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Computers cannot execute high-level language constructs like ones found in C.  Rather 
they execute a relatively small set of machine instructions, such as addition, subtraction, 
Boolean operations, and data transfers. The statements from high-level language are 
translated into sequences of machine code instructions by a compiler. A machine code 
instruction is represented by a binary string which is hard to be read by humans. A 
human-readable form of the machine code is assembly language. However, assembly 
language may also include some constructs that serve only to help programmers write a 
better and more efficient code, faster.  These constructs may translate into a sequence of 
machine code instructions.  
 
Instruction set architecture, or ISA for short, refers to a portion of a computer that is 
visible to low-level programmers, such as assembly language programmers or compiler 
writers. It is an abstract view of the computer describing what it does rather than how it 
does. Note: computer organization describes how the computer achieves the specified 
functionality is out of scope in this course.  
 
The ISA aspects include (a) class of ISA, (b) memory model, (c) addressing modes, (d) 
types and sizes of operands, (e) data processing and control flow operations supported by 
machine instructions, and (f) instruction encoding.   
 
Class of ISA.  Virtually all recent instruction set architectures have a set of general-
purpose registers visible to programmers.  These architectures are known as general-
purpose register architectures.  Machine instructions in these architectures specify all 
operands in memory or general-purpose registers explicitly.  In older architectures, 
machine instructions specified one or more operands implicitly on the stack – so-called 
stack architectures, or in the accumulator – so-called accumulator architectures.  There 
are many reasons why general-purpose register architectures dominate in today’s 
computers.  Allocating frequently used variables, pointers, and intermediate results of 
calculations in registers reduces memory traffic; improves processor performance since 
registers are much faster than memory; and reduces code size since naming registers 
requires fewer bits than naming memory locations directly.  A general trend in recent 
architectures is to increase the number of general-purpose registers.   

General-purpose register architectures can be classified into register-memory and load-store 
architectures, depending on the location of operands used in typical arithmetic and logical 
instructions.  In register-memory architectures arithmetic and logical machine instructions can 
have one or more operands in memory.  In load-store architectures only load and store 
instructions can access memory, and common arithmetic and logical instructions are performed 
on operands in registers.  Depending on the number of operands that can be specified by an 



instruction, ISAs can be classified into 2-operand or 3-operand architectures.  With 2-operand 
architectures, typical arithmetic and logical instructions specify one operand that is both a source 
and the destination for the operation result, and another operand is a source.  For example, the 
arithmetic instruction ADD R1, R2 adds the operands from the registers R1 and R2 and writes the 
result back to the register R2.  With 3-operand architectures, instructions can specify two source 
operands and the result operand.  For example, the arithmetic instruction ADD R1, R2, R3 adds 
the operands from the registers R1 and R2 and writes the result to the register R3.   

Memory.  Program instructions and data are stored in memory during program execution.  
Programmers see memory as a linear array of addressable locations as shown in Figure 1.  In 
nearly all memory systems the smallest addressable location in memory is a single byte (8 bits).  
The range of memory that can be addressed by the processor is called an address space.  For 
example, any program running on a 32-bit processor can address up to 4 GB (232 bytes) of the 
address space.  Though the smallest addressable object is a byte, bytes are generally grouped into 
multi-byte objects. For example, in a 32-bit architecture we refer to 2-byte objects as half words, 
4-byte objects as words, and 8-byte objects as double words. Machine instructions can directly 
reference and operate on words, half-words, or bytes.  When referencing a multi-byte object in 
memory, its given address is the address of its first byte.  For example, a half word located in 
memory at the address 8 will occupy two byte addresses 8 and 9.   

Many instruction set architectures require multi-byte objects to be aligned to their natural 
boundaries.  For example, if we assume a 4-byte wide memory (Figure 1), half words must begin 
at even addresses, while words and double words must begin at addresses divisible by 4.  This 
kind of alignment requirement is often referred to as hard alignment.  It should be noted that hard 
alignment is not an architectural requirement; rather it makes hardware implementation more 
practical.  Even architectures that do not require hard alignment may benefit from having multi-
byte objects aligned.  Access to unaligned objects may require multiple accesses to memory, 
resulting in performance penalty.  Another important issue related to memory is ordering the 
bytes within a larger object.  There are two different conventions for byte ordering: little-endian 
and big-endian (Figure 2).  With little-endian byte ordering, the least significant byte in a word is 
located at the lowest byte address, and with big-endian, the most significant byte in a word is 
located at the lowest byte address.  For example, let us consider a 32-bit integer variable with a 
hexadecimal value of 0x1234ABCD stored in memory at word address 0x8.  For both big-endian 
and little-endian byte ordering the most significant byte of the variable is 0x12 and the least 
significant byte is 0xCD.  However, with the big-endian scheme, the most significant byte is at 
address 8, whereas with the little-endian scheme, the most significant byte is at address 11 
(Figure 2).   

