CPE 323 MSP430 INSTRUCTION SET ARCHITECTURE

Aleksandar Milenkovic

The MSP430 is a 16-bit, byte-addressable, RISC-like architecture. The main
characteristics of the instruction set architecture are as follows.

Registers

The MSP430 has a register file with 16 registers (R0-R15) that are all visible to
programmers. Register RO is reserved for the program counter (PC), register R1 serves
as the stack pointer, and register R2 serves as the status register. Register R3 can be used
for constant generation, while the remaining registers R4-R15 serve as general-purpose
registers.

A relatively large number of general-purpose registers compared to other
microcontrollers, allows the majority of program computation to take place on operands
in general-purpose registers, rather than operands in main memory. This helps improve
performance and reduce code size.

A block diagram of the processor core is shown in Figure 1. Register-register operations
are performed in a single clock cycle.

MDEB - Memory Data Bus Memory Address Bus - MAB

o

0

RO/PC Program Counter |0

R1/SP Stack Pointer |0

R2/SR/CG1 Status

R3/CG2 Constant Generator

)
H = H

General Purpose

pa)
o

General Purpose

a
H @ H

General Purpose

General Purpose

)
oo

General Purpose

General Purpose

)
H < H

R10 General Purpose

R11 General Purpose

R12 General Purpose

T
R13 General Purpose

R14 General Purpose

[T
TITI00I000II00 00,

R15 General Purpose

o 7 V.

Zero, Z dst oo s

Carry, C
Overflow, V- 16-bit ALU

Negative, N

3

1 MCLK

Figure 1. MSP430 CPU Block Diagram.

Program counter (PC/R0). PC always points to the next instruction to be executed.
MS430 instructions can be encoded with 2 bytes, 4 bytes, or 6 bytes depending on
addressing modes used for source (src) and source/destination (src/dest) operands. Hence,
the instructions have always an even number of bytes (they are word-aligned), so the
least significant bit of the PC is always zero.

The PC can be addressed by all instructions. Let us consider several examples:
MOV #LABEL,PC ; Branch to address LABEL

MOV LABEL, PC ; Branch to address contained in LABEL

MOV @R14,PC ; Branch indirect to address in R14

Stack pointer (SP/R1). The program stack is a dynamic LIFO (Last-In-First-Out)
structure allocated in RAM memory. The stack is used to store the return addresses of
subroutine calls and interrupts, as well as the storage for local data and passing
parameters. The MSP430 architecture assumes the following stack convention: the SP
points to the last full location on the top of the stack, and the stack grows toward lower
addresses in memory. The stack is also word-aligned, so the LSB bit of the SP is always
0.

Two main stack operations are PUSH (the SP is first decremented by 2, and then the
operand is stored in memory at the location addressed by the SP), and POP (the content
from the top of the stack is retrieved; the SP is incremented by 2).

[[Mustrate PUSH and POP operations on the stack.]]

Status register (SR/R2). The status register keeps the content of arithmetic flags (C, V, N,
7), as well as some control bits such as SCG1, SCG0, OSCOFF, CPUOFF, and GIE.

The exact format of the status register and the meaning of the individual bits is show in
Figure 2.

15 9 8 7 0
OSC|cPU
I Reserved | v | SCG1 | SCGO0 |OFF|OFF | GIE| N | z | C |
AY
-
Bit Description
A Overflow bit. This bit is set when the result of an arithmetic operation

overflows the signed-variable range

ADD(.B) ,ADDC (.B) Set when
Positive + Positive = Negative
Negative + Negative = Positive,
otherwise reset

SUB(.B),SUBC(.B),CMF(.B) Setwhen
Positive — Negative = Negative
MNegative — Positive = Positive,
otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the SMCLK

SCGO System clock generator 0. This bit, when set, turns off the DCO dc
generator, if DCOCLK is not used for MCLK or SMCLK.

OSCOFF Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator,
when LFXT1CLK is not use for MCLK or SMCLK

CPUOFF CPU off. This bit, when set, tums off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable
interrupts. When reset, all maskable interrupts are disabled

N Negative bit. This bit is set when the result of a byte or word operation
is negative and cleared when the result is not negative
Word operation: N is set to the value of bit 15 of the
result
Byte operation: N is set to the value of bit 7 of the
result
z Zero bit. This bit is set when the result of a byte or word operation is 0

and cleared when the result is not 0.

