE 323: Laboratory Assignment #1
Getting Started with
the MSP430 IAR Embedded Workbench

by Alex Milenkovich, milenkovic@computer.org

Objectives: This tutorial will help you get started with the MSP30 IAR Embedded Workbench
and includes the following topics:

= Creating an application project

= Debugging using the IAR C-SPY® Debugger

Note: This tutorial is adapted from the MSP430 IAR Embedded Workbench® IDE User Guide
and readers are referred to this document for more information.

1. Creating an Application Project

This chapter introduces you to the IAR Embedded Workbench integrated development
environment (IDE). The tutorial demonstrates a typical development cycle and shows how you
use the compiler and the linker to create a small application for the MSP430 microcontroller --
including, creating a workspace, setting up a project with C source files, and compiling and
linking your application.

1.1. Creating a New Workspace

Using the IAR Embedded Workbench IDE, you can design advanced project models. For more
information read the MSP430 IAR Embedded Workbench® IDE User Guide. Here, we will
walk through a relatively simple project with several source files.

Step 1. Create a working directory (e.g., projects, and then labl).

Step 2. Copy the following source files (lablfactoriel _main.c, twofact.c) to your working
directory projects/labl (go to files are available in Angel:Lessons:Laboratory
Assignments:Labl).

Step 3. Create a new workspace window.

Before you can create your project you must first create a workspace. When you start the IAR
you will see the screen as shown in Figure 1. Press Cancel. Choose File>New>Workspace. Now
you are ready to create a project and add it to the workspace.

Embedded Workbench Startup X

[4
DI Create new project in current workspace
Add existing project to cunent workspace
Open existing workspace
) _—
Example applications
Recent workspaces:
softbaugh_dfrgd618 Open |
tutorials
hellow
[~ Do not show this window at startup
Cancel

Figure 1. Embedded Workbench Startup.

1.2. Setting Up a New Project

Step 1. Create a new project.

1.1. To create a new project, choose Project>Create New Project. The Create New Project
dialog box appears (Figure 2), which lets you base your new project on a project template. Make
sure the Tool chain is set to MSP430, and click OK. For this tutorial, select the project template
Empty project, which simply creates an empty project that uses default project settings.

Create New Project E‘

Taol chain: [MsPaz0 ~]

Project templates:

+- asm
O
H-C

Extemally built executable

Desciption:

Creates an emply project

Cancel
Figure 2. Create New Project dialog box.

In the standard Save As dialog box that appears, specify where you want to place your project
file, that is, in your newly created projects/labl directory. Type the project name (e.g., lablt) in
the File name box, and click Save to create the project. The project will appear in the Workspace
window.

By default two build configurations are created: Debug and Release. In this tutorial only the
Debug configuration is used. You may choose the build configuration from the drop-down menu
at the top of the window. The asterisk in the project name indicates that there are changes that
have not been saved.

A project file—with the filename extension ewp—will be created in the projects directory, not
immediately, but later on when you save the workspace. This file contains information about
your project-specific settings, such as build options.

1.2. Choose File>Save Workspace and specify where you want to place your workspace file. In
this tutorial, you should place it in your projects directory. Type tutorials in the File name box,
and click Save to create the new workspace.

A workspace file—with the filename extension eww—nhas now been created in the projects
directory. This file lists all projects that you will add to the workspace. Information related to the
current session, such as the placement of windows and breakpoints is located in the files created
in the projects\labl\settings directory.

Step 2. Adding Files to the Project.
This tutorial uses the source files labl1factoriel _main.c and twofact.c.
= The lablfactoriel_main.c application is a simple program that calls two functions
calculating factoriel of an interger input. The first one ifact returns the integer result, and
the second one lifact returns the long integer type. Only standard features of the C
language are used and the results are printed on the stdout (Terminal 1/O in this example).
= The twofact.c application contains factoriel functions ifact and lifact.

In the Workspace window, select the destination to which you want to add a source file; a group
or, as in this case, directly to the project.

Choose Project>Add Files to open a standard browse dialog box. Locate the files
lablfactoriel_main.c and twofact.c, select them in the file selection list, and click Open to add
them to the lab1t project (Figure 3).

