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Numeral Systems: Decimal, binary, hexadecimal, and octal 
 
We ordinarily represent numbers using decimal numeral system that has 10 as its base 
(also base-10 or denary). The decimal numeral system uses 10 symbols: 0, 1, 2, 3, 4, 5, 6, 
7, 8, and 9. It is the most widely used numeral system, perhaps because humans have ten 
fingers over both hands.  
 
For example, a decimal number 456 could also be represented as (4 100’s, 5 10’s, and 6 
1’s):  
 
45610 = 4*102 + 5*101 + 6*100 
 
The binary numeral system, or base-2 (radix-2) number system, is a numeral system that 
represents numeric values using only two symbols, 0 and 1. These symbols can be 
directly implemented using logic gates and that is why all modern computers internally 
use the binary system to store information.  
 
For example, 101112 is a binary number with 5 binary digits.  The left-most bit is known 
as the most significant bit (msb), and the rightmost one is known as the least-significant 
bit (lsb). This binary number 101112 can be converted to a corresponding decimal 
number as follows:  
 
101012 = 1*24 + 0*23 + 1*22 + 1*21 + 1*20 = 2310 
 
Hexadecimal (base-16, hexa, or hex) is a numeral system with a radix, or base, of 16. It 
uses sixteen distinct symbols, most often the symbols 0–9 to represent values zero to 
nine, and A, B, C, D, E, F (or a through f) to represent values ten to fifteen.   
 
For example, a hex number 1A316 corresponds to  
 
1A316 = 1*162 + 10*161 + 3*160 = 256 + 160 + 3 = 41910 
1A316 = 1_1010_00112  
 
Its primary use is as a human friendly representation of binary coded values, so it is often 
used in digital electronics and computer engineering. Since each hexadecimal digit 
represents four binary digits (bits), it is a compact and easily translated shorthand to 
express values in base two. 
 
Octal (also base-8) is a number system with a radix, or base, of 8. It uses 8 distinct 
symbols 0, 1, 2, 3, 4, 5, 6, and 7.  An octal number 3728 corresponds to  



 
3728 = 3*82 + 7*81 + 2*80 = 192 + 56 + 2 = 25010. 

Storing and interpreting information in modern computers 
 
An n-bit binary number can differentiate between 2n things. In digital computers 
information and space are organized in bytes. A byte can represent up to 28 = 256 things. 
 
1 byte = 8 binary digits = 8 bits (e.g. 10010011) 
½ byte = 1 nibble = 4 bits 
In 16-bit computers 1 word = 2 bytes (16 bits). 
In 32-bit computers 1 word = 4 bytes (32 bits), a half-word is 2 bytes (16-bits), and a 
double word is 8 bytes (64 bits).   
 
Meaning of bits and bytes is assigned by the convention.   
 
Some examples of common encoding formats are as follows: 
1 byte ASCII = one of 256 alphanumeric or special purpose text character (definitions are 
in the ASCII table, see http://en.wikipedia.org/wiki/ASCII)  
1 byte = 1 short unsigned integer (0 – 255)  
1 byte = 1 short signed integer (-128 – 127)  
1 byte = 2 Binary coded decimal (BCD) digits (i.e. one per nibble) 
1 byte = 2 hexidecimal (hex) digits (one per nibble) 
1 byte = 8 individual bits (e.g. 8 status flags) 
2 bytes = 1 unsigned integer (0 – 65535)  
2 bytes = 1 signed integer (-32768 – 32767) 
... 
 



Conversion to binary from other numeral systems 
 
To convert from a base-10 integer numeral to its base-2 (binary) equivalent, the number 
is divided by two, and the remainder is the least-significant bit. The (integer) result is 
again divided by two, its remainder is the next most significant bit. This process repeats 
until the result of further division becomes zero. 
 
For example, 2310, in binary, is: 
 
Operation Remainder  
23 ÷ 2 = 11 1  
11 ÷ 2 = 5 1  
5 ÷ 2 = 2 1  
2 ÷ 2 = 1 0  
1 ÷ 2 = 0 1  
 
Reading the sequence of remainders from the bottom up gives the binary numeral 101112. 
 
