
CPE 323 INSTRUCTION SET ARCHITECTURE:
AN INTRODUCTION

Aleksandar Milenkovic

Computers cannot execute high-level language constructs like ones found in C. Rather
they execute a relatively small set of machine instructions, such as addition, subtraction,
Boolean operations, and data transfers. The statements from high-level language are
translated into sequences of machine code instructions by a compiler. A machine code
instruction is represented by a binary string which is hard to be read by humans. A
human-readable form of the machine code is assembly language. However, assembly
language may also include some constructs that serve only to help programmers write a
better and more efficient code, faster. These constructs may translate into a sequence of
machine code instructions.

Instruction set architecture, or ISA for short, refers to a portion of a computer that is
visible to low-level programmers, such as assembly language programmers or compiler
writers. It is an abstract view of the computer describing what it does rather than how it
does. Note: computer organization describes how the computer achieves the specified
functionality is out of scope in this course.

The ISA aspects include (a) class of ISA, (b) memory model, (c) addressing modes, (d)
types and sizes of operands, (e) data processing and control flow operations supported by
machine instructions, and (f) instruction encoding.

Class of ISA. Virtually all recent instruction set architectures have a set of general-
purpose registers visible to programmers. These architectures are known as general-
purpose register architectures. Machine instructions in these architectures specify all
operands in memory or general-purpose registers explicitly. In older architectures,
machine instructions specified one or more operands implicitly on the stack – so-called
stack architectures, or in the accumulator – so-called accumulator architectures. There
are many reasons why general-purpose register architectures dominate in today’s
computers. Allocating frequently used variables, pointers, and intermediate results of
calculations in registers reduces memory traffic; improves processor performance since
registers are much faster than memory; and reduces code size since naming registers
requires fewer bits than naming memory locations directly. A general trend in recent
architectures is to increase the number of general-purpose registers.

General-purpose register architectures can be classified into register-memory and load-store
architectures, depending on the location of operands used in typical arithmetic and logical
instructions. In register-memory architectures arithmetic and logical machine instructions can
have one or more operands in memory. In load-store architectures only load and store
instructions can access memory, and common arithmetic and logical instructions are performed
on operands in registers. Depending on the number of operands that can be specified by an

instruction, ISAs can be classified into 2-operand or 3-operand architectures. With 2-operand
architectures, typical arithmetic and logical instructions specify one operand that is both a source
and the destination for the operation result, and another operand is a source. For example, the
arithmetic instruction ADD R1, R2 adds the operands from the registers R1 and R2 and writes the
result back to the register R2. With 3-operand architectures, instructions can specify two source
operands and the result operand. For example, the arithmetic instruction ADD R1, R2, R3 adds
the operands from the registers R1 and R2 and writes the result to the register R3.

Memory. Program instructions and data are stored in memory during program execution.
Programmers see memory as a linear array of addressable locations as shown in Figure 1. In
nearly all memory systems the smallest addressable location in memory is a single byte (8 bits).
The range of memory that can be addressed by the processor is called an address space. For
example, any program running on a 32-bit processor can address up to 4 GB (232 bytes) of the
address space. Though the smallest addressable object is a byte, bytes are generally grouped into
multi-byte objects. For example, in a 32-bit architecture we refer to 2-byte objects as half words,
4-byte objects as words, and 8-byte objects as double words. Machine instructions can directly
reference and operate on words, half-words, or bytes. When referencing a multi-byte object in
memory, its given address is the address of its first byte. For example, a half word located in
memory at the address 8 will occupy two byte addresses 8 and 9.

Many instruction set architectures require multi-byte objects to be aligned to their natural
boundaries. For example, if we assume a 4-byte wide memory (Figure 1), half words must begin
at even addresses, while words and double words must begin at addresses divisible by 4. This
kind of alignment requirement is often referred to as hard alignment. It should be noted that hard
alignment is not an architectural requirement; rather it makes hardware implementation more
practical. Even architectures that do not require hard alignment may benefit from having multi-
byte objects aligned. Access to unaligned objects may require multiple accesses to memory,
resulting in performance penalty. Another important issue related to memory is ordering the
bytes within a larger object. There are two different conventions for byte ordering: little-endian
and big-endian (Figure 2). With little-endian byte ordering, the least significant byte in a word is
located at the lowest byte address, and with big-endian, the most significant byte in a word is
located at the lowest byte address. For example, let us consider a 32-bit integer variable with a
hexadecimal value of 0x1234ABCD stored in memory at word address 0x8. For both big-endian
and little-endian byte ordering the most significant byte of the variable is 0x12 and the least
significant byte is 0xCD. However, with the big-endian scheme, the most significant byte is at
address 8, whereas with the little-endian scheme, the most significant byte is at address 11
(Figure 2).