Add Files - lab1t BIX

Look.in. [(5 laboodes09 - i gl g
[Chsettings

My Recent
Documents

1
)
My Computer
My Network — Filg name ["towetact, o' labit factoriel_main.c =] Open
Places
Files of type: |Snurce Files [*.c;* cpp;” oo b hpp s msa Cancel

Figure 3. Adding files to lablt.

Step 3. Setting Project Options.
Now you will set the project options. For application projects, options can be set on all levels of
nodes. First you will set the general options to suit the processor configuration in this tutorial.

Because these options must be the same for the whole build configuration, they must be set on
the project node.

3.1. Select the project folder icon labl1t - Debug in the Workspace window and choose
Project>Options.
The Target options page in the General Options category is displayed (Figure 4).

Options for node “lab1t" @ Options for node “lab1t” E|

Assembler Assembler

Custom Buid Target | Dutput | Library Canfiguration | Library Options | Stack/Heap | 4| » Custom Buid Target | Ouput | Library Configuration Librany Options | Stack/Heap | 4] *
Build Actions Build Actions
Linker Linker Printf farmatter
Debuggsr Device Debugger [5mal -
FET Deb FET Deb
Sl MSP430F149 Bl | © A No speciier = or A, o speciiet 1, o float o1 long
imulator A imulator o
[
Scanf formatter
Floating point)
Size of type 'double’ [~ Paosition-independent code

o specifier n, no float or lang lang, ro scan set,
no assignment suppressing

s 32bits Jw Hardware multiplier

-
I [Assembler-only project

Cancel Caneel
Figure 4. Setting general options.

Verify the following settings:

Page Setting
Target Device: msp430F149
Output Output file: Executable
Library Configuration Library: Normal DLIB

Select Library Options tab and select Small for Printf and Scanf formatters.

3.2. Select C/C++ Compiler in the Category list to display the compiler option pages (Figure 5).

Options for node “lab1t” FZI

Category: Factary Settings
General Options I Multi-file Compilatian
r

Assembler

Custom Buid Language | Code Optmizations I Output | List | Preprocessor | D4 | »
Build Actions X
Linker Level Enabled transformations:
Debugger & Nore] Cormon subespression elimination
FET Debugger Low] Loop unralling
Simulator Medium I Funiztion inlining
* High [Code matian

] Tvpe-based alias analysiz

Carcel
Figure 5. Setting C/C++ compiler options.

Verify the following settings:

Page Setting

Optimizations Optimizations, Size: None (Best debug support)
Output Generate debug information

List Output list file/Assembler mnemonics

3.3. Click OK to set the options you have specified.

Note: It is possible to customize the amount of information to be displayed in the Build messages
window. In this tutorial, the default setting is not used. Thus, the contents of the Build messages
window on your screen might differ from the screen shots.

The project is now ready to be built.

1.3. Compiling and linking the application

You can now compile and link the application. You should also create a compiler list file
and a linker map file and view both of them.

Step 1. Compiling the source files.

To compile the file twofact.c, select it in the Workspace window.

1.1. Choose Project>Compile. Alternatively, click the Compile button in the toolbar or choose
the Compile command from the context menu that appears when you right-click on the selected
file in the Workspace window. The progress will be displayed in the Build messages window.

1.2. Compile the file lab1factoriel_main.c in the same manner.

The IAR Embedded Workbench IDE has now created new directories in your project directory.
Because you are using the build configuration Debug, a Debug directory has been created
containing the directories List, Obj, and Exe:
= The List directory is the destination directory for the list files. The list files have the
extension Ist.
= The Obj directory is the destination directory for the object files from the compiler
and the assembler. These files have the extension r43 and will be used as inputs to the
IAR XLINK Linker.
= The Exe directory is the destination directory for the executable file. It has the
extension d43 and will be used as an input to the IAR C-SPY® Debugger. Note that
this directory will be empty until you have linked the object files.

1.3. Click on the plus signs in the Workspace window to expand the view (Figure 6). As you can
see, IAR Embedded Workbench has also created an output folder icon in the Workspace window
containing any generated output files. All included header files are displayed as well, showing
the dependencies between the files.