This method works for conversion from any base, but there are better methods for bases 
which are powers of two, such as octal and hexadecimal given below. 
 
To convert a binary number to a decimal number use the following approach: 
 
101012 = 1*24 + 0*23 + 1*22 + 1*21 + 1*20 = (((1*2 + 0)*2 + 1)*2 + 1)*2 + 1. 
 
Octal and hexadecimal numbers are easily converted to binary numbers and vice versa. 
For example: 
 
3728 = 001_111_0102 = 7A16 
 
1011_01012 = 2658 =B516. 
 
 
 
 



Integers 
 
The term integer is used in computer engineering/science to refer to a data type which 
represents some finite subset of the mathematical integers. Integers may be unsigned 
(capable of representing only non-negative integers) or signed (capable of representing 
negative integers as well).  
 
An n-bit unsigned integer can encode 2n numbers that represent the non-negative values 0 
through 2n−1.   
 
There are three different ways to represent negative numbers in a binary numeral system. 
The most common is two’s complement, which allows a signed integral type with n bits 
to represent numbers from −2(n−1) through 2(n−1)−1. Two’s complement arithmetic is 
convenient because there is a perfect one-to-one correspondence between representations 
and values, and because addition, subtraction and multiplication do not need to 
distinguish between signed and unsigned types. The other possibilities are sign-
magnitude and ones' complement.  
 
Sign and Magnitude representation uses n-1 bits to convey magnitude with “most 
significant bit” or MSB used for sign (0 = +, 1 =  -). Note: the problem is that there exists 
two representations for value 0.  
 
With one’s complement representation a negative binary number is created by applying 
the bitwise NOT to its positive counterpart. Like sign-and-magnitude representation, 
ones' complement has two representations of 0: 00000000 (+0) and 11111111 (−0). 
 
As an example, the ones' complement form of 00101011 (43) becomes 11010100 (−43). 
The range of signed numbers using ones' complement in a conventional eight-bit byte is 
−12710 to +12710.   
 
We focus on two’s complement because it is the dominant way to represent signed 
integers today.  Table 1 shows common integer data types and their ranges.  
 
 



Table 1. Common integer data types and ranges.  
Bits Name Range 

Signed: −128 to +127 
8 byte, octet 

Unsigned: 0 to +255 

Signed: −32,768 to +32,767 
16 halfword, word 

Unsigned: 0 to +65,535 

Signed: −2,147,483,648 to +2,147,483,647 
32 word, doubleword, 

longword Unsigned: 0 to +4,294,967,295 

Signed: −9,223,372,036,854,775,808 to 
+9,223,372,036,854,775,807 64 doubleword, longword, 

long long, quad, quadword 
Unsigned: 0 to +18,446,744,073,709,551,615 

Signed: −170,141,183,460,469,231,731,687,303,715,884,105,728 to 
+170,141,183,460,469,231,731,687,303,715,884,105,727 

128 octaword 
Unsigned: 0 to 
+340,282,366,920,938,463,463,374,607,431,768,211,455 

Signed: ( − 2n − 1) to (2n − 1 − 1) 
n n-bit integer 

(general case) Unsigned: 0 to (2n − 1) 
 
 



Binary Coded Decimal Numbers 
 
Binary-coded decimal (BCD) is an encoding for decimal numbers in which each digit is 
represented by its own binary sequence. Its main virtue is that it allows easy conversion 
to decimal digits for printing or display and faster decimal calculations. Its drawbacks are 
the increased complexity of circuits needed to implement mathematical operations and a 
relatively inefficient encoding—it occupies more space than a pure binary representation. 
 
Though BCD is not as widely used as it once was, decimal fixed-point and floating-point 
are still important and still used in financial, commercial, and industrial computing. 
 
To BCD-encode a decimal number using the common encoding, each decimal digit is 
stored in a four-bit nibble. 
 