Types and Sizes of Operands. Machine instructions operate on operands of certain types.
Common types supported by ISAs include character (e.g., 8-bit ASCII or 16-bit Unicode), signed
and unsigned integers, and single- and double-precision floating-point numbers. ISAs typically
support several sizes for integer numbers. For example, a 32-bit architecture may include
arithmetic instructions that operate on 8-bit integers, 16-bit integers (short integers), and 32-bit
integers. Signed integers are represented using two’s complement binary representation, while
floating-point numbers rely on IEEE standard 754. Some ISAs support less frequently used data
types, such as character strings, packed decimal or binary-coded decimal numbers (a decimal
digit requires 4 bits, and two decimal digits are packed into a byte).

Instructions. Machine instructions can be broadly classified into data processing and control flow
instructions. Data processing instructions manipulate operands in registers and memory locations.

Common data processing instructions support integer arithmetic operations (e.g., add, subtract,
compare, multiply, divide), logic operations (e.g., bitwise and, or, xor, nor, not); shift operations
(e.g., shift to the right or left, rotate), and data transfer operations (load that moves a specified
operand from memory to a register, store that moves a specified operand from register to a
memory location, and move that transfers data between registers). If a computer is intended for
applications that extensively use floating-point numbers, the ISA may support floating-point
arithmetic (e.g., floating-point add, subtract, compare, multiply, divide). Several older ISAs
support instructions that manipulate decimal operands and character string operands. In media
and signal processing architectures we may encounter instructions that operate on more complex
data types (e.g., pixels).

Machine instructions are fetched from memory and executed sequentially. Control-flow or branch
instructions allow us to make decisions and change the execution flow to an instruction other than
the next one in sequence. These instructions can be classified into conditional (often referred to
as branches) and unconditional (often referred to as jumps), procedure calls, and procedure
returns. A conditional branch instruction is defined by its outcome that determines whether the
branch is taken or not taken; and by its target address that specifies the address of the following
instruction in sequence to be executed, if the branch is taken. A jump instruction is defined by its
target address only. Branch target addresses can be known at compile time (direct branches) or
determined during program execution (indirect branches).

Binary encoding of instructions. Instruction encoding defines binary representation of machine
instructions. Exact encoding depends on many parameters, such as architecture type, the number
of operands, the number and type of instructions, the number of general-purpose registers,
operand types, and the size of address space. This representation affects not only the size of the
program, but also the processor implementation. The operation and possibly the number of
operands are typically specified by one instruction field called the opcode. For each operand the
machine instruction includes an addressing mode specifier – a field that tells what addressing
mode is used to access the operand, and one or more address fields that specify the operand
address. Figure 3 shows a generalized instruction format for a 2-operand instruction. This
approach to instruction encoding is often referred to as variable length – each operation can work
with virtually all addressing modes that are supported by the ISA. An alternative approach is
fixed length instruction encoding where the opcode is combined with addressing mode specifiers.
Typically a single size is used for all instructions and this approach is used when there are a few
addressing modes and operations. A third approach called hybrid is somewhere in between. It
reduces variability in instruction encoding, but allows multiple instruction lengths. In load/store
architectures all instructions except loads and stores find their operands in general-purpose
registers, hence the addressing mode specifiers are not needed. Here we will assume that
information about the number of operands and the corresponding addressing mode specifiers are
all merged with the opcode field. Fixed length instruction formats require less complex decoding
logic, resulting in faster decoding, but tend to increase the number of bits needed to encode an
instruction, resulting in poor code density. Code density is an important characteristic of an
instruction set, and it can be measured by the size of a program needed to complete a particular
task.

Addressing modes. A machine instruction can find its operand in one of three places: (a) as a
part of the instruction, (b) in a general-purpose register, and (c) in memory. Operands in registers
and memory can be specified directly or indirectly. Consequently, addressing modes can be
broadly classified into (a) direct – the address field specifies the operand address and (b) indirect
– the address field specifies a location that contains the operand address. A wide variety of

addressing modes is used in instruction set architectures, such as immediate, register direct,
register indirect, register indirect with displacement, memory direct, and memory indirect, to
name just a few. Table 1 gives a list of the most common addressing modes with examples and
usage. Each addressing mode is illustrated by a LOAD instruction that moves the specified
operand into a general-purpose register. Figure 4 gives a graphical illustration of these
addressing modes.

R0
R1

R15
…

R2

GPRs

Processor

Memory

7 … 015 … 823…1631…24

32 bits

31 … 0

0x0

0x4

0x8

0xC
0x10

0xFFFF_FFFC

0xFFFF_FFF8
0xFFFF_FFF4

0xFFFF_FFF0

.

.

.

Bit 0Bit 31

byte

Code

Static Data

Heap

Unused

Stack

Figure 1. Programming model: general-purpose registers (GPRs) and memory.

0123

4567

3412 CDAB
891011

3210
0x0

0x4

0x8

7654

3412 CDAB
111098

32 bits

Byte
address

Bit 0Bit 31

Byte
address

32 bits
Bit 0Bit 31

Little-endian Big-endian
Figure 2. Little-endian and big-endian byte ordering.

AMS.1 AF.1 AS.2 AF.2Opcode AMS.1 AF.1 AS.2 AF.2Opcode

Operand.1 Operand.2

Figure 3. A generalized 2-operand instruction format (AMS – Address Mode Specifier, AF –
Address Field).