C Carry bit. This bit is set when the result of a byte or word operation
produced a carry and cleared when no carry occurred

Figure 2. Status register format (top) and bits description (bottom).

Constant generator (R2-R3). Profiling common programs for constants shows that just a
few constants, such as 0, +1, +2, +4, +8, -1, are responsible for majority of program
constants. However, to encode such a constant we will need 16 bits in our instruction. In
order to reduce the number of bits spent for encoding frequently used constants, a trick
called constant generation is used. By specifying dedicated registers R2 and R3 in
combination with certain addressing modes, we tell hardware to generate certain
constants. This results in shorter instructions (we need less bits to encode such an
instruction). Error! Reference source not found. describes values of constant
generators.

Register As Constant Remarks

R2 0w ----- Register mode

R2 01 (0) Absolute address mode
R2 10 00004h +4 bit processing

R2 " 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 aooo1h +1

R3 10 00002h +2 bit processing

R3 il OFFFFh -1, word processing

Figure 3. Constant generation.

An example: Let’s say you want to clear a word in memory at the address dst. To do this,
a MOVE instruction could be used:

MOVE #0, dst

This instruction would have 3 words: the first contains the opcode and addressing mode
specifiers. The second word keeps the constant zero, and the third word contains the
address of the memory location. Alternatively, the instruction

MOVE R3, dst
performs the same task, but we need only 2 words to encode it.

General-purpose registers (R4-R15). These registers can be used to store temporary data
values, addresses of memory locations, or index values, and can be accessed with BYTE
or WORD instructions.

Let us consider a register-byte operation using the following instruction:
ADD.B RS, O(R6)

This instruction specifies that a source operand is the register RS, and src/dest operand is
in memory at the address (R6+0). The suffix .B indicates that the operation should be
performed on byte-size operands. Thus, a lower byte from the register RS, 0x8F, is
added to the byte from the memory location Mem(0x0203)=0x12, and the result is
written back, so the new value of Mem(0x0203)=0xA1. The content of the register RS is
intact.

Let us now consider a byte-register operation using the following instruction:
ADD.B @R6, RS5.

This instruction specifies a source operand in memory at the address contained in R6, and
the destination operand is in the register R5. A suffix .B is used to indicate that the
operation uses byte-sized operands. A suffix .W indicates that operations are performed
on word-sized operands and is default (i.e., by omitting .W we imply word-sized
operands). As shown below, a byte value Mem(0x0223)=0x5F is added to the lower byte
of R5, 0x02. The result of 0x61 is zero extended to whole word, and the result is written
back to register R6. So, the upper byte is always cleared in case of byte-register
operations.

Register-Byte Operation

High Byte Low Byte

| Unused | |Register

Byte Memory

Example Register-Byte Operation
R5 = 0A28Fh

R6 = 0203h

Mem(0203h) =012h

Byte-Register Operation

High Byte Low Byte

I Register

Example Byte-Register Operation
R&=01202h

R6 =0223h

Mem(0223h) = 05Fh

2DD.E RS, 0 (R6) ADD.EB @RE, RS
08Fh 05Fh
+012h +002h
0ATh 00061h

Mem (0203h) = 0A1h
C=0,Z=0,N=1

RS =00061h
C=0,Z=0N=0

(Low byte of register)
+ (Addressed byte)
—>(Addressed byte)

(Addressed byte)
+ (Low byte of register)
—>(Low byte of register, zero to High byte)

Figure 4. Register-byte (left) and byte-register (right) operations.

Addressing Modes

The MSP430 architecture supports a relatively rich set of addressing modes. Seven of
addressing modes can be used to specify a source operand in any location in memory
(Figure 5), and the first four of these can be used to specify the source/destination
operand. Figure 5 also illustrates the syntax and give a short description of the addressing
modes. The addressing modes are encoded using As and Ad address specifiers in the
instruction word, and the first column shows how they are encoded.

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

011 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

011 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

011 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/- Indirect register @RnN Rn is used as a pointer to the

mode operand.

M- Indirect @Rn+ Rnis used as a pointer to the

autoincrement operand. Rn is incremented
afterwards by 1 for B instructions
and by 2 for W instructions

/- Immediate mode #N The word following the instruction

contains the immediate constant
N. Indirect autoincrement mode
@PC+ 15 used.

Figure 5. Addressing Modes.

Register mode. The fastest and shortest mode is used to specify operands in registers.
The address field specifies the register number (4 bits).