Decimal:    0     1     2     3     4     5     6     7     8     9 
BCD:     0000  0001  0010  0011  0100  0101  0110  0111  1000  1001 
 
Thus, the BCD encoding for the number 127 would be: 
 0001 0010 0111 
 
Since most computers store data in eight-bit bytes, there are two common ways of storing 
four-bit BCD digits in those bytes: 

 each digit is stored in one nibble of a byte, with the other nibble being set to all 
zeros, all ones (as in the EBCDIC code), or to 0011 (as in the ASCII code)  

 two digits are stored in each byte.  
Unlike binary encoded numbers, BCD encoded numbers can easily be displayed by 
mapping each of the nibbles to a different character. Converting a binary encoded number 
to decimal for display is much harder involving integer multiplication or divide 
operations. 



Two’s Complement 
 
Calculating two’s complement 
In two's complement notation, a positive number is represented by its ordinary binary 
representation, using enough bits that the high bit, the sign bit, is 0. The two's 
complement operation is the negation operation, so negative numbers are represented by 
the two's complement of the representation of the absolute value. 
 
In finding the two's complement of a binary number, the bits are inverted, or "flipped", by 
using the bitwise NOT operation; the value of 1 is then added to the resulting value.  
 
Let’s assume 8-bit signed binary numbers.  A = 2310 = 1716 = 000101112.  We would like 
to find the two’s complement for A (-A).   
 
one’s complement of A:   11101000 
        +           1 
   ------------------ 
          11101001 
 
So the two’s complement representation of -2310 = 111010012 = E916.   
 
You may shorten this process by using hexadecimal representation 
A     : 17 
one’s complement of A: E8 
            + 1 
   ------------------ 
          E9 
 
An alternative approach: start from the least significant bit of the binary representation of 
A, 000101112. As long as bits are equal to 0, copy them to the output. When the first 1 in 
sequence is encountered, copy it to the output, and afterwards complement each incoming 
bit.  In our case, the lsb bit is 1, so it is copied to the output unchanged. All other bit are 
complemented, which results in 111010012.   
A shortcut to manually convert a binary number into its two's complement is to start at 
the least significant bit (LSB), and copy all the zeros (working from LSB toward the most 
significant bit) until the first 1 is reached; then copy that 1, and flip all the remaining bits. 
This shortcut allows a person to convert a number to its two's complement without first 
forming its ones' complement. For example: the two's complement of "0001_0111" is 
"11101001", where the underlined digits are unchanged by the copying operation. 
 
Arithmetic operations: addition, subtraction, multiplication and the use of flags 
Addition 
Adding two's-complement numbers requires no special processing if the operands have 
opposite signs: the sign of the result is determined automatically. For example, adding 15 
and -5: 
 



  0000 1111  (15) 
+ 1111 1011  (-5) 
================== 
  0000 1010  (10) 
  1111 1111  (carry bits) 
 
This process depends upon restricting to 8 bits of precision; a carry to the (nonexistent) 
9th most significant bit is ignored, resulting in the arithmetically correct result of 10.   
 
 
The last two bits of the carry row (reading right-to-left) contain vital information: 
whether the calculation resulted in an arithmetic overflow, a number too large for the 
binary system to represent (in this case greater than 8 bits). An overflow condition exists 
when a carry (an extra 1) is generated into but not out of the far left sign bit, or out of but 
not into the sign bit. As mentioned above, the sign bit is the leftmost bit of the result.  
 
If the last two carry bits are both 1's or both 0's, the result is valid; if the last two carry 
bits are "1 0" or "0 1", a sign overflow has occurred. Conveniently, an XOR operation on 
these two bits can quickly determine if an overflow condition exists. As an example, 
consider the 4-bit addition of 7 and 3: 
 
  0111  (7) 
+ 0011  (3) 
============= 

1010 (−6)  invalid! 
  0111   (carry) 
 
In this case, the far left two (MSB) carry bits are "01", which means there was a two's-
complement addition overflow. That is, ten is outside the permitted range of −8 to 7. 
 