#Imm R3OpCode +AMSs

Zero/Sign
Extend

Instruction: LOAD #Imm, R3

Registers

R0
R1
R2
R3
…

R15

R0
R1
R2
R3
…

R15

(a) Immediate

R1 R3OpCode +AMSs

Instruction: MOVE R1, R3

Registers

R0
R1
R2
R3
…

R15

R0
R1
R2
R3
…

R15

R0
R1
R2
R3
…

R15

Address R3OpCode +AMSs

Operand

Registers
MemoryEA

Instruction: LOAD Address, R3

(b) Register Direct (c) Memory Direct

R0
R1
R2
R3
…

R15

R1 R3OpCode +AMSs

Operand

Registers Memory

EA

Instruction: LOAD (R1), R3

R0
R1
R2
R3
…

R15

R1 R2OpCode +AMSs

Operand

Registers Memory

EA

R3

+

Instruction: LOAD (R1+R2), R3

(d) Register Indirect (e) Register Indirect with Index

R0
R1
R2
R3
…

R15

R1 R3OpCode +AMSs

Operand

Registers Memory

EA

Instruction: LOAD (R1)+, R3

+4

R0
R1
R2
R3
…

R15

R1 R3OpCode +AMSs

Operand

Registers Memory

EA

Instruction: LOAD -(R1), R3

−

4

(f) Autoincrement (g) Autodecrement

R0
R1
R2
R3
…

R15

R1OpCode +AMSs

Operand

Registers Memory

EA

disp

+

Instruction: LOAD disp(R1), R3

R3

R0
R1
R2
R3
…

R15

R1 R2OpCode +AMSs

Operand

Registers Memory

EA

disp

+

Instruction: LOAD disp(R1,R2), R3

R3

(h) Register Indirect with Displacement (i) Register Indirect with Index and Displacement

R0
R1
R2
R3
…

R15

OpCode +AMSs

Operand

Registers
Memory

EA

disp

+

Instruction: LOAD disp(PC), R3

R3 Program Counter

R0
R1
R2
R3
…

R15

R1 R3OpCode +AMsd

Address

Operand

Registers
Memory

EA

Instruction: LOAD ([R1]), R3

(j) PC Relative (k) Memory Indirect with Register
Figure 4. Illustration of addressing modes

Table 1. Data addressing modes, example instructions, description, and typical use.
Legend: Register transfer language (RTL) is used to describe data transfers and
operations. Square brackets [] indicate content of registers and memory locations, and
backward arrows indicate data transfers from the source specified on the right-hand side
of the expression to the destination specified on the left-hand side of the expression.

Addressing Mode Example Instruction RTL Description Typical Use
Immediate LOAD #3, R3 [R3] ← 0x00000003

For constants

Register-direct LOAD R1, R3 [R3] ← [R1]

When a value is in a
register

Memory direct or
Absolute

LOAD $8000, R3 EA ← $00008000
[R3] ← [Mem(EA)]

Access to static variables
in memory

Register indirect LOAD (R1), R3 EA ← [R1]
[R3] ← [Mem(EA)]

Access to variables in
memory
using a pointer

Register indirect
with index

LOAD (R1+R2), R3 EA ← [R1] + [R2]
[R3] ← [Mem(EA)]

Access to elements in an
array of complex data
structures (R1 points to the
base, R2 is stride)

Register indirect
with scaled index

LOAD (R1+R2*4),R3 EA ← [R1] + [R2]*4
[R3] ← [Mem(EA)]

Access to elements in an
array of complex data
structures (R3 points to the
base, R2 is index)

Autoincrement LOAD (R1)+, R3 EA ← [R1]; [R1] ←
[R1] + 4
[R3] ← [Mem(EA)]

Access to elements of an
array in a loop;
Access to stack (push/pop)

Autodecrement LOAD -(R1), R3 [R1] ← [R1] – 4; EA ←
[R1]
[R3] ← [Mem(EA)]

Access to elements of an
array in a loop;
Access to stack (push/pop)

Register indirect
with displacement

LOAD 0x100(R1), R3 EA ← [R1] + 0x0100
[R3] ← [Mem(EA)]

Access to local variables

Register indirect
with scaled index
and displacement

LOAD
0x100(R1+R2*4), R3

EA ←
0x0100+[R1]+[R2]*4
[R3] ← [Mem(EA)]

Access to arrays allocated
on the stack

PC relative LOAD 0x100(PC), R3 EA ← 0x0100+[PC]
[R3] ← [Mem(EA)]

Branches, Jumps,
Procedure calls
Static data

PC relative with
index

LOAD (PC+R2),R3 EA ← [PC]+[R2]
[R3] ← [Mem(EA)]

Branches, Jumps,
Procedure calls
Static data

PC relative with
scaled index and
displacement

LOAD
0x100(PC+R2*4), R3

EA ←
0x0100+[PC]+[R2]*4
[R3] ← [Mem(EA)]

Branches, Jumps,
Procedure calls
Static data