Indexed mode. The operand is located in memory and its address is calculated as a sum
of the specified address register and the displacement X, which is specified in the next
instruction word. The effective address of the operand is ea, ea=Rn+X.

Symbolic mode. This addressing mode can be considered as a subset of the indexed
mode. The only difference is that the address register is the PC, and thus ea=PC+X.

Absolute mode. The instruction specifies the absolute (or direct) address of the operand
in memory. The instruction includes a word that specifies this address.

Indirect register mode. It can be used only for source operands, and the instruction
specifies the address register Rn, and the ea=Rn.

Indirect autoincrement. The effective address is the content of the specified address
register Rn, but the content of the register is incremented afterwards by +1 for byte-size
operations and by +2 for word-size operations.

Immediate mode. The instruction specifies the immediate constant that is operand, and is
encoded directly in the instruction.

One should notice a smart encoding of the addressing modes. Only a 2-bit address
specifier As is sufficient in encoding 7 addressing modes. How does it work? For
example, please note that the absolute addressing mode is encoded in the same way as the
indexed and the symbolic modes, As=01. However, the absolute mode specifies the SR
register as the address register. It is never used in the indexed mode as an address
register, so this combination indicates the absolute addressing. Next, the immediate
mode uses the same As=11 as the autoincrement mode. It is distinguished from the
autoincrement mode because the specified register is the PC, which is never used in the
autoincrement mode. Similarly, we can explain how only a single bit Ad suffices in
distinguishing 4 addressing modes for the destination operand.

[[Examples]]

Instruction Set

The MSP430 instruction set consists of 27 core instructions and 24 emulated instructions.
The core instructions are instructions that have unique op-codes decoded by the CPU.
The emulated instructions are instructions that make code easier to write and read, but do
not have op-codes themselves, instead they are replaced automatically by the assembler
with an equivalent core instruction. There is no code or performance penalty for using
emulated instruction.

There are three core-instruction formats:

= Double-operand
= Single-operand
= Jump

All single-operand and double-operand instructions can be byte or word instructions by
using .B or .W extensions. Byte instructions are used to access byte data or byte
peripherals. Word instructions are used to access word data or word peripherals. If no
extension is used, the instruction is a word instruction.

The source and destination of an instruction are defined by the following fields:

= src - The source operand defined by As and S-reg

0 As - The addressing bits responsible for the addressing mode used for the

source (src)

0 S-reg The working register used for the source (src)
= dst - The destination operand defined by Ad and D-reg

0 Ad - The addressing bits responsible for the addressing mode used for the

destination (dst)

0 D-reg - The working register used for the destination (dst)

= B/W Byte or word operation:
0 0: word operation
0 1: byte operation

Figure 6 shows the double-operand instruction format and the list of all double-operand

core instructions.

15 14 13 12 11 10 9 g 7 5] 4 3 2 1

Op-code S-Reg Ad | BW As D-Reg

Mnemonic S-Reg, Operation Status Bits
D-Reg v N z
MOV (.B) src,dst src— dst - - -
ADD(.B) src,dst src + dst— dst * N *
ADDC(.B) sarc,det src+dst+C —dst * " "
SUB(.B) arc,dst dst+ .notsrc+ 1 — dst * " "
SUBC(.B) src,dst dst+ notsrc+C — dst * N *
CMP(.B) src,dst dst-src * * *
DADD{.B) src,dst src+dst+ C — dst (decimally) * * *
BIT(.B) src,dst src.and. dst 0 " "
BIC(.B) arc,dst _not.src .and. dst — dst - - -
BIS(.B) src,dst src or. dst — dst - - -
XOR(.B) src,dst src xor. dst — dst * * *
AND (.B) arc,dst src .and. dst — dst 0 " *

*

The status bit is affected

- The status bit is not affected

0 The status bit is cleared
1 The status bit is set

Figure 6. Double-operand instruction format (top) and instruction table (bottom).

Figure 7shows the single-operand instruction format and the list of all single-operand

core instructions.