An alternative way to calculate Overflow (V) flag is to consider the sign bits of the 
operands and the result.  Let us assume we add two 8-bit integers in two’s complement, A 
and B, and the result is an 8-bit F.  The MSB bits of the operands and the result can be 
used to calculate the V flag.  An overflow in case of addition occurs if one of the 
following two conditions are met: (a) both operands A and B are positive numbers (A7=0 
and B7=0), and the result F is a negative number (F7=1), and (b) both operands A and B 
are negative numbers (A7=1 and B7=1), and the result F is a positive number (F7=0). 
Consequently, overflow flag in case of addition can be calculated as follows: 
 

777777 FBAFBAV ADD ⋅⋅+⋅⋅= . 
 
In addition to the Carry flag and the Overflow flag, two more flags are commonly used in 
digital computers, Zero (Z) and Negative (N).  The Z flag is set when the result of the 
current arithmetic or logic operation is equal to 0 (F=0) and reset otherwise.  The 
negative flag keeps information about the sign bit of the result F (N=F7).  
 



 
Subtraction 
Computers usually use the method of complements to implement subtraction. But 
although using complements for subtraction is related to using complements for 
representing signed numbers, they are independent; direct subtraction works with two's-
complement numbers as well. Like addition, the advantage of using two's complement is 
the elimination of examining the signs of the operands to determine if addition or 
subtraction is needed. For example, subtracting -5 from 15 is really adding 5 to 15, but 
this is hidden by the two's-complement representation: 
 
  0000 1111  (15) 
− 1111 1011  (−5) 
=========== 
  0001 0100  (20) 
 11110 000   (borrow) 
 
Overflow is detected the same way as for addition, by examining the two leftmost (most 
significant) bits of the borrows; overflow has occurred if they are different.  
Alternatively, the overflow flag can be calculated as follows: 
 

777777 FBAFBAV ADD ⋅⋅+⋅⋅=  
 
Another example is a subtraction operation where the result is negative: 15 − 35 = −20: 
 
  0000 1111  (15) 
− 0010 0011  (35) 
=========== 
  1110 1100  (−20) 
  11100 000  (borrow) 
 
 
Multiplication 
The product of two n-bit numbers can potentially have 2n bits. If the precision of the two 
two's-complement operands is doubled before the multiplication, direct multiplication 
(discarding any excess bits beyond that precision) will provide the correct result. For 
example, take 6 × −5 = −30. First, the precision is extended from 4 bits to 8. Then the 
numbers are multiplied, discarding the bits beyond 8 (shown by 'x'): 
 
   00000110  (6) 
 × 11111011  (-5) 
 ========== 
        110 
       110 
        0 
     110 
    110 



   110 
  x10 
 xx0 
 ========== 
 xx11100010  (-30) 

Fraction Numbers 
Two conventions: Fixed point and Floating Point 
 
Fixed point 
Binary radix point assigned a fixed location in byte (or word). Fixed-point numbers are 
useful for representing fractional values when the executing processor has no floating 
point unit (FPU) or if fixed-point provides improved performance or accuracy for the 
application at hand. Most low-cost embedded microprocessors and microcontrollers do 
not have an FPU. In binary fixed-point numbers, each magnitude bit represents a power 
of two, while each fractional bit represents an inverse power of two. Thus the first 
fractional bit is ½, the second is ¼, the third is ⅛ and so on. For signed fixed point 
numbers in two's complement format, the upper bound is given by 2(m − 1) − 2(− f), and the 
lower bound is given by −2(m − 1), where m and f are the number of bits in M and F 
respectively. For unsigned values, the range is 0 to 2m − 2(− f). 
 
 
 
00000.101 = 0.625 
 
Granularity of precision in function of number of fractional bits assigned 
 
4 fractional bits = 2−4 = 0.0625 = the smallest fraction.  
 