Types and Sizes of Operands.  Machine instructions operate on operands of certain types.  
Common types supported by ISAs include character (e.g., 8-bit ASCII or 16-bit Unicode), signed 
and unsigned integers, and single- and double-precision floating-point numbers.  ISAs typically 
support several sizes for integer numbers.  For example, a 32-bit architecture may include 
arithmetic instructions that operate on 8-bit integers, 16-bit integers (short integers), and 32-bit 
integers.  Signed integers are represented using two’s complement binary representation, while 
floating-point numbers rely on IEEE standard 754.  Some ISAs support less frequently used data 
types, such as character strings, packed decimal or binary-coded decimal numbers (a decimal 
digit requires 4 bits, and two decimal digits are packed into a byte).  

Instructions. Machine instructions can be broadly classified into data processing and control flow 
instructions. Data processing instructions manipulate operands in registers and memory locations. 



Common data processing instructions support integer arithmetic operations (e.g., add, subtract, 
compare, multiply, divide), logic operations (e.g., bitwise and, or, xor, nor, not); shift operations 
(e.g., shift to the right or left, rotate), and data transfer operations (load that moves a specified 
operand from memory to a register, store that moves a specified operand from register to a 
memory location, and move that transfers data between registers).  If a computer is intended for 
applications that extensively use floating-point numbers, the ISA may support floating-point 
arithmetic (e.g., floating-point add, subtract, compare, multiply, divide).  Several older ISAs 
support instructions that manipulate decimal operands and character string operands.  In media 
and signal processing architectures we may encounter instructions that operate on more complex 
data types (e.g., pixels).   

Machine instructions are fetched from memory and executed sequentially. Control-flow or branch 
instructions allow us to make decisions and change the execution flow to an instruction other than 
the next one in sequence.  These instructions can be classified into conditional (often referred to 
as branches) and unconditional (often referred to as jumps), procedure calls, and procedure 
returns.  A conditional branch instruction is defined by its outcome that determines whether the 
branch is taken or not taken; and by its target address that specifies the address of the following 
instruction in sequence to be executed, if the branch is taken.  A jump instruction is defined by its 
target address only.  Branch target addresses can be known at compile time (direct branches) or 
determined during program execution (indirect branches).  

Binary encoding of instructions.  Instruction encoding defines binary representation of machine 
instructions.  Exact encoding depends on many parameters, such as architecture type, the number 
of operands, the number and type of instructions, the number of general-purpose registers, 
operand types, and the size of address space.  This representation affects not only the size of the 
program, but also the processor implementation.  The operation and possibly the number of 
operands are typically specified by one instruction field called the opcode.  For each operand the 
machine instruction includes an addressing mode specifier – a field that tells what addressing 
mode is used to access the operand, and one or more address fields that specify the operand 
address.  Figure 3 shows a generalized instruction format for a 2-operand instruction.  This 
approach to instruction encoding is often referred to as variable length – each operation can work 
with virtually all addressing modes that are supported by the ISA.  An alternative approach is 
fixed length instruction encoding where the opcode is combined with addressing mode specifiers.  
Typically a single size is used for all instructions and this approach is used when there are a few 
addressing modes and operations.  A third approach called hybrid is somewhere in between.  It 
reduces variability in instruction encoding, but allows multiple instruction lengths.  In load/store 
architectures all instructions except loads and stores find their operands in general-purpose 
registers, hence the addressing mode specifiers are not needed.  Here we will assume that 
information about the number of operands and the corresponding addressing mode specifiers are 
all merged with the opcode field.  Fixed length instruction formats require less complex decoding 
logic, resulting in faster decoding, but tend to increase the number of bits needed to encode an 
instruction, resulting in poor code density.  Code density is an important characteristic of an 
instruction set, and it can be measured by the size of a program needed to complete a particular 
task.   