IAR Embedded Workbench IDE
File Ede Vew Proect Simulaor Took Window Help

DEedd &l libhelar 7Y e mEredih BUES D
Debug -

P B
& Flablt - Dabul -
o @
1 3 utput
Bilabitacoriol_msin It
— [labtactanel_men 143
Biainh
B o430 ach
— B sidaegh
Bsdoh

st

Meszages
Iab1factored_meanc

Diare @ eerar(s), i waming(s)

CHpacumbnt: Wy \machinglepo e a1 factorinl_main.c Errors 0, Warnings 0

Figure 6. Workspace window after compilation.

Step 2. Viewing the List file.

Now examine the compiler list file and notice how it is automatically updated when you, as in
this case, will investigate how different optimization levels affect the generated code size.

2.1. Open the list file twofact.Ist by double-clicking it in the Workspace window. Examine the
list file, which contains the following information:
= The header shows the product version, information about when the file was created,
and the command line version of the compiler options that were used
The body of the list file shows the assembler code and binary code generated for each
statement. It also shows how the variables are assigned to different segments
= The end of the list file shows the amount of stack, code, and data memory required,

and contains information about error and warning messages that might have been
generated.

Notice the amount of generated code at the end of the file and keep the file open. It is (assuming
you use no optimizations):

Segment part sizes:

Function/Label Bytes

ifact 50

lifact 102

152 bytes in segment CODE
152 bytes of CODE memory
2.2. Choose Tools>Options to open the IDE Options dialog box and click the Editor tab. Select

the option Scan for Changed Files. This option turns on the automatic update of any file open in
an editor window, such as a list file. Click the OK button.

IDE Options E
Comman Fonts |
Key Bindings e a ¥ Synitax highlighting
Language W Avutoindent

< Editor Indent size: 2 Configure
External ‘E‘j“m Tab Key Function
Setup Files Inser tab v Scar for changed files

Colors and Fants

Messages
Project [~ Enable virtual space

% |ndent with spaces

EOL characters: FC = 5
Source Code Control ¥ Remove taling blanks
Debugger ¥ Show right margin
Stack " Printing edge

@ Columns: an

[ok] conea | | Hep |
Figure 7. Setting the option Scan for Changed Files.

2.3. Select the file twofact.c in the Workspace window. Open the C/C++ Compiler options
dialog box by right-clicking on the selected file in the Workspace window.

Click the Optimizations tab and select the Override inherited settings option. Choose High from
the Optimizations drop-down list. Click OK.

Notice that the options override on the file node is indicated in the Workspace window.

2.4. Compile the file lablfactoriel_main.c. Now you will notice two things. First, note the
automatic updating of the open list file due to the selected option Scan for Changed Files.
Second, look at the end of the list file and notice the effect on the code size due to the increased
optimization. It is:

Function/Label Bytes

ifact 48

lifact 96

144 bytes in segment CODE

144 bytes of CODE memory

2.5. For this tutorial, the optimization level None should be used, so before linking the
application, restore the default optimization level. Open the C/C++ Compiler options dialog box
by right-clicking on the selected file in the Workspace window.

Step 3. Linking the application.
Now you should set up the options for the IAR XLINK Linker.

3.1. Select the project folder icon lablt - Debug in the Workspace window and choose
Project>Options (Figure 8). Then select Linker in the Category list to display the XLINK option
pages. For this tutorial, default factory settings are used. However, pay attention to the choice of
output format and linker command file.

Options for node “lab1t” E]
Category: Factory Settings

General | Options
CIC++ compiler
pissembler
Custom Buid Outpul | Extra Dutput | #define | Diagnostics | List | Config | Proce 4| »
Build Actions

Outpu file
™ Oweride default Secondary output file:

(tlone for the selected farmat]

Debugger
FET Debugger
Simulator

Format
&+ Debug information for C-SPY
v tfith runtime contral modules
[¥ wiith 170 emulation modules
I

1" Allow C-5FY-specific extra output file

" Other | =]
| L]
Modulelocal syribols | Include al =l

Figure 8. XLINK options dialog box.