 
Floating-point 
The IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) is the most widely-
used standard for floating-point computation, and is followed by many CPU and FPU 
implementations. The standard defines formats for representing floating-point numbers 
(including negative zero and denormal numbers) and special values (infinities and NaNs) 
together with a set of floating-point operations that operate on these values. It also 
specifies four rounding modes and five exceptions (including when the exceptions occur, 
and what happens when they do occur). 
 
Floating-point numbers are typically packed into a computer datum as the sign bit, the 
exponent field, and the significand (mantissa), from left to right. For the IEEE 754 binary 
formats they are apportioned as follows: 
 
 
 
 



Type Sign Exponent Exponent bias significand total 

Half (IEEE 754-2008) 1 5 15 10 16 

Single 1 8 127 23 32 
Double 1 11 1023 52 64 

Quad 1 15 16383 112 128 
 
Single Presicion (32 bits): S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF 
Value = (-1)S 2 (E-127)*(1.F) 
The 32-bit representation consists of three parts. The first bit is used to indicate if the 
number is positive or negative. The next 8 bits are used to indicate the exponent of the 
number, and the last 23 bits are used for the fraction. 
 
 
An Example:  
Converting decimal digits to IEEE binary floating point is a little tricky. There are 3 
steps.  

• The first step in the conversion is the simplest. This is determining the first bit. If 
the decimal digit is positive then this bit is 0, if the decimal digit is negative then 
this bit is 1. 

• The next eight digits are used to express the exponent, which we'll figure out last. 
• The final 23 digits are used to express the fraction. This gives you 2^23 precision.  

 
Let us first illustrate the method for conversion using a simple example. 
The first thing to do is convert your decimal digit to binary, ignoring any positive or 
negative signs. For instance, if your original number was: 
 
-210.25  
 
you first need to convert 210.25 to binary. It is easiest to focus on the integer part of the 
number first, then the decimals. 210 is 11010010 or 128+64+16+2, otherwise expressed 
as: 
 
1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 
 
Next we need to convert the decimal part. To do this we have to convert the number into 
a binary sequence that equals a*2^-1 + a*2^-2 and so on. This series basically means 1/2 
+ 1/4 + 1/8 + 1/16 and so on. Luckily .25 is 1/4 and so this is easy to calculate. It is .01 or 
0*2^-1 + 1*2^-2. So our final number is 11010010.01. The next step is to normalize this 
number so that only one non zero decimal place is in the number. To do this you must 
shift the decimal place 7 positions to the left. The number 7 becomes important so we 
note it. This process leaves us with the number 1.101001001 which is the fraction that is 
represented in the last 23 bit places in the 32 bit binary. However, because of the rules 
used for conversion the first digit of any number will always be one. Because we know 
this number there is no need to represent it. Thus the number we will represent is 



101001001. This is then padded with 0's to fill in the full 23 bits - leaving us with 
10100100100000000000000. 
 
So we now have the first bit, and the last 23 bits of the 32 bit sequence. We must now 
derive the middle 8 bits. To do this we take our exponent (7) and add 127 (the maximum 
number you can express with 8 bits (2^8-1 or the numbers 0 to 127)) which gives us 134. 
We then express this number as an 8 bit binary. This is 10000110 (or 1*2^7 + 1*2^2 + 
1*2^1 or 128+4+2). Now we have the middle bits. 
 
Taken as a whole our bit sequence will be: 
 
1 10000110 10100100100000000000000 
 
We can convert this bit sequence back into a number by reversing the process. First we 
can note by the leading 1 that the number is negative. Next we can determine the 
exponent. 10000110 is binary for 2+4+128 or 134. 134-127 is 7, so the exponent is 7. 
Finally we take the last 23 digits, convert them back into the original fraction (adding the 
preceding 1.) to get: 
 
1.101001001 
 
Moving the decimal place to the right by 7 (corresponding to the exponent) we get: 
 
11010010.01 
 
This binary is equal to 128+64+16+2 + 1/4 or 210.25. Once we apply the negative sign 
(indicated by the leading bit set to 1) we get our original number: 
 
-210.25 
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