Addressing modes.  A machine instruction can find its operand in one of three places: (a) as a 
part of the instruction, (b) in a general-purpose register, and (c) in memory.  Operands in registers 
and memory can be specified directly or indirectly.  Consequently, addressing modes can be 
broadly classified into (a) direct – the address field specifies the operand address and (b) indirect 
– the address field specifies a location that contains the operand address.  A wide variety of 



addressing modes is used in instruction set architectures, such as immediate, register direct, 
register indirect, register indirect with displacement, memory direct, and memory indirect, to 
name just a few.  Table 1 gives a list of the most common addressing modes with examples and 
usage.  Each addressing mode is illustrated by a LOAD instruction that moves the specified 
operand into a general-purpose register.  Figure 4 gives a graphical illustration of these 
addressing modes.   
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Figure 1.  Programming model: general-purpose registers (GPRs) and memory. 
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Figure 3.  A generalized 2-operand instruction format (AMS – Address Mode Specifier, AF – 
Address Field).  
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(a) Immediate  
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(b) Register Direct (c) Memory Direct 
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(d) Register Indirect (e) Register Indirect with Index 



R0
R1
R2
R3
…

R15

R1 R3OpCode +AMSs

Operand

Registers Memory

EA

Instruction:  LOAD (R1)+, R3

+4

 

R0
R1
R2
R3
…

R15

R1 R3OpCode +AMSs

Operand

Registers Memory

EA

Instruction:  LOAD -(R1), R3

−

4

 
(f) Autoincrement (g) Autodecrement 
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(h) Register Indirect with Displacement (i) Register Indirect with Index and Displacement 
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Figure 4.  Illustration of addressing modes 
 
 



Table 1. Data addressing modes, example instructions, description, and typical use.  
Legend: Register transfer language (RTL) is used to describe data transfers and 
operations. Square brackets [] indicate content of registers and memory locations, and 
backward arrows indicate data transfers from the source specified on the right-hand side 
of the expression to the destination specified on the left-hand side of the expression.   
 
Addressing Mode Example Instruction RTL Description Typical Use 
Immediate LOAD #3, R3 [R3] ← 0x00000003 

 
For constants 
 

Register-direct LOAD R1, R3 [R3] ← [R1] 
 

When a value is in a 
register 
 

Memory direct or  
Absolute 

LOAD $8000, R3 EA ← $00008000 
[R3] ← [Mem(EA)] 

Access to static variables 
in memory 

Register indirect LOAD (R1), R3 EA ← [R1] 
[R3] ← [Mem(EA)] 

Access to variables in 
memory 
using a pointer 

Register indirect 
with index  

LOAD (R1+R2), R3 EA ← [R1] + [R2] 
[R3] ← [Mem(EA)] 

Access to elements in an 
array of complex data 
structures (R1 points to the 
base, R2 is stride) 

Register indirect 
with scaled index 

LOAD (R1+R2*4),R3 EA ← [R1] + [R2]*4 
[R3] ← [Mem(EA)] 

Access to elements in an 
array of complex data 
structures (R3 points to the 
base, R2 is index) 

Autoincrement LOAD (R1)+, R3 EA ← [R1]; [R1] ← 
[R1] + 4 
[R3] ← [Mem(EA)] 

Access to elements of an 
array in a loop; 
Access to stack (push/pop) 

Autodecrement LOAD -(R1), R3 [R1] ← [R1] – 4; EA ← 
[R1] 
[R3] ← [Mem(EA)] 

Access to elements of an 
array in a loop; 
Access to stack (push/pop) 

Register indirect 
with displacement 

LOAD 0x100(R1), R3 EA ← [R1] + 0x0100 
[R3] ← [Mem(EA)] 

Access to local variables 

Register indirect 
with scaled index 
and displacement 

LOAD 
0x100(R1+R2*4), R3 

EA ← 
0x0100+[R1]+[R2]*4 
[R3] ← [Mem(EA)] 

Access to arrays allocated 
on the stack 

PC relative LOAD 0x100(PC), R3 EA ← 0x0100+[PC] 
[R3] ← [Mem(EA)] 

Branches, Jumps, 
Procedure calls 
Static data 

PC relative with 
index 

LOAD (PC+R2),R3 EA ← [PC]+[R2] 
[R3] ← [Mem(EA)] 

Branches, Jumps, 
Procedure calls 
Static data 

PC relative with 
scaled index and 
displacement 

LOAD 
0x100(PC+R2*4), R3 

EA ← 
0x0100+[PC]+[R2]*4 
[R3] ← [Mem(EA)] 

Branches, Jumps, 
Procedure calls 
Static data 

 
 
 