Output format

It is important to choose the output format that suits your purpose. You might want to load it to a
debugger—which means that you need output with debug information. In this tutorial you will
use the default output options suitable for the C-SPY debugger—Debug information for C-SPY,
With runtime control modules, and With I/O emulation modules—which means that some low-
level routines will be linked that direct stdin and stdout to the Terminal 1/0 window in the C-
SPY Debugger. You find these options on the Output page.

Alternatively, in your real application project, you might want to load the output to a PROM
programmer—in which case you need an output format without debug information, such as Intel-
hex or Motorola S-records.

Linker command file

In the linker command file, the XLINK command line options for segment control are used for
placing segments. It is important to be familiar with the linker command file and placement of
segments. You can read more about this in the MSP430 IAR C/C++ Compiler Reference Guide.
The linker command file templates supplied with the product can be used as is in the simulator,
but when using them for your target system you might have to adapt them to your actual
hardware memory layout. You can find supplied linker command files in the config directory. In
this tutorial you will use the default linker command file, which you can see on the Config page.

If you want to examine the linker command file, use a suitable text editor, such as the IAR
Embedded Workbench editor, or print a copy of the file, and verify that the definitions match
your requirements.

Linker map file
By default no linker map file is generated. To generate a linker map file, click the List tab and
select the options Generate linker listing, Segment map, and Module map.

3.2. Click OK to save the XLINK options. Now you should link the object file, to generate code
that can be debugged.

3.3. Choose Project>Make. The progress will as usual be displayed in the Build messages
window. The result of the linking is a code file lab1t.d43 with debug information and a map file
lablt.map.

Step 4. Viewing the map file.
Examine the file lablt.map to see how the segment definitions and code were placed in memory.
These are the main points of interest in a map file:
= The header includes the options used for linking.
= The CROSS REFERENCE section shows the address of the program entry.
= The RUNTIME MODEL section shows the runtime model attributes that are used.
= The MODULE MAP shows the files that are linked. For each file, information about the
modules that were loaded as part of your application, including segments and global
symbols declared within each segment, is displayed.
= The SEGMENTS IN ADDRESS ORDER section lists all the segments that constitute
your application.

The lab1t.d43 application is now ready to be run in the IAR C-SPY Debugger.

2. Debugging using the IAR C-SPY® Debugger

This section continues the development cycle started in the previous section and explores the
basic features of the IAR C-SPY Debugger.

2.1. Starting The C-SPY Debugger
Before starting the IAR C-SPY Debugger you must set a few C-SPY options.

Step 1. Choose Project>0Options and then the Debugger category (Figure 9). On the Setup page,
make sure that you have chosen Simulator from the Driver drop-down list and that Run to main
is selected. Click OK.

Options for node “lab1t" B‘

Categony: Factory Settings

General Options
CIC++ compiler
Assembler

Custorn Build
Build Actions
Linker

W Runto

FET Debuager
Simnulator

Cancel
Figure 9. Setting the debugger options.

Step 2. Choose Project>Debug. Alternatively, click the Debugger button in the toolbar. The IAR
C-SPY Debugger starts with the lab1t.d43 application loaded. In addition to the windows already
opened in the Embedded Workbench, a set of C-SPY -specific windows are now available
(Figure 10).

Make sure the following windows and window contents are open and visible on the screen: the
Workspace window with the active build configuration tutorials — lab1t, the editor window with
the source files labl1factoriel_main.c and twofact.c, and the Debug Log window.