Op-code | B-'W| Ad | D/S-Reg
Mnemonic S-Reg, QOperation Status Bits
D-Reg V N z ¢
RRC(.B) dst C—-MSB—..LSB-=C * * * *
RRA(.B) dst MSB - MSB —...LSB - C 0 * * *
PUSH(.B) src SP -2 - SP, sre — @SP - - - -
SWEE dst Swap bytes - - - -
CALL dst SP -2 SP,PC+2 - @SP - - - -
dst = PC
RETI TOS - SR, SP+2 »SP * * * -

TOS - PCSP +2 - SP
SXT dst Bit 7 — Bit8.____Bit 15 0 " " "

* The status bit is affected
- The status bit is not affected
0 The status bit is cleared

1 Thea atatiis hit iz sat
Figure 7. Single-operand instruction format (top) and instruction table (bottom).

Figure 7shows the jump instruction format and the list of all jump core instructions.
Conditional jumps support program branching relative to the PC and do not affect the
status bits. The possible jump range is from =511 to +512 words relative to the PC value
at the jump instruction. The 10-bit program-counter offset is treated as a signed 10-bit
value that is doubled and added to the program counter:

PCnew = PCold + 2 + PCoffset x 2

15 14 13 12 11 10 9 g 7 G 5 4 3 2 1 0

| Op-cade | C 10-Bit PC Offset
Mnemonic S-Reg, D-Reg Operation
JEQ/JZ Label Jump to label if zero bit is set
JNE /JNZ Label Jump to label if zero bit is reset
JcC Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N XOR_ V) =0
JL Label Jump to label if (N XOR. V) =1
JME Label Jump to label unconditionally

Figure 8. Jump instruction format (top) and instruction table (bottom).

Figure 9 shows a complete list of the MSP430 core and emulated instructions.

Mnemonic Description v
aoci.E) T dst Add C to destination dst+ C —dst .
ADDI.B) src,dst Add source to destination src + dst — dst "
ADDC LB} src,dst Add source and C to destination src+dst+ C — dst "
AHD(.B) src,dst AMD source and destination src.and. dst — dst i}
BIC(.B) src,dst Clear bits in destination .not.sre .and. dst — dst -
BIS(.EB) src,dst Setbiis in destination src or. dst — dst -
BITI(.B} src,ast Test bits in desfination src.and. dst L1}
BT st Branch to destination dst = FC -
CALL dst Call desiination PC+2 — stack, dst » PC -
ari.eT ase Clear destination 0 dst -
crct Clear C 0=C -
crent Clear N 0N -
crrzf Clear Z 0-2Z -
TMP(.B} src,dst Compare source and destination dst - sro "
oaoci.B)t dst Add C decimally fo destination dst + C — dst (decimally) '
DACD.B) src,dst Add source and C decimally to dst. sre + dst + C — dst (decimally) .
pEci.B)T dst Decrament destination dst— 1 —dst g
oecoi.eyT ast Double-decrement destination dst -2 —dst g
prnrt Disable interrupts 0— GIE -
Reradl Enable interrupts 1 GIE -
mei.mT dst Increment destination dst +1 — dst "
mepi.eyt ast Diouble-incrament destination dst+Z — dst :
mvi.sT ast Invrt destination not.dst — dst .
Jc/ JHS labal Jumnp if © set!Jump if higher or same -
JEQ/JE labal Jumnp if equallJump if Z set -
JEE labal Jumnp if greater or equal -
JL label Jumnp if less -
JHE label Jump PC + 2 x offset = PC -
TJH label Jumnp if N sst -
JHC/TLO label Jump if C not setiJumg if lower -
JHE/JNZ labal Jumnp if not equaliJump if Z not set -
MOV (. B} src,ast Move source fo desfination src — dst =
woel Mo operation -
eopi.m3T ast Fop item from stack to destination @EP — dst, 5P+2 — 5P -
FUSHI.E} BIC Push source onio stack SP-2 —5R src— @3P -
RrETT Retumn from subroutine @EF = PC.SP+2 5P -
RETI Retumn from interrupt "
peai.B)T ast Rotate left arithmetically .
puoi.ByT ast Rotate laft through C .
RRAL.E} dst Raotate right arithmetically o
RRC(.B} dst Rotate right through C "
seoi.m T ast Subtract not{C) from destination dst+ OFFFFh + C — dst *
serct SetC 1+C -
semit SetN 1N -
serzh Set? 1=C -
SUE(.B) src,dst Subtract source from destination dst + notsrc+ 11— dst "
SUBCI.E} src,dst Subtract source and not{C) from dst. dst + notsre+ © — dst "
SWEE dst Swiap bytes -
SXT dst Extznd sign a
sT(.B)T ast Test destination dst+ OFFFFh + 1 o
XOR(.B} src,ast Exclusive OR source and destination src xor. dst — dst "

1 Emulated Instruction

Figure 9. The complete MSP430 Instruction Set (core + emulated instructions).