Z IAR Embedded Workbench IDE =T

File Edit View Project Debug Simulator Tools window Help

| - wuFesw i A

> 8
ol [lsb 1 Factoriel_main.c =
#include "i0430.h" | [Memoy =
Elae i | By #include "stdio.h” T s i
BHlabit-Deb.. v T —— 001374 1208 “push.w R11
B o tiact. 001376 40B2 GABD 0120 #DxGABD, LUDTCTL
L now.w = :
'WD'B’JE int ifact(int);
=@ (3 Output long int lifact(int); 00137C 403C 1100 nov.w #0x1100.R12
001380 1280 1426 call #orintf
001384 4313 nov.w #0=1.RL0
001386 440C now.w RL0.R12
001388 12B0 13F6 call #ifact
Sint nainf void | 00138C 4COB mov.w R12,R11
{ 00138E 440C nov.w R10,R12
4/ Stop watchdog timer to prevent time out reset 001390 1280 1312 call #lifact
WDTCTL = WDTEW + WDTHOLD 1
int i: 001384 120D push.w R13
ot 001396 120C push.w Ri2
ane s 001398 120D push.w Ri3
long int b; 001384 120C push.w Ri2
princf(7(i)! : int-dec, int-hex : long int-dec, long int-hex;in");: gg%;g% };gg push w g%%
i=l; i : push . w
T lé et 001340 120 push.w R1D
2= Loactil]s 001342 £03C 1137 nov.w #0x1137,R12
b = lifact(i}; 001346 12B0 1426 call #printf
printf("(%d)! : %Bd, %8x @ %14ld, 314lx\n", i, &, &, b, b): /7 print hex, oct, binmary 001344 5314 inc.w R1D
) 0013AC 5031 DDOE add.w #0=E,SP
return 0; 0013B0 903& 0010 cnp.w #0x10,R10
} 0013B4 3BES il 0x1386
0013B6 430C clr.w Ri2
001388 413B pop.w Ril
0013B& 4133 pop.w Ri0
0013EC 4130 ret
7Diviod32u
0013BE 1209 push.w R9
0013C0 1204 push.w R10
0013C2 1208 push.w R11
0013C4 4304 clr.w R1D
0013C6 430B clr.w RIl
0013C8 4039 0020 nov.w #0x20.R9
0013CC 5COC rla.w Ri2
_ 0013CE €DOD rle.w i3
- 001300 6ada rloc.w RiD -
labit [fal_ 4 > Ie >
* Messages File Line A
Changed settings farces a full rebuild
Building configuration: labit- Debug
Updating build tree...
4 file(s) delsted
Updating build tree...
labfactoriel_main.c
twotactc 2
Vit
Debug Log Buld *
Ready Errors 0, Warnings 0 Ln 13, Col 1

Figure 10. The C-SPY debugger main window.

2.2. Inspecting source statements

To inspect the source statements, double-click the file lab1factoriel_main.c in the Workspace
window.

Step 1. With the file lab1factoriel_main.c displayed in the editor window, first step over with the

Debug>Step Over command. %
Alternatively, click the Step Over button on the toolbar.

Step 2. Choose Debug>Step Into to step into the functions ifact and lifact.

Alternatively, click the Step Into button on the toolbar. E

At source level, the Step Over and Step Into commands allow you to execute your application a
statement or instruction at a time. The Step Into continues stepping inside function or subroutine
calls, whereas Step Over executes each function call in a single step. When the Step Into is
executed you will notice that the active window changes to twofact.c as the functions are located
in this file.

Step 3. Use the Step Into command until you reach the end of the ifact function.

Step 4. You can also step on a statement level. Choose the Debug>Next statement to execute one
statement at a time. Alternatively, click the Next statement button on the toolbar. Notice how this

i
command differs from the Step Over and the Step Into commands. =2
Explore other options (Step out, Run to, etc).

2.3. Inspecting Variables

C-SPY allows you to watch variables or expressions in the source code, so that you can keep
track of their values as you execute your application. You can look at a variable in a number of
ways; for example by pointing at it in the source window with the mouse pointer, or by opening
one of the Locals, Watch, Live Watch, or Auto windows.

Note: When optimization level None is used, all non-static variables will live during their entire
scope and thus, the variables are fully debuggable. When higher levels of optimizations are used,
variables might not be fully debuggable.

Using the Auto Window
Choose View>Auto to open the Auto window. Keep stepping to see how the values change.

Expression WValue Location Type
b 1 R13:R12 lang

[lifact lifact (0x1312) long (__cc_version2 *)(int)
L lifact (0x1312) Memon:x1312 lang fint)
i 1 R1D int
[=1 printt printf (b1 426) int(__cc_version2 *){char const™,)
L printf (01 426) temary:0x1428 int(char canst®,)
a 1 R11 int

< >

Figure 11. Inspecting variables in the Auto window.

2.4. Setting a watchpoint

Next you will use the Watch window to inspect variables.
Choose View>Watch to open the Watch window. Notice that it is by default grouped together
with the currently open Auto window; the windows are located as a tab group.

Set a watchpoint on the variable i using the following procedure: Click the dotted rectangle in the
Watch window. In the entry field that appears, type i and press the Enter key. You can also drag
a variable from the editor window to the Watch window.

Z IAR Embedded Workbench IDE =T

File Edit View Project Debug Simulator Tools wWindow Help

DSL@ & B @ [=l s Y [. -
= 232 LED R
bt i X | twaactlst [EHTEE |
| Detug | [#inciude "10830.87
peng -] -

Filas B #include "stdio.h” : L il

e | | e) | S R
B Jlablt-Deb... v sdefine WAXF 16 et
[labTfactori...
Btwofacte int ifact(int]:
L@ (3 Output long int lifactiint);:

int nain{ veid |
{
47 Stop watchdog timer to prevent tims out reset
UDTCTL = WOTPW + UDTHOLD:
int i:
int a:
long int b;
princf("(i)! : int-dec, int-hex : long int-dec, long int-hew;\n"):
for (i=1; i<MAXF: i++) {
= iract(i):

v - e
printf("(%d)! : %Bd, %8x : 514ld, %14lx;\n", i, a, a, b, b): /7 print hex, oct, binary
}
return 0;
+
< ¥
—! Thuta” watch x
-
x
Lot | [ful L« 1
* Messages File Line A
Changed settings forces a full rebuild
Building configuration: labit- Debug
Updating build tree...
4 file(s) delsted
Updating build tree...
labfactoriel_main.c
twofact.c 2
Linin -
Debug Log | Build £3
Ready Errors 0, Warnings 0

Figure 12. Watching variables in the Watch window.

Execute some more steps to see how the values of i and change.

To remove a variable from the Watch window, select it and press Delete.

2.5. Setting And Monitoring Breakpoints

The IAR C-SPY Debugger contains a powerful breakpoint system with many features. For more
information read the Help> MSP430 IAR Embedded Workbench® IDE User Guide.

The most convenient way is usually to set breakpoints interactively, simply by positioning the
insertion point in or near a statement and then choosing the Toggle Breakpoint command.

Set a breakpoint on a statement using the following procedure: First, click the twofact.c tab in the
editor window and click in the statement to position the insertion point. Then choose
Edit>Toggle Breakpoint.

Alternatively, click the Toggle Breakpoint button on the toolbar.

A breakpoint will be set at this statement. The statement will be highlighted and there will be a
big red dot in the margin to show that there is a breakpoint there.

To view all defined breakpoints, choose View>Breakpoints to open the Breakpoints window.
You can find information about the breakpoint execution in the Debug Log window.

2.6. Executing up to a breakpoint

To execute your application until it reaches the breakpoint, choose Debug>Go. Alternatively,
click the Go button on the toolbar.

The application will execute up to the breakpoint you set.
Select the breakpoint and choose Edit>Toggle Breakpoint to remove the breakpoint.

2.7. Debugging In Disassembly Mode

Debugging with C-SPY is usually quicker and more straightforward in C/C++ source mode.
However, if you want to have full control over low-level routines, you can debug in disassembly
mode where each step corresponds to one assembler instruction. C-SPY lets you switch freely
between the two modes.

First reset your application by clicking the Reset button on the toolbar.

Choose View>Disassembly to open the Disassembly window, if it is not already open. You will
see the assembler code corresponding to the current C statement.
Try the different step commands also in the Disassembly window.

2.8. Monitoring Registers

The Register window lets you monitor and modify the contents of the processor registers. Notice
registers PC (Program Counter), SP (Stack Pointer), SR (Status Register), R4-R15 (general-
purpose registers), CYCLECOUNTER (this is actually not a real register, rather it serves as a
clock cycle counter so you can determine the number of clock cycles each instruction takes to
execute; it can also be used to determine execution time of functions are whole programs).

Register %)
CPL Registers -

PC = 0=1270 R11 = 0=7ESE
SP = 0=0%FE R12 = D=z0000
EHSR = 0=0003 R13 = D=0000
R4 = 0=43:6E R14 = D=z0000
R5 = 0=082D R15 = D=0004
R6 = 0=257D CYCLECOUHTER = 4785
R7? = 0=1R97 CCTINER1 = 47858
R8 = 0=5D1% CCTIHER2 = 478%
R9 = 0=4355 CCSTEP = 47858
R10 = 0=0DCC

Figure 13. Register window.

Choose View>Register to open the Register window.

Step Over to execute the next instructions, and watch how the values change in the Register
window.

Close the Register window.

2.9. Monitoring Memory

The Memory window (Figure 14) lets you monitor selected areas of memory. You can select
RAM, flash, or SFR portion of the memory. Similarly you can select View->Stack option to

inspect the current state of the program stack.

Goto |] [Memon ~1 [+

0210 15 00 22 00 37 00 61 96 47 14 df 40 00 4d {2 Oc 7.aG @K b
Disassembly | Auto [Live Watch |Register Memwory x
Gota | =] [Memon - =

0000 0000 0000 0000 0000 0000 OOOO 0000 0000 A

0010 0000 0000 0000 0000 Q000 d00d 0000 0000
0020 0000 0000 0000 0000 0000 000 0000 0000
0030 0000 0000 0000 0ODOO QOO0 0000 DOO0O QOO0
0040 0000 0000 0000 0000 Q000 000 0000 0000
0050 0000 0000 0000 0000 0000 000 0000 0000
0060 0000 0000 0000 0ODOO QOO0 0000 DOO0O QOO0
0070 0000 0000 0000 0000 0000 Q000 0000 Q000
0080 0000 0000 0000 0000 Q000 000 0000 0000
0090 0000 0000 0000 0000 QOO0 0000 0O0O QOO0
0020 0000 0000 0000 0000 0000 0000 0000 Q000
00b0 0000 0000 0000 0000 0000 000 0000 0000
00cO 0000 0000 0000 0000 QOO0 0000 0OO0O QOO0
0040 0000 0000 0000 0000 QOO0 0000 0000 QOO0
00=0 0000 0000 0000 0000 0000 000 0000 0000
00f0 0000 0000 0000 0ODOO QOO0 0000 DOOO QOO0
0100 0000 0000 0000 0000 QOO0 0000 DOO0O QOO0
0110 0000 0000 0000 0000 Q000 000 0000 0000
0120 0000 0000 0000 0OOO QOO0 0000 0000 QOO0
0130 0005 0000 0000 0ODOO 00Oa 0032 0000 QOO0
0140 0000 0000 0000 0000 Q000 000 0000 0000
0150 0000 0000 0000 0000 0000 000 0000 0000
0160 0000 0000 0000 0DOO QOO0 0000 0OOO QOO0
0170 0000 0000 0000 0000 Q000 000 0000 0000
0180 0000 0000 0000 0000 Q000 000 0000 0000
0190 0000 0000 0000 0ODOO QOO0 0000 0O0O QOO0
0la0 0000 0000 0000 0000 0000 Q000 0000 Q000
01b0 0000 0000 0000 0000 Q000 000 0000 0000
0lcO 0000 0000 0000 0000 QOO0 0000 0OO0O QOO0
01d0 0000 0000 0000 0000 QOO0 0000 D000 QOO0
0led 0000 0000 0000 0000 0000 000 0000 0000
01f0 0000 0000 0000 0000 QOO0 0000 DOOO QOO0
0200 000a 0001 0001 0002 0003 0005 0008 OQOOd
0210 0015 0022 0037 9661 1447 40df 4400 Ocf2 b’

Disassembly | Auto [Live Watch [Register Memory | x

Figure 14. Memory window.

To display the memory contents as 16-bit data units, choose the x2 Units command from the
drop-down arrow menu on the Memory window toolbar.

If not all of the memory units have been initialized yet, continue to step over and you will notice
how the memory contents will be updated.

You can change the memory contents by editing the values in the Memory window. Just place
the insertion point at the memory content that you want to edit and type the desired value.

Close the Memory window.

2.10. Viewing Terminal 1/0

Sometimes you might need to debug constructions in your application that make use of stdin and

stdout without the possibility of having hardware support. C-SPY lets you simulate stdin and
stdout by using the Terminal 1/0 window.

Note: The Terminal 1/O window is only available in C-SPY if you have linked your project using
the output option With 1/O emulation modules. This means that some low-level routines will be
linked that direct stdin and stdout to the Terminal 1/O window.

Choose View>Terminal 1/O to display the output from the 1/O operations.

Terminal 1/0 3]

Output:

Lo file: art

(i)l int-dec int-hex: long intdec, long inthex
1. 1 1

A Z z

B B B E;

24, 16 24, 18

o120 7 a0, 78

o720, 2do 7e0, 2di;

o B040, 135k0: 5040, 13h0;

25216, 9dBl 40320, HelB0;
-30336, §950: 362680, BE950;

o o243z0, 5f00: 3828800, 37500;

© B376, 1600 38916800, ZE11500;
oo-1024, fc0b: 478001600, 1cBefcOl;
213312 cc00: 1932053504, 7328cc0l
o 10240, 2800 1278945280, 4c3hZE00;

. 228z BE00D: 2004310006, 77775800

e e R

Mmoo

Input: Chil codes Input Mode..

[Buffer size: D

Figure 15. Terminal 1/0 window.

The contents of the window depend on how far you have executed the application.

2.11. Reaching Program Exit
To complete the execution of your application, choose Debug>Go.

Alternatively, click the Go button on the toolbar.

As no more breakpoints are encountered, C-SPY reaches the end of the application and a
program exit reached message is printed in the Debug Log window.

4 IAR Embedded Workbench IDE Q@E|

File Edit View Project Debug Simulator Tools Window Help

Do dHa = 3 iR

= 2 LE 28
[\W/orkspac x o g o x x
e ® | Tutorulst | Utilities st & |Ut|||t\es‘c
[Detug | Get and print the associated Fibonacci number. j | [Memory 3|
Files I */ U0124E 3C03 Inp Uxl A
= void do_foreground_process|void) 001250 43CC 0000 clr b 0=
B Pproject! - . v 5 - 001254 531C inc.v R12
& [Tutor. . . s 001256 9FOC cmp.w RIS
: o unsigned int fib; 001256 23FB Jne (i3
NEXT_Ccounter ()’ 001254 4130 ret
I %Output £ib = get_fib(call_count):
[stdarg.h : next_counter:
| I—stdmi i pubIERT SR 00175C 5392 0200 inc.w ca
| F— Bsvsmach 001260 4130 et
| L— B Utilities.h exit
L (3 Output e 001262 4030 1266 br #0x
. _ewit
Mt v) 001266 4030 1270 br #0x
Prints the Fibonacci mmbers. putchar
s 001264 4030 126E br #0x
int main(woid) ?C_PUTCHAR:
{ __putchar
call_count=07 <EEIN et
init_£ib(); imp_ e
oooo 7797
5 001274 oooo s
while(call_count < MAX_FIE | 001276 oooo 2799
{ hd 001278 0000 2997 v
project] |{‘”| |4 ‘) < »
x
Log e
WWad Aug 0B 21:23:58 2008: Loaded debuges: CiDocuments and SettingsialeksandariMy Documentsiworkite achingicped?2 3-08Futorial\Debug\Exe\project].d43
Wed Aug 06 21:2359 2008: Target reset
Wed Aug 06 22:12:40 2008: Breakpoint hit. Code @ Utilities c:37.3
WWed Aug 0B 22:15:00 2008: Prograrm exit reached
Wed Aug 06 22:23:29 2008: Error (col 1): Unknown or ambiguous symbal. oot
WWad Aug 0B 22:33:01 2008: Target reset
| Wied Aug 06 22:33:03 2008: Program exit reached. =
|2
:{; Debug Log [Build x

Ready

Figure 16. Debug Log window (bottom).

If you want to start again with the existing application, choose Debug>Reset, or click the Reset
button on the toolbar. é

To exit from C-SPY, choose Debug>Stop Debugging. Alternatively, click the Stop Debugging
button on the toolbar. The Embedded Workbench workspace is displayed. 2

3. Assignment

Assignment #1: Write a C/C++ program that will print all prime numbers smaller than 1000 in
Terminal 1/0. What is program execution time in clock cycles? Could you further optimize
your code?

Assignment #2: Write a C/C++ program that will print sizes and ranges of common data types
including char, short int, int, long int, unsigned int, unsigned long int.